0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRLIB4343

IRLIB4343

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    SOT78

  • 描述:

    MOSFET N-CH 55V 19A TO220FP

  • 数据手册
  • 价格&库存
IRLIB4343 数据手册
PD - 95857A DIGITAL AUDIO MOSFET IRLIB4343 Features l l l l l l l Advanced Process Technology Key Parameters Optimized for Class-D Audio Amplifier Applications Low RDSON for Improved Efficiency Low Qg and Qsw for Better THD and Improved Efficiency Low Qrr for Better THD and Lower EMI 175°C Operating Junction Temperature for Ruggedness Repetitive Avalanche Capability for Robustness and Reliability Key Parameters VDS RDS(ON) typ. @ VGS = 10V RDS(ON) typ. @ VGS = 4.5V Qg typ. TJ max 55 42 57 28 175 V m: m: nC °C D G TO-220 Full-Pak S Description This Digital Audio HEXFET® is specifically designed for Class-D audio amplifier applications. This MosFET utilizes the latest processing techniques to achieve low on-resistance per silicon area. Furthermore, Gate charge, body-diode reverse recovery and internal Gate resistance are optimized to improve key Class-D audio amplifier performance factors such as efficiency, THD and EMI. Additional features of this MosFET are 175°C operating junction temperature and repetitive avalanche capability. These features combine to make this MosFET a highly efficient, robust and reliable device for Class-D audio amplifier applications. Absolute Maximum Ratings Parameter Max. Units V VDS Drain-to-Source Voltage 55 VGS Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V ±20 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 13 IDM Pulsed Drain Current 80 PD @TC = 25°C Power Dissipation 39 PD @TC = 100°C Power Dissipation 20 TJ Linear Derating Factor Operating Junction and TSTG Storage Temperature Range ID @ TC = 25°C 19 c Mounting torque, 6-32 or M3 screw A W 0.26 -40 to + 175 x W/°C °C x 10lb in (1.1N m) Thermal Resistance f RθJC Junction-to-Case RθJA Junction-to-Ambient Parameter f Typ. Max. Units ––– 3.84 °C/W ––– 65 Notes  through … are on page 7 www.irf.com 1 3/31/04 IRLIB4343 Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Conditions Typ. Max. Units VGS = 0V, ID = 250µA BVDSS Drain-to-Source Breakdown Voltage 55 ––– ––– ∆ΒVDSS/∆TJ RDS(on) Breakdown Voltage Temp. Coefficient ––– 15 ––– Static Drain-to-Source On-Resistance ––– 42 50 ––– 57 65 VGS(th) Gate Threshold Voltage 1.0 ––– ––– V ∆VGS(th)/∆TJ IDSS Gate Threshold Voltage Coefficient ––– -4.4 ––– mV/°C ––– ––– 2.0 µA VDS = 55V, VGS = 0V ––– ––– 25 VDS = 55V, VGS = 0V, TJ = 125°C nA VGS = 20V IGSS Drain-to-Source Leakage Current V mV/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 4.7A e VGS = 4.5V, ID = 3.8A e VDS = VGS, ID = 250µA Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 gfs Forward Transconductance 8.8 ––– ––– Qg Total Gate Charge ––– 28 42 VDS = 44V Qgs Pre-Vth Gate-to-Source Charge ––– 3.5 ––– VGS = 10V Qgd Gate-to-Drain Charge ––– 9.5 ––– ID = 19A Qgodr Gate Charge Overdrive ––– 15 ––– td(on) Turn-On Delay Time ––– 5.7 ––– See Fig. 6 and 19 VDD = 28V, VGS = 10Ve tr Rise Time ––– 19 ––– td(off) Turn-Off Delay Time ––– 23 ––– tf Fall Time ––– 5.3 ––– Ciss Input Capacitance ––– 740 ––– Coss Output Capacitance ––– 150 ––– Crss Reverse Transfer Capacitance ––– 59 ––– Coss Effective Output Capacitance ––– 250 ––– LD Internal Drain Inductance ––– 4.5 ––– VGS = -20V S ID = 19A ns Internal Source Inductance ––– 7.5 RG = 2.5Ω VGS = 0V pF VDS = 50V ƒ = 1.0MHz, See Fig.5 VGS = 0V, VDS = 0V to -44V Between lead, nH LS VDS = 25V, ID = 19A ––– D 6mm (0.25in.) from package and center of die contact G S Avalanche Characteristics Typ. Max. Units EAS Single Pulse Avalanche Energyd ––– 130 mJ IAR Avalanche Currentg See Fig. 14, 15, 17a, 17b EAR Repetitive Avalanche Energy g Parameter A mJ Diode Characteristics Parameter IS @ TC = 25°C Continuous Source Current Min. Typ. Max. Units ––– ––– 19 ––– ––– 110 integral reverse (Body Diode) ISM Pulsed Source Current Conditions MOSFET symbol A D showing the G S VSD Diode Forward Voltage ––– ––– 1.2 V p-n junction diode. TJ = 25°C, IS = 19A, VGS = 0V e trr Reverse Recovery Time ––– 52 78 ns TJ = 25°C, IF = 19A Qrr Reverse Recovery Charge ––– 100 150 nC di/dt = 100A/µs e (Body Diode)c 2 www.irf.com IRLIB4343 1000 1000 VGS 15V 10V 8.0V 4.5V 3.5V 3.0V 2.5V 2.3V 100 BOTTOM 10 2.3V 1 ≤ 60µs PULSE WIDTH Tj = 25°C 100 BOTTOM 10 2.3V 1 ≤ 60µs PULSE WIDTH Tj = 175°C 0.1 0.1 0.1 1 10 100 0.1 VDS, Drain-to-Source Voltage (V) 10 100 Fig 2. Typical Output Characteristics 2.5 RDS(on) , Drain-to-Source On Resistance (Normalized) 1000.0 ID, Drain-to-Source Current (Α) 1 VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics T J = 25°C 100.0 T J = 175°C 10.0 1.0 VDS = 30V ≤ 60µs PULSE WIDTH 0.1 0 2 4 6 8 10 ID = 19A VGS = 10V 2.0 1.5 1.0 0.5 -60 -40 -20 VGS, Gate-to-Source Voltage (V) 10000 20 VGS, Gate-to-Source Voltage (V) C oss = C ds + C gd Ciss Coss Crss 100 20 40 60 80 100 120 140 160 180 Fig 4. Normalized On-Resistance vs. Temperature VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd 1000 0 T J , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics C, Capacitance (pF) VGS 15V 10V 8.0V 4.5V 3.5V 3.0V 2.5V 2.3V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP ID= 19A VDS= 44V VDS= 28V VDS= 11V 16 12 8 4 FOR TEST CIRCUIT SEE FIGURE 19 0 10 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs.Drain-to-Source Voltage www.irf.com 0 10 20 30 40 QG Total Gate Charge (nC) Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage 3 IRLIB4343 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000.0 100.0 100 T J = 175°C 10.0 1.0 OPERATION IN THIS AREA LIMITED BY R DS(on) T J = 25°C 100µsec 10 1msec Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 0.1 1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 1 10 VSD, Source-to-Drain Voltage (V) 100 1000 VDS, Drain-to-Source Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 20 VGS(th) Gate threshold Voltage (V) 2.0 15 ID, Drain Current (A) 10msec 10 5 1.5 ID = 250µA 1.0 0.5 0 25 50 75 100 125 150 -75 175 -50 -25 0 25 50 75 100 125 150 175 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 10. Threshold Voltage vs. Temperature Fig 9. Maximum Drain Current vs. Case Temperature Thermal Response ( Z thJC ) 10 D = 0.50 1 0.20 0.10 0.05 0.1 τJ 0.02 0.01 R1 R1 τJ τ1 τ1 R2 R2 τ2 τ2 R3 R3 τ3 τC τ τ3 Ci= τi/Ri Ci= τi/Ri 0.01 SINGLE PULSE ( THERMAL RESPONSE ) Ri (°C/W) 1.0096 τi (sec) 0.001090 0.9019 0.038534 1.9296 2.473000 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com 600 200 EAS , Single Pulse Avalanche Energy (mJ) RDS(on), Drain-to -Source On Resistance ( mΩ) IRLIB4343 ID = 19A 150 100 T J = 125°C 50 T J = 25°C 0 2.0 4.0 6.0 8.0 ID TOP 2.7A 3.3A BOTTOM 13A 500 400 300 200 100 0 10.0 25 VGS, Gate-to-Source Voltage (V) 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 12. On-Resistance Vs. Gate Voltage Fig 13. Maximum Avalanche Energy Vs. Drain Current 1000 Avalanche Current (A) Duty Cycle = Single Pulse 100 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses 0.01 10 0.05 0.10 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 tav (sec) Fig 14. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 200 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 13A 150 100 50 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 15. Maximum Avalanche Energy Vs. Temperature www.irf.com Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 17a, 17b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 5 IRLIB4343 Driver Gate Drive D.U.T ƒ + - - „ * D.U.T. ISD Waveform Reverse Recovery Current +  RG • dv/dt controlled by RG • Driver same type as D.U.T. • ISD controlled by Duty Factor "D" • D.U.T. - Device Under Test V DD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer ‚ D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Inductor Current Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs 15V LD VDS DRIVER L VDS + VDD - D.U.T RG + V - DD IAS VGS 20V tp D.U.T A VGS 0.01Ω Pulse Width < 1µs Duty Factor < 0.1% Fig 17a. Unclamped Inductive Test Circuit V(BR)DSS Fig 18a. Switching Time Test Circuit VDS tp 90% 10% VGS td(on) I AS Fig 17b. Unclamped Inductive Waveforms tr td(off) tf Fig 18b. Switching Time Waveforms Id Vds Vgs L VCC DUT 0 Vgs(th) 1K Qgs1 Qgs2 Fig 19a. Gate Charge Test Circuit 6 Qgd Qgodr Fig 19b Gate Charge Waveform www.irf.com IRLIB4343 TO-220 Full-Pak Package Outline Dimensions are shown in millimeters (inches) TO-220 Full-Pak Part Marking Information Notes : This part marking information applies to all devices produced before 02/26/2001 and currently for parts manufactured in GB. Notes : This part marking information applies to devices produced after 02/26/2001 in location other than GB. EXAMPLE: EXAMPLE: THIS IS ANIRFI840G WITH ASSEMBLY LOT CODE E401 PART NUMBER INTERNATIONAL RECTIFIER LOGO IRFI840G E401 THIS IS AN IRFI840G WITH ASSEMBLY LOT CODE 3432 ASSEMBLED ON WW24 1999 IN THE ASSEMBLYLINE "K" 9245 ASSEMBLY LOT CODE Notes:  Repetitive rating; pulse width limited by max. junction temperature. ‚ Starting TJ = 25°C, L = 1.5mH, RG = 25Ω, IAS = 13A. ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%. DATE CODE (YYWW) YY= YEAR WW= WEEK Note: "P" in assembly line position indicates "Lead-Free" PART NUMBER INTERNATIONAL RECTIFIER LOGO IRFI840G 924K 34 ASSEMBLY LOT CODE 32 DATE CODE YEAR 9 = 1999 WEEK24 LINE K „ Rθ is measured at TJ of approximately 90°C. … Limited by Tjmax. See Figs. 14, 15, 17a, 17b for repetitive avalanche information. Data and specifications subject to change without notice. This product has been designed for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.03/04 www.irf.com 7 Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/
IRLIB4343 价格&库存

很抱歉,暂时无法提供与“IRLIB4343”相匹配的价格&库存,您可以联系我们找货

免费人工找货