0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRS2106PBF

IRS2106PBF

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    DIP8

  • 描述:

    IC GATE DRV HI-SIDE/LO-SIDE 8DIP

  • 数据手册
  • 价格&库存
IRS2106PBF 数据手册
Data Sheet No. PD60246 IRS2106/IRS21064(S)PbF HIGH AND LOW SIDE DRIVER Features Packages • Floating channel designed for bootstrap operation • Fully operational to +600 V • Tolerant to negative transient voltage, dV/dt immune 8-Lead PDIP • Gate drive supply range from 10 V to 20 V 14-Lead PDIP • Undervoltage lockout for both channels • 3.3 V, 5 V, and 15 V input logic compatible • Matched propagation delay for both channels • Logic and power ground +/- 5 V offset • Lower di/dt gate driver for better noise immunity • Outputs in phase with inputs (IRS2106) • RoHS compliant 8-Lead SOIC Description 14-Lead PDIP 14-Lead SOIC Feature Comparison The IRS2106/IRS21064 are high Crossvoltage, high speed power MOSFET ton/toff Deadtime Input conduction Part Ground Pins and IGBT drivers with independent (ns) logic prevention (ns) logic high- and low-side referenced output 2106/2301 COM HIN/LIN no none 220/200 channels. Proprietary HVIC and 21064 VSS/COM latch immune CMOS technologies 2108 Internal 540 COM HIN/LIN yes 220/200 Programmable 540 - 5000 21084 VSS/COM enable ruggedized monolithic con2109/2302 Internal 540 COM 750/200 IN/SD yes struction. The logic input is Programmable 540 - 5000 VSS/COM 21094 compatible with standard CMOS or yes 160/140 Internal 100 HIN/LIN COM 2304 LSTTL output, down to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 V. Typical Connection up to 600 V VCC V CC VB HIN HIN HO LIN LIN VS COM LO TO LOAD up to 600 V IRS2106 HO (Refer to Lead Assignments for correct pin configuration). These diagrams show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com VCC VCC VB HIN HIN VS LIN LIN VSS VSS IRS21064 TO LOAD COM LO 1 IRS2106/IRS21064(S)PbF Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Symbol Definition VB High-side floating absolute voltage VS Min. Max. -0.3 625 High-side floating supply offset voltage VB - 25 VB + 0.3 VHO High-side floating output voltage VS - 0.3 VB + 0.3 VCC Low-side and logic fixed supply voltage -0.3 25 VLO Low-side output voltage -0.3 VCC + 0.3 VIN Logic input voltage VSS - 0.3 Logic ground (IRS21064 only) VCC - 25 VSS dVS/dt PD RthJA Allowable offset supply voltage transient Package power dissipation @ TA ≤ +25 °C Thermal resistance, junction to ambient VCC + 0.3 50 (8 lead PDIP) — 1.0 (8 lead SOIC) — 0.625 (14 lead PDIP) — 1.6 (14 lead SOIC) — 1.0 (8 lead PDIP) — 125 (8 lead SOIC) — 200 (14 lead PDIP) — 75 — 120 TJ Junction temperature — 150 TS Storage temperature -50 150 TL Lead temperature (soldering, 10 seconds) — 300 www.irf.com V VCC + 0.3 — (14 lead SOIC) Units V/ns W °C/W °C 2 IRS2106/IRS21064(S)PbF Recommended Operating Conditions The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset rating are tested with all supplies biased at a 15 V differential. Symbol Min. Max. VB High-side floating supply absolute voltage Definition VS + 10 VS + 20 VS High-side floating supply offset voltage Note 1 600 VHO High-side floating output voltage VS VB VCC Low-side and logic fixed supply voltage 10 20 VLO Low-side output voltage 0 VCC VIN Logic input voltage VSS VCC VSS Logic ground (IRS21064 only) -5 5 TA Ambient temperature -40 125 Units V °C Note 1: Logic operational for VS of -5 V to +600 V. Logic state held for VS of -5 V to -VBS. (Please refer to the Design Tip DT97-3 for more details). Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15 V, VSS = COM, CL = 1000 pF, TA = 25 °C. Symbol Min. Typ. Turn-on propagation delay — 220 300 VS = 0 V toff Turn-off propagation delay — 200 280 VS = 0 V or 600 V MT Delay matching, HS & LS turn-on/off — 0 30 tr Turn-on rise time — 100 220 tf Turn-off fall time — 35 80 ton www.irf.com Definition Max. Units Test Conditions ns VS = 0 V 3 IRS2106/IRS21064(S)PbF Static Electrical Characteristics VBIAS (VCC, VBS) = 15 V, VSS = COM and TA = 25 °C unless otherwise specified. The VIL, VIH, and IIN parameters are referenced to VSS/COM and are applicable to the respective input leads. The VO, IO, and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO. Symbol Definition Min. Typ. Max. Units Test Conditions VIH Logic “1” input voltage 2.5 — — VIL Logic “0” input voltage — — 0.8 VOH High level output voltage, VBIAS - VO — 0.05 0.2 VOL Low level output voltage, VO — 0.02 0.1 ILK Offset supply leakage current — — 50 IQBS Quiescent VBS supply current 20 75 130 IQCC Quiescent VCC supply current 60 120 180 IIN+ Logic “1” input bias current VIN = 5 V — 5 20 IIN- Logic “0” input bias current VIN = 0 V — — 5 8.0 8.9 9.8 7.4 8.2 9.0 Hysteresis 0.3 0.7 — Output high short circuit pulsed current 130 290 — VCCUV+ VBSUV+ VCCUVVBSUVVCCUVH VBSUVH IO+ VCC and VBS supply undervoltage positive going threshold VCC and VBS supply undervoltage negative going threshold VCC = 10 V to 20 V V IO = 2 mA VB = VS = 600 V VIN = 0 V or 5 V µA V mA IO- www.irf.com Output low short circuit pulsed current 270 600 — VO = 0 V, PW ≤ 10 µs VO = 15 V, PW ≤ 10 µs 4 IRS2106/IRS21064(S)PbF Functional Block Diagrams VB UV DETECT IRS2106 HO R HIN VSS/COM LEVEL SHIFT HV LEVEL SHIFTER R PULSE FILTER Q S VS PULSE GENERATOR VCC UV DETECT LIN VSS/COM LEVEL SHIFT LO DELAY COM VB IRS21064 UV DETECT HO R HIN VSS/COM LEVEL SHIFT HV LEVEL SHIFTER R PULSE FILTER Q S VS PULSE GENERATOR VCC UV DETECT LIN VSS/COM LEVEL SHIFT DELAY LO COM VSS www.irf.com 5 IRS2106/IRS21064(S)PbF Lead Definitions Symbol Description HIN Logic input for high-side gate driver output (HO), in phase LIN Logic input for low-side gate driver output (LO), in phase VSS Logic ground (IRS21064 only) VB High-side floating supply HO High-side gate drive output VS High-side floating supply return VCC Low-side and logic fixed supply LO Low-side gate drive output COM Low-side return Lead Assignments VCC VB 8 1 VCC VB 8 HIN HO 7 2 HIN HO 7 3 LIN VS 6 LIN VS 6 4 COM LO 5 COM LO 5 1 2 4 8 Lead PDIP 8 Lead SOIC IRS2106PbF IRS2106SPbF 1 VCC 2 HIN 3 LIN 4 www.irf.com 3 14 14 1 VCC VB 13 2 HIN VB 13 HO 12 3 LIN HO 12 VS 11 4 VS 11 5 VSS 10 5 VSS 10 6 COM 9 6 COM 9 7 LO 8 7 LO 8 14 Lead PDIP 14 Lead SOIC IRS21064PbF IRS21064SPbF 6 IRS2106/IRS21064(S)PbF HIN LIN HO LO Figure 1. Input/Output Timing Diagram 50% 50% HIN LIN ton toff tr 90% HO LO tf 90% 10% 10% Figure 2. Switching Time Waveform Definitions HIN LIN 50% 50% LO HO 10% MT MT 90% LO HO Figure 3. Delay Matching Waveform Definitions www.irf.com 7 IRS2106/IRS21064(S)PbF 500 Turn-On Propagation Delay (ns) Turn-On Propagation Delay (ns) 500 400 300 M ax 200 Typ. 100 400 M ax. 300 Typ. 200 100 0 0 -50 -25 0 25 50 75 100 125 10 12 Temperature ( oC) Figure 4A. Turn-On Propagation Delay vs. Temperature 16 18 20 Figure 4B. Turn-On Propagation Delay vs. Supply Voltage 500 Turn-Off Propagation Delay (ns) 500 Turn-Off Propagation Delay (ns) 14 VBIAS Supply Voltage (V) 400 300 M ax. 200 Typ. 100 0 400 M ax. 300 Typ. 200 100 0 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 5A. Turn-Off Propagation Delay vs. Temperature www.irf.com 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 5B. Turn-Off Propagation Delay vs. Supply Voltage 8 500 500 400 400 Turn-On Rise Time (ns) Turn-On Rise Time (ns) IRS2106/IRS21064(S)PbF 300 200 Max. 100 300 Max. 200 100 Typ. Typ. 0 -50 0 -25 0 25 50 Temperature 75 100 125 10 12 (oC) 16 18 20 V BIAS Supply Voltage (V) Figure 6A. Turn-On Rise Time vs. Temperature Figure 6B. Turn-On Rise Time vs. Supply Voltage 200 Turn-Off Rise Time (ns) 200 Turn-Off Rise Time (ns) 14 150 100 Max. 50 150 100 Max. 50 Typ. Typ. 0 -50 0 -25 0 25 50 75 100 125 10 Temperature (oC) Figure 7A. Turn-Off Fall Time vs. Temperature www.irf.com PDF created with pdfFactory trial version www.pdffactory.com 12 14 16 18 20 Input Voltage (V) Figure 7B. Turn-Off Fall Time vs. Supply Voltage 9 8 7 7 6 6 Input Vo lta ge (V) 8 5 Mi n. 4 3 p Input Voltage (V) IRS2106/IRS21064(S)PbF Max. 2 1 Mi n . 5 4 3 Max. 2 1 0 -50 0 -25 0 25 50 75 100 125 10 12 o Temperature ( C) 16 18 20 VBIAS Supply Voltage (V) Figure 8A. Logic “1” Input Voltage vs. Temperature Figure 8B. Logic “1” Input Voltage vs. Supply Voltage 4.0 4.0 3.2 3.2 Input Voltage (V) Input Voltage (V ) 14 2.4 1.6 M in. 0.8 2.4 1.6 M in. 0.8 0.0 0.0 -50 -25 0 25 50 75 100 125 10 Temperature (oC) FigureFigure 9A. Logic "0" Input Voltage 9A. Logic “0” Input Voltage vs. Temperature www.irf.com PDF created with pdfFactory trial version www.pdffactory.com 12 14 16 18 20 VCC Supply Voltage (V) Figure 9B. Logic “0” Input Voltage vs. Supply Voltage 10 IRS2106/IRS21064(S)PbF 0.5 High Output Voltage(V(V) High Level Level O utput Voltage ) High Level OOutput Voltage(V(V) High Level utput Voltage ) 0.5 0.4 0.3 0.2 Max. 0.1 Typ. 0.0 -50 -25 0 25 50 75 100 125 0.4 0.3 Max. 0.2 0.1 Typ. 0.0 10 12 Temperature (oC) 18 20 Figure 10B. High Level Output Voltage vs. Supply Voltage 0.5 Low LevelOOutput Voltage(V)(V) Low Level utput Voltage 0.5 LowLevel LevelOOutput Voltage Low utput Voltage (V)(V) 16 V BIAS Supply Voltage (V) Figure 10A. High Level Output Voltage vs. Temperature 0.4 0.3 0.2 0.1 14 Max. Typ. 0.0 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 11A. Low Level Output Voltage vs. Temperature www.irf.com 0.4 0.3 0.2 Max. 0.1 Typ. 0 10 12 14 16 18 20 V BIAS Supply Voltage (V) Figure 11B. Low Level Output Voltage vs. Supply Voltage 11 500 Offset Supply Leakage Current (µA) Offset Supply Leakage Current (µA) IRS2106/IRS21064(S)PbF 400 300 200 100 M ax. 0 -50 -25 0 25 50 75 100 500 400 300 200 100 M ax. 0 125 0 100 Temperature ( oC) 300 400 500 600 VB Boost Voltage (V) Figure 12A. Offset Supply Leakage Current vs. Temperature Figure 12B. Offset Supply Leakage Current vs. Supply Voltage 400 V BS Supply Current (µA) 400 V BS Supply Current (µA) 200 300 200 M ax. 100 Typ. 300 200 M ax. 100 Typ. M in. M in. 0 0 -50 -25 0 25 50 75 100 o Temperature ( C) Figure 13A. VBS Supply Current vs. Temperature www.irf.com 125 10 12 14 16 18 20 VBS Supply Voltage (V) Figure 13B. VBS Supply Current vs. Supply Voltage 12 IRS2106/IRS21064(S)PbF 400 V CC Supply Current (µA) Vcc Supply Current ( µ A ) 400 300 200 M ax. Typ. 100 M in. 300 M ax. 200 Typ. M in. 100 0 0 -50 -25 0 25 50 75 100 125 10 12 Temperature ( o C) Figure 14A. Quiescent V CC Supply Current vs. Temperature 18 20 60 Logic "1" Input Current ( µ A) Logic "1" Input Current (µA) 16 Figure 14B. Quiescent VCC Supply Current vs. VCC Supply Voltage 60 50 40 30 20 10 14 VCC Supply Voltage (V) M ax. 50 40 30 M ax. 20 10 Typ. Typ. 0 0 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 15A. Logic “1” Input Current vs. Temperature www.irf.com 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 15B. Logic “1” Bias Current vs. Supply Voltage 13 6 5 Logic "0" Input Bias C urrent (µA) Lo gic "0" Input Bias Current (µA) IRS2106/IRS21064(S)PbF Max 4 3 2 1 0 -50 -25 0 25 50 75 100 6 Max 5 4 3 2 1 0 10 125 12 14 18 20 Supply Voltage (V) Temperature (°C) Figure 16A. Logic "0" Input Bias Current Figure 16B. Logic "0" Input Bias Current vs. Temperature vs. Voltage 12 11 V CC UVLO Threshold (-) (V) V CC UVLO Threshold (+) (V) 16 11 10 M ax. Typ. 9 M in. 8 7 10 M ax. 9 Typ. 8 M in. 7 6 -50 -25 0 25 50 75 100 125 Temperature ( oC) Figure 17. VCC Undervoltage Threshold (+) vs. Temperature www.irf.com -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 18. VCC Undervoltage Threshold (-) vs. Temperature 14 IRS2106/IRS21064(S)PbF 11 V BS UVLO Threshold (-) (V) V BS UVLO Threshold (+) (V) 12 11 M ax. 10 Typ. 9 M in. 8 10 M ax. 9 Typ. 8 M in. 7 6 7 -50 -25 0 25 50 75 100 -50 125 -25 Temperature ( C) Figure 19. VBS Undervoltage Threshold (+) vs. Temperature 25 50 75 100 125 Figure 20. VBS Undervoltage Threshold (-) vs. Temperature 500 Output Source Current (mA) 500 Output Source Current (mA) 0 Temperature ( oC) o 400 Typ. 300 200 Max. 100 0 400 300 200 Typ. 100 Max. 0 -50 -25 0 25 50 75 100 o Temperature( C) Figure 21A. Output Source Current vs. Temperature www.irf.com 125 10 12 14 16 18 20 VBIAS S u p p l y V o l t a g e ( V ) Figure 21B. Output Source Current vs. Supply Voltage 15 1000 1000 800 800 Output Sink Current (mA) Output Sink Current (mA) IRS2106/IRS21064(S)PbF Typ. 600 400 Max. 200 600 400 Typ. 200 0 Max. 0 -50 -25 0 25 50 75 100 125 10 Te m p e ra t u re ( o C) 14 16 18 20 V BIAS S upply V oltage ( V ) Figure 22A. Output Sink Current vs. Temperature Figure 22B. Output Sink Currentt vs. Supply Voltage 140 0 120 -2 Temprature ( oC) V Offset Supply Voltage (V) S 12 Typ. -4 -6 100 140 V 80 70 V 60 0 V 40 -8 20 -10 10 12 14 16 18 V BS Floating Supply Voltage (V) Figure 23. Maximum VS Negative Offset vs. Supply Voltage www.irf.com 20 1 10 100 1000 Frequency (kHz) Figure 24. IRS2106 vs. Frequency (IRFBC20), Rgate=33 Ω, VCC=15 V 16 IRS2106/IRS21064(S)PbF 140 140 120 100 140 V 80 70 V 0 V 60 Temperature (oC) Temperature (oC) 120 100 140 V 80 70 V 0 V 60 40 40 20 1 20 1 10 100 100 1000 Frequency (kHz) Frequency (kHz) Figure 26. IRS2106 vs. Frequency (IRFBC40), Rgate=15 Ω , V CC=15 V Figure 25. IRS2106 vs. Frequency (IRFBC30), Rgate=22 Ω , V CC=15 V 140 V 70 V 140 10 1000 140 0 V 120 Temperature (oC) Temperature (oC) 120 100 80 60 100 80 60 140 V 70 V 40 40 0 V 20 20 1 10 100 1000 Frequency (kHz) Figure 27. IRS2106 vs. Frequency (IRFPE50), Rgate=10 Ω , V CC=15 V www.irf.com 1 10 100 1000 Frequency (kHz) Figure 28. IRS21064 vs. Frequency (IRFBC20), Rgate=33 Ω , V CC=15 V 17 140 140 120 120 100 80 140 V 60 70 V Temperature (oC) Temperature (oC) IRS2106/IRS21064(S)PbF 0 V 40 100 140 V 80 70 V 0 V 60 40 20 20 1 10 100 1 1000 140 V 0 V 80 60 120 Temperature (oC) Temperature (oC) 140 70 V 100 1000 Figure 30. IRS21064 vs. Frequency (IRFBC40), Rgate=15 Ω , V CC=15 V Figure 29. IRS21064 vs. Frequency (IRFBC30), Rgate=22 Ω , V CC=15 V 120 100 Frequency (kHz) Frequency (kHz) 140 10 100 80 140 V 70 V 60 0 V 40 40 20 20 1 10 100 1000 Frequency (kHz) Figure 31. IRS21064 vs. Frequency (IRFPE50), Rgate=10 Ω , V CC=15 V www.irf.com 1 10 100 1000 Frequency (kHz) Figure 32. IRS2106S vs. Frequency (IRFBC20), Rgate=33 Ω , V CC=15 V 18 IRS2106/IRS21064(S)PbF 140 140 V 70 V 140 120 120 100 70 V 0 V 80 60 Temperature (oC) Temperature (oC) 140 V 0 V 100 80 60 40 40 20 20 1 10 100 1 1000 Figure 33. IRS2106S vs. Frequency (IRFBC30), Rgate=22 Ω , V CC=15 V 1000 Figure 34. IRS2106S vs. Frequency (IRFBC40), Rgate=15 Ω , V CC=15 V 140 V 70 V 0 V 140 120 120 Temperature (oC) Tempreture (oC) 100 Frequency (kHz) Frequency (kHz) 140 10 100 80 60 40 100 80 60 140 V 70 V 0 V 40 20 1 10 100 1000 Frequency (kHz) 20 1 10 100 1000 Frequency (kHz) Figure 35. IRS2106S vs. Frequency (IRFPE50), Rgate=10 Ω , V CC=15 V www.irf.com Figure 36. IRS21064S vs. Frequency (IRFBC20), Rgate=33 Ω , V CC=15 V 19 140 140 120 120 Temperature (oC) Temperature (oC) IRS2106/IRS21064(S)PbF 100 140 V 80 70 V 60 0 V 100 140 V 70 V 80 0 V 60 40 40 20 1 20 1 10 100 10 100 1000 1000 Frequency (kHz) Frequency (kHz) Figure 37. IRS21064S vs. Freque ncy (IRFBC30), Rg a t e =22 Ω , V CC=15 V Figure 38. IRS21064S vs. Frequency (IRFBC40), Rgate=15 Ω , V CC=15 V 140 V 70V 140 0 V Temperature (oC) 120 100 80 60 40 20 1 10 100 1000 Frequency (kHz) Figure 39. IRS21064S vs. Frequency (IRFPE50), Rgate=10 Ω , V CC=15 V www.irf.com 20 IRS2106/IRS21064(S)PbF Case Outlines 01-6014 01-3003 01 (MS-001AB) 8 Lead PDIP D DIM B 5 A FOOTPRINT 8 6 7 6 5 H E 1 2 3 0.25 [.010] 4 A 6.46 [.255] MIN .0532 .0688 1.35 1.75 A1 .0040 .0098 0.10 0.25 b .013 .020 0.33 0.51 c .0075 .0098 0.19 0.25 D .189 .1968 4.80 5.00 E .1497 .1574 3.80 4.00 e .050 BASIC e 3X 1.27 [.050] e1 0.25 [.010] A1 .025 BASIC 0.635 BASIC .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 L .016 .050 0.40 1.27 y 0° 8° 0° 8° y 0.10 [.004] 8X L 8X c 7 C A B NOTES: 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA. 8 Lead SOIC www.irf.com 1.27 BASIC K x 45° A C 8X b 8X 1.78 [.070] MAX H e1 6X MILLIMETERS MAX A 8X 0.72 [.028] INCHES MIN 5 DIMENSION DOES NOT INC LUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXC EED 0.15 [.006]. 6 DIMENSION DOES NOT INC LUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXC EED 0.25 [.010]. 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE. 01-6027 01-0021 11 (MS-012AA) 21 IRS2106/IRS21064(S)PbF 14 Lead PDIP 14 Lead SOIC (narrow body) www.irf.com 01-6010 01-3002 03 (MS-001AC) 01-6019 01-3063 00 (MS-012AB) 22 IRS2106/IRS21064(S)PbF Tape & Reel 8-lead SOIC LOAD ED TA PE FEED DIRECTION A B H D F C N OT E : CO NTROLLING D IM ENSION IN MM E G C A R R I E R T A P E D IM E N S I O N F O R 8 S O I C N M etr ic Im p er i al Co d e M in M ax M in M ax A 7 .9 0 8.1 0 0. 31 1 0 .3 18 B 3 .9 0 4.1 0 0. 15 3 0 .1 61 C 11 .7 0 1 2. 30 0 .4 6 0 .4 84 D 5 .4 5 5.5 5 0. 21 4 0 .2 18 E 6 .3 0 6.5 0 0. 24 8 0 .2 55 F 5 .1 0 5.3 0 0. 20 0 0 .2 08 G 1 .5 0 n/ a 0. 05 9 n/ a H 1 .5 0 1.6 0 0. 05 9 0 .0 62 F D C B A E G H R E E L D IM E N S I O N S F O R 8 S O IC N M etr ic Im p er i al Co d e M in M ax M in M ax A 32 9. 60 3 30 .2 5 1 2 .9 76 13 .0 0 1 B 20 .9 5 2 1. 45 0. 82 4 0 .8 44 C 12 .8 0 1 3. 20 0. 50 3 0 .5 19 D 1 .9 5 2.4 5 0. 76 7 0 .0 96 E 98 .0 0 1 02 .0 0 3. 85 8 4 .0 15 F n /a 1 8. 40 n /a 0 .7 24 G 14 .5 0 1 7. 10 0. 57 0 0 .6 73 H 12 .4 0 1 4. 40 0. 48 8 0 .5 66 www.irf.com 23 IRS2106/IRS21064(S)PbF Tape & Reel 14-lead SOIC LOAD ED TA PE FEED DIRECTION A B H D F C N OT E : CO NTROLLING D IM ENSION IN MM E G C A R R I E R T A P E D IM E N S I O N F O R 1 4 S O IC N M etr ic Im p er i al Co d e M in M ax M in M ax A 7 .9 0 8.1 0 0. 31 1 0 .3 18 B 3 .9 0 4.1 0 0. 15 3 0 .1 61 C 15 .7 0 1 6. 30 0. 61 8 0 .6 41 D 7 .4 0 7.6 0 0. 29 1 0 .2 99 E 6 .4 0 6.6 0 0. 25 2 0 .2 60 F 9 .4 0 9.6 0 0. 37 0 0 .3 78 G 1 .5 0 n/ a 0. 05 9 n/ a H 1 .5 0 1.6 0 0. 05 9 0 .0 62 F D C B A E G H R E E L D IM E N S I O N S F O R 1 4 SO IC N M etr ic Im p er i al Co d e M in M ax M in M ax A 32 9. 60 3 30 .2 5 1 2 .9 76 13 .0 0 1 B 20 .9 5 2 1. 45 0. 82 4 0 .8 44 C 12 .8 0 1 3. 20 0. 50 3 0 .5 19 D 1 .9 5 2.4 5 0. 76 7 0 .0 96 E 98 .0 0 1 02 .0 0 3. 85 8 4 .0 15 F n /a 2 2. 40 n /a 0 .8 81 G 18 .5 0 2 1. 10 0. 72 8 0 .8 30 H 16 .4 0 1 8. 40 0. 64 5 0 .7 24 www.irf.com 24 IRS2106/IRS21064(S)PbF LEADFREE PART MARKING INFORMATION Part number Date code IRSxxxxx YWW? Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released IR logo ?XXXX Lot Code (Prod mode - 4 digit SPN code) Assembly site code Per SCOP 200-002 ORDER INFORMATION 8-Lead PDIP IRS2106PbF 8-Lead SOIC IRS2106SPbF 8-Lead SOIC Tape & Reel IRS2106STRPbF 14-Lead PDIP IRS21064PbF 14-Lead SOIC IRS21064SPbF 14-Lead SOIC Tape & Reel IRS21064STRPbF SOIC8 & 14 are MSL2 qualified. This product has been designed and qualified for the industrial level. Qualification standards can be found at www.irf.com IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 Data and specifications subject to change without notice. 12/4/2006 www.irf.com 25