0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLF11251LDXUMA1

TLF11251LDXUMA1

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    TFDFN10_EP

  • 描述:

    TLF11251LDXUMA1

  • 数据手册
  • 价格&库存
TLF11251LDXUMA1 数据手册
OPTIREG™ PMIC TLF11251LD 2.5 A half bridge with integrated driver and level shifter Features • • • • • • • • • Integrated PMOS and NMOS complementary output bridge with 2.5 A current capability Integrated gate drivers Single control input with an integrated dead time logic for optimized control and high efficiency Output current sensing Output current limitation Overtemperature protection Low quiescent current No external dead time adjustment required Green Product (RoHS compliant) Potential applications Companion for the OPTIREG™ PMIC TLF3558xxxx for core voltage regulation of AURIX™ TC3xx microcontroller in: • Electric power steering • Battery management • Inverter applications • Engine management • Domain control Product validation Qualified for automotive applications. Product validation according to AEC-Q100. Description The OPTIREG™ PMIC TLF11251LD is a 2.5 A half bridge with integrated driver and level shifter. It also contains a high side P-channel MOSFET and a low side N-channel MOSFET in a single package. The integrated level shifting stage allows for conversion of the input logic signals to the supply voltage level of the gate drivers. The input signal levels are CMOS compatible. The level shifter and the gate driver provide a dead time generation to simplify the interface with the embedded core voltage regulator of the AURIX™ TC3xx microcontroller. The low propagation delay allows for use in closed loop control applications with limited requirements for timing. The output stage allows for a high switching frequency. The TLF11251LD integrates protection features against overcurrent at the high side MOSFET and at the low side MOSFET as well as against overtemperature events. Internal power-on reset releases the digital logic and ensures its operation for the supply voltage within the specified range. Datasheet Please read the Important Notice and Warnings at the end of this document www.infineon.com/OPTIREG-PMIC Rev. 1.02 2021-02-05 OPTIREG™ PMIC TLF11251LD 2.5 A half bridge with integrated driver and level shifter Description Type Package Marking TLF11251LD PG-TSON-10 11251 Datasheet 2 Rev. 1.02 2021-02-05 OPTIREG™ PMIC TLF11251LD 2.5 A half bridge with integrated driver and level shifter Table of contents Table of contents Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Potential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Product validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 2.1 2.2 Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Pin definitions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 3.1 3.2 3.3 General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Functional range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4 4.1 4.2 4.2.1 4.2.2 4.3 4.3.1 4.3.2 4.3.3 4.4 4.4.1 4.4.1.1 4.4.1.2 4.4.2 4.4.2.1 4.4.2.2 4.4.3 4.4.3.1 4.4.3.2 Block description and electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Logical inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Control parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Functional description control parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Electrical characteristics control parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Output stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Functional description output stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Electrical characteristics output stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Typical performance characteristics output stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Protection functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Undervoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Functional description undervoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Electrical characteristics undervoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Overcurrent protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Functional description overcurrent protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Electrical characteristics overcurrent protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Overtemperature protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Functional description overtemperature protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Electrical characteristics overtemperature protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5 5.1 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Datasheet 3 Rev. 1.02 2021-02-05 OPTIREG™ PMIC TLF11251LD 2.5 A half bridge with integrated driver and level shifter Table of contents Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Datasheet 4 Rev. 1.02 2021-02-05 OPTIREG™ PMIC TLF11251LD 2.5 A half bridge with integrated driver and level shifter Block diagram 1 Block diagram Figure 1 Block diagram Datasheet 5 Rev. 1.02 2021-02-05 OPTIREG™ PMIC TLF11251LD 2.5 A half bridge with integrated driver and level shifter Pin configuration 2 Pin configuration 2.1 Pin assignment Figure 2 Datasheet SW 1 10 VS SW 2 9 VS PGND 3 8 PGND GND 4 7 VCC LSCON 5 6 PWM Heat sink Pin configuration 6 Rev. 1.02 2021-02-05 OPTIREG™ PMIC TLF11251LD 2.5 A half bridge with integrated driver and level shifter Pin configuration 2.2 Pin definitions and functions Pin Symbol Function 1, 2 SW Switch node: Half bridge drains; typically connected to the input of the LC filter in buck circuits 3, 8 PGND Power ground: Half bridge low side source 4 GND Ground; Logical ground 5 LSCON Bridge control scheme: Defines the low side state during PWM input "high". Switch to "high" enables synchronous control of high side and low side, based on PWM input state. Switch to "low" disables low side control. 6 PWM Control input: Input for the logical signal that controls the state of the half bridge transistors. Switch to "high" opens the high side switch and closes the low side switch. Switch to "low" closes the high side switch and opens the low side switch. 7 VCC Supply voltage input: Supply voltage for the PWM and LSCON inputs; typically the same as the supply of microcontroller output pins. 9, 10 VS Supply voltage input: Supply to gate drivers, connected to half bridge high side source. – Heat sink Connect to heat sink area. Connect to GND and to PGND. Datasheet 7 Rev. 1.02 2021-02-05 OPTIREG™ PMIC TLF11251LD 2.5 A half bridge with integrated driver and level shifter General product characteristics 3 General product characteristics 3.1 Absolute maximum ratings Table 1 Absolute maximum ratings1) Tj = -40°C to 150°C; all voltages with respect to ground; positive current flowing into pin (unless otherwise specified). Parameter Symbol Values Min. Typ. Unit Note or condition Number Max. Voltages Supply voltage VS VS -0.3 – 7.0 V – P_3.1.1 Supply voltage VCC Vcc -0.3 – 7.0 V – P_3.1.2 Switch node SW VSW -0.3 – 7.0 V – P_3.1.3 Input PWM VPWM -0.3 – 7.0 V – P_3.1.4 Input LSCON VLSCON -0.3 – 7.0 V – P_3.1.5 Continuous drain current high side IDHS -2.5 – – A PWM = off P_3.1.6 Continuous drain current low side IDLS – – 2.5 A PWM = on P_3.1.7 Pulsed drain current high side IDHS -4.4 – – A Valid during active P_3.1.8 overcurrent protection Pulsed drain current low side IDLS – – 4.4 A Valid during active P_3.1.9 overcurrent protection Junction temperature Tj -40 – 150 °C – P_3.1.10 Storage temperature Tstg -55 – 150 °C – P_3.1.11 ESD susceptibility all pins VESD -2 – 2 kV 2) HBM P_3.1.12 ESD susceptibility all pins VESD -500 – 500 V 3) CDM P_3.1.13 V 3) CDM P_3.1.14 Currents Temperatures ESD susceptibility ESD susceptibility (corner pins) VESD -750 – 750 Notes: 1 2 3 Not subject to production test, specified by design. ESD susceptibility, Human Body Model (HBM) according to ANSI/ESDA/JEDEC JS-001 (1.5 kΩ, 100 pF). ESD susceptibility, Charged Device Model (CDM) according to JEDEC JESD22-C101. Datasheet 8 Rev. 1.02 2021-02-05 OPTIREG™ PMIC TLF11251LD 2.5 A half bridge with integrated driver and level shifter General product characteristics 1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as outside the normal operating range. Protection functions are not designed for continuous repetitive operation. 2. 3.2 Functional range Table 2 Functional range Parameter Symbol Values Min. Typ. Unit Note or condition Number Max. Supply voltage range VS VS,nom 3.5 – 7.0 V – P_3.2.1 Supply voltage range VCC VCC,nom 2.35 – 7.0 V – P_3.2.2 -120 – 120 V/ms 4) P_3.2.3 Supply voltage VCC transient slew rate dVCC/dt -120 – 120 V/ms 4) P_3.2.4 Junction temperature Tj -40 – 150 °C – P_3.2.5 Supply current total, normal operation IC,norm – – 35 mA PWM input @ 1.8 MHz P_3.2.9 Supply current total, no switching IC,ns – 200 – µA VS < 5.8 V; Vcc < 5.1 V; Tj < 85°C P_3.2.10 Supply voltage VS transient dVS/dt slew rate Note: 4 Within the functional or operating range, the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the electrical characteristics table. Not subject to production test, specified by design. Datasheet 9 Rev. 1.02 2021-02-05 OPTIREG™ PMIC TLF11251LD 2.5 A half bridge with integrated driver and level shifter General product characteristics 3.3 Thermal resistance Table 3 Thermal resistance5) Parameter Symbol Values Min. Typ. Unit Note or condition Number Max. Junction to case top, high side RthJCT(HS) 51.6 – 57.0 K/W – P_3.3.1 Junction to case top, low side RthJCT(LS) 64.5 – 71.2 K/W – P_3.3.2 Junction to case bottom, high side RthJCB(HS) 6.3 – 6.9 K/W – P_3.3.3 Junction to case bottom, low side RthJCB(LS) 9.4 – 10.4 K/W – P_3.3.4 Junction to ambient – 54.5 – K/W 6) P_3.3.5 Note: 5 6 RthJA This thermal data was generated in accordance with JEDEC JESD51 standards. For more information visit www.jedec.org. Not subject to production test, specified by design. Specified RthJA value is according to JEDEC JESD51-2,-5,-7 at natural convection on FR4 2s2p board; the product (chip and package) was simulated on a 76.2 × 114.3 × 1.5 mm3 board with two inner copper layers (2 × 70 µm Cu, 2 × 35 µm Cu). Where applicable, a thermal via array next to the package contacted the first inner copper layer. Datasheet 10 Rev. 1.02 2021-02-05 OPTIREG™ PMIC TLF11251LD 2.5 A half bridge with integrated driver and level shifter Block description and electrical characteristics 4 Block description and electrical characteristics The device simplifies the interface of microcontroller control outputs to the half bridge. 4.1 Logical inputs A single PWM input controls the state of the half bridge MOSFETs. The inverted logical scheme translates the PWM input state to the gate signal shifted to the output supply level, thus the device switches the high side MOSFET off during PWM logical on-state, and it switches them on during PWM logical off state. The built-in dead time control circuitry prevents a shoot-through condition over the MOSFET bridge and improves system efficiency while used in buck power conversion circuits. No external dead time adjustment is required. In addition to the PWM input, the LSCON input determines the low side MOSFET control scheme and allows for both synchronous as well as asynchronous operation in buck converter applications. Logical off state at the LSCON input switches off the low side MOSFET independently of the PWM input signal, so that the device only controls the high side MOSFET. A permanent logical on state at the LSCON input allows both high side and low side operation according to PWM input state with the internal dead time generation. If such operation is required, then the LSCON input can be pulled-up or connected directly to the VCC supply rail. The device interprets a toggling input signal at LSCON as a control request for synchronous low side and high side MOSFET switching. In this case the device generates dead time internally in accordance with the PWM input timing. Frequency detection at LSCON inputs detect toggling input signals within the acceptable range referred to as tdet. Table 4 Switching states LSCON PWM High side MOSFET Low side MOSFET On 7) On Off On On 8) Off On Off Off On Off Off Off Off On Off Toggling between on and off9) On Off On Off On Off Toggling between on and off stopped10) (< tfil) On Off On Off On Off Toggling between on and off stopped (> tfil); LSCON: on On Off On Toggling between on and off stopped Off On Off 7 8 9 10 On: "high" Off: "low" Toggling between on and off: The device detects switching on and off at a frequency corresponding to the detection range tdet at the LSCON input. Toggling between on and off stopped: After the toggling between on and off, the device detects a permanent on or off state. Datasheet 11 Rev. 1.02 2021-02-05 OPTIREG™ PMIC TLF11251LD 2.5 A half bridge with integrated driver and level shifter Block description and electrical characteristics Table 4 Switching states (continued) LSCON PWM High side MOSFET Low side MOSFET Toggling between on and off stopped (> tfil); LSCON: off On Off Off Toggling between on and off stopped (> tfil); LSCON: off Off On Off (> tfil); LSCON: on The switching states in Table 4 are only valid for device input supplies within the operational range and if no protection feature is active. If the PWM pin is not connected, then the integrated weak pull-up ensures a defined level. If an AURIX™ TC3xx microcontroller controls the device, then place an additional pull-down resistor at the LSCON input to keep the low side MOSFET switched off during power-down, see Application information. Datasheet 12 Rev. 1.02 2021-02-05 OPTIREG™ PMIC TLF11251LD 2.5 A half bridge with integrated driver and level shifter Block description and electrical characteristics 4.2 Control parameters 4.2.1 Functional description control parameters The device provides a high frequency switching capability with a low propagation delay. The input stage and the drivers can react to fast changing PWM signals and provide a tres resolution to the on-time of the input signal with a pulse duration longer than tpulse. The "low" state pulse duration is limited to tpulse, min. The total propagation time tprop is the time from the "low" to "high" edge transition or from the "high" to "low" edge transition at the PWM input to the SW output level transitions to 10% or 90% of VS supply level accordingly. The internal dead time generation provides optimal efficiency during switching phases and performs the state change of the switching node SW within the specified propagation delay. The device is optimized for a switching frequency in a buck converter application from 0.3 MHz to 2 MHz. PWM Input Test circuit Vs VIH tpulse VIL Min accepted pulse: tpulse,min=65ns 15..25 Ohm PWM DUT SW 15..25 Ohm SW output GND PGND tprop,fe 0.9*Vs 0.1*Vs Figure 3 Datasheet tpulse ± |tres| tprop,re Control timing diagram 13 Rev. 1.02 2021-02-05 OPTIREG™ PMIC TLF11251LD 2.5 A half bridge with integrated driver and level shifter Block description and electrical characteristics 4.2.2 Electrical characteristics control parameters Table 5 Electrical characteristics control parameters VS = 3.5 V to 7 V; VCC = 2.35 V to 7 V; Tj = -40°C to 150°C; all voltages with respect to ground; positive current flowing into pin (unless otherwise specified). Parameter Symbol Values Min. Typ. Unit Note or condition Number Max. Propagation time, PWM falling edge tprop,fe – – 60 ns High side drain connected to resistive load; VCC > 3.0 V; VS > 4.5 V P_4.2.1 Propagation time, PWM rising edge tprop,re – – 60 ns Low side drain connected to resistive load; VCC > 3.0 V; VS > 4.5 V P_4.2.2 Minimum pulse width input tpulse, 65 – – ns 11) P_4.2.3 – – 3 ns 11) P_4.2.4 P_4.2.5 P_4.2.6 min Pulse resolution time tres Dead time "high" to "low" tdead,hl – 15 – ns 11) Dead time "low" to "high" tdead,lh – 18 – ns 11) LSCON frequency detector frequency range fdet,lscon 0.72 – – MHz – LSCON frequency detector filter time tfil,lscon 3 – – µs 11) P_4.2.8 Input voltage "high" VIH 0.67 × Vcc – – V CMOS function P_4.2.9 Input voltage "low" VIL – – 0.33 × Vcc V CMOS function P_4.2.10 Input voltage hysteresis VIHYS 0.05 – – V – P_4.2.11 Input capacitance CIN – 10 – pF 11) P_4.2.12 P_4.2.7 Logic inputs 11 Not subject to production test, specified by design. Datasheet 14 Rev. 1.02 2021-02-05 OPTIREG™ PMIC TLF11251LD 2.5 A half bridge with integrated driver and level shifter Block description and electrical characteristics 4.3 Output stage 4.3.1 Functional description output stage The P-N-channel output half bridge of the device can operate at a switching frequency up to 2 MHz nominal range, providing very low power dissipation in synchronous buck converter topology. The P-channel MOSFET used as high side switch eliminates the need for a charge pump circuitry and improves the EMI performance. The output stage delivers a minimum output current of 2.5 A within the specified voltage and temperature range. 4.3.2 Electrical characteristics output stage Table 6 Electrical characteristics output stage VS = 3.5 V to 7 V; VCC = 2.35 V to 7 V; Tj = -40°C to 150°C; all voltages with respect to ground; positive current flowing into pin (unless otherwise specified). Parameter Symbol Values Min. On-state resistance high side RONHS Typ. Unit Note or condition Number Max. – – 100 mΩ Tj ≤ 150°C; Id = -2 A; Vs = 5.8 V P_4.3.1 – – 70 mΩ 12) T P_4.3.2 j ≤ 85°C; Id = -2 A; Vs = 5.8 V On-state resistance low side RONLS – – 105 mΩ Tj ≤ 150°C; Id = 2 A; Vs = 5.8 V P_4.3.3 – – 75 mΩ 12) T P_4.3.4 j ≤ 85°C; Id = 2 A; Vs = 5.8 V Body diode forward voltage high side VDFHS – 0.67 0.95 V Ifw = 2 A P_4.3.5 Body diode forward voltage low side VDFLS – 0.72 0.91 V Ifw = 2 A P_4.3.6 12 Not subject to production test, specified by design. Datasheet 15 Rev. 1.02 2021-02-05 OPTIREG™ PMIC TLF11251LD 2.5 A half bridge with integrated driver and level shifter Block description and electrical characteristics 4.3.3 Typical performance characteristics output stage Maximum on-state resistance high side RONHS (PWM = "low") versus Tj = -40°C, 25°C, 150°C Datasheet Maximum on-state resistance low side RONLS (PWM = "high") versus Tj = -40°C, 25°C, 150°C 16 Rev. 1.02 2021-02-05 OPTIREG™ PMIC TLF11251LD 2.5 A half bridge with integrated driver and level shifter Block description and electrical characteristics 4.4 Protection functions The following integrated protection functions prevent the device and the output circuitry from destruction as well as from operation under unspecified conditions: • High side and low side overcurrent detection and limitation • Undervoltage shutdown • Overtemperature protection The device reacts within the time specified for each protection feature. This is related to the state change of the half bridge MOSFETs independent from the PWM input signal. The device performs the input logic reset release at VS voltage exceeding the minimum functional limit of 3.5 V, where protection functions are also operational. For the VCC voltage below VCCUV, the output half bridge MOSFETs remain in the off-state and the output switch node SW is floating. 4.4.1 Undervoltage shutdown 4.4.1.1 Functional description undervoltage shutdown The device monitors the input supply VCC for undervoltage conditions. If the output voltage drops below the Vccuv limit, then the device switches off the high side MOSFET and the low side MOSFET, so that the device is only operational within the specified supply limits. The voltage hysteresis circuitry Vccuvh protects from noise conditions. 4.4.1.2 Electrical characteristics undervoltage shutdown Table 7 Electrical characteristics undervoltage shutdown VS = 3.5 V to 7 V; Tj = -40°C to 150°C; all voltages with respect to ground; positive current flowing into pin (unless otherwise specified). Parameter Symbol Values Min. Typ. Unit Note or condition Number Max. Undervoltage limit at VCC supply Vccuv 1.95 – 2.28 V VCC falling P_4.4.2.1 Undervoltage detector hysteresis Vccuvh 0.05 – 0.1 V – P_4.4.2.2 Undervoltage detector reaction time Vuvr – – 3 µs 13) P_4.4.2.3 13 Not subject to production test, specified by design. Datasheet 17 Rev. 1.02 2021-02-05 OPTIREG™ PMIC TLF11251LD 2.5 A half bridge with integrated driver and level shifter Block description and electrical characteristics 4.4.2 Overcurrent protection 4.4.2.1 Functional description overcurrent protection The overcurrent protection works in a cycle-by-cycle limitation mode. If the sensed input drain current exceeds the peak current limit Ioc, lim during a switching cycle, then the device switches off the high side MOSFET and the switch node SW current decreases. If the overcurrent protection circuitry is active, then the device limits the PWM input duty cycle for each cycle. During startup or with VCC supply power cycle after the logic reset is released, the overcurrent protection remains inactive for the number of PWM pulses npwm,st to avoid accidental activation due to startup current overshoot. Figure 4 Datasheet Overcurrent protection example 18 Rev. 1.02 2021-02-05 OPTIREG™ PMIC TLF11251LD 2.5 A half bridge with integrated driver and level shifter Block description and electrical characteristics 4.4.2.2 Electrical characteristics overcurrent protection Table 8 Electrical characteristics overcurrent protection VS = 3.5 V to 7 V; VCC = 2.35 V to 7 V; Tj = -40°C to 150°C; all voltages with respect to ground; positive current flowing into pin (unless otherwise specified). Parameter Symbol Values Min. Typ. Unit Note or condition Number Max. Overcurrent sensing limit Ioc, lim -4.4 – -2.6 A – P_4.4.3.1 Startup protection inactive, number of PWM pulses npwm,st – – 5500 – VCC rising above VCC,min P_4.4.3.2 Datasheet 19 Rev. 1.02 2021-02-05 OPTIREG™ PMIC TLF11251LD 2.5 A half bridge with integrated driver and level shifter Block description and electrical characteristics 4.4.3 Overtemperature protection 4.4.3.1 Functional description overtemperature protection If an overtemperature condition TjOT occurs, then the integrated temperature sensor disables the device by switching off the high side and low side MOSFETs. Only if both the temperature decreases by the hysteresis temperature dTj and the temperature falls below TjSO, then the MOSFETs resume operation. 4.4.3.2 Electrical characteristics overtemperature protection Table 9 Electrical characteristics overtemperature protection14) VS = 3.5 V to 7 V; VCC = 2.35 V to 7 V; Tj = -40°C to 150°C; all voltages with respect to ground; positive current flowing into pin (unless otherwise specified). Parameter Symbol Values Min. Typ. Unit Note or condition Number Max. Overtemperature shutdown TjOT 175 – 200 °C – P_4.4.4.1 Switch-on temperature TjSO – – 165 °C – P_4.4.4.2 Overtemperature switch-on hysteresis dTj – 15 – °C – P_4.4.4.3 14 Not subject to production test, specified by design. Datasheet 20 Rev. 1.02 2021-02-05 OPTIREG™ PMIC TLF11251LD 2.5 A half bridge with integrated driver and level shifter Application information 5 Note: 5.1 Application information The following information is given as an example for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device. Application diagram In the target application scenario the device is the counterpart for an AURIX™ TC3xx microcontroller for core voltage generation with the system power supply TLF35584. The device configuration allows connectivity with the half bridge control output of the microcontroller’s embedded voltage regulator core (EVRC) converter, which generates the core voltage Vdd. The device only supports power supply topologies that use different sources for the microcontroller supply domain Vext and the EVRC input VS, expecting different voltage levels. VS must exceed VCC during startup, in normal operation and during power-down. Figure 5 Note: Application diagram This figure is a simplified example of an application circuit. The function must be verified in the application. As soon as VS voltage reaches 3.5 V during power-up, the device releases the internal logic reset. During this phase the central function logic is operational. Only if VCC is within the specified range, then the device reacts to the input signals LSCON and PWM as specified. However, the operational VCC voltage minimum is specified at 2.35 V, which allows for early device readiness, even if the microcontroller is not yet operational. The VGATEP output of the microcontroller controls the PWM signal, while the VGATEN output is connected to LSCON. The microcontroller typically starts in an open loop mode, controlling only VGATEP and allowing for fast Vdd voltage ramp-up and startup. After ramp-up time, the EVRC starts to control the high side and low side MOSFETs of the half bridge. The LSCON input detects this phase with the frequency detector. If the Datasheet 21 Rev. 1.02 2021-02-05 OPTIREG™ PMIC TLF11251LD 2.5 A half bridge with integrated driver and level shifter Application information microcontroller is switched into power-down mode and if the high side and low side control signals are off, then the frequency detector recognizes it as a request to set the SW output floating. Therefore add a pull-down resistor for the LSCON signal in order to limit its possible variation during the power-down phase after the supply voltage reaches the hard reset limit of the microcontroller. Figure 6 Start-up and ramp-down example Table 10 shows the required nominal values of the discrete components for proper operation. Table 10 Nominal values of discrete components Component name Nominal value Acceptable variation Note CVS 10 µF ±30% Input capacitor CVDD 22 µF ±30% Output capacitor LVDD 3.3 µH ±30% (@ 1.8 MHz) Output inductor RLSCON 6.2 kΩ ±20% LSCON input pull-down Datasheet 22 Rev. 1.02 2021-02-05 OPTIREG™ PMIC TLF11251LD 2.5 A half bridge with integrated driver and level shifter Package information 0.36±0.1 2.58±0.1 1±0.1 3.3±0.1 INDEX MARKING 1.48±0.1 3.3±0.1 0.05 0.5 0.07 MIN. INDEX MARKING 0.53±0.1 0.25±0.1 ALL DIMENSIONS ARE IN UNITS MM THE DRAWING IS IN COMPLIANCE WITH ISO 128 & PROJECTION METHOD 1 [ Figure 7 0.55±0.1 0..0.05 STANDOFF Package information 0.2±0.1 6 ] PG-TSON-10 Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a Green Product. Green Products are RoHS compliant (Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). Information on alternative packages Please visit www.infineon.com/packages. Datasheet 23 Rev. 1.02 2021-02-05 OPTIREG™ PMIC TLF11251LD 2.5 A half bridge with integrated driver and level shifter Revision history Revision history Revision Date Changes 1.02 2021-02-05 Editorial changes 1.01 2021-01-14 Editorial changes 1.0 2020-01-23 Datasheet created Datasheet 24 Rev. 1.02 2021-02-05 Trademarks All referenced product or service names and trademarks are the property of their respective owners. Edition 2021-02-05 Published by Infineon Technologies AG 81726 Munich, Germany © 2021 Infineon Technologies AG All Rights Reserved. Do you have a question about any aspect of this document? Email: erratum@infineon.com Document reference IFX-Z8F80033844 IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer’s products and any use of the product of Infineon Technologies in customer’s applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.
TLF11251LDXUMA1 价格&库存

很抱歉,暂时无法提供与“TLF11251LDXUMA1”相匹配的价格&库存,您可以联系我们找货

免费人工找货