0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SKW30N60

SKW30N60

  • 厂商:

    INFINEON

  • 封装:

  • 描述:

    SKW30N60 - Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode - Infineon...

  • 数据手册
  • 价格&库存
SKW30N60 数据手册
SKW30N60 Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode • 75% lower Eoff compared to previous generation combined with low conduction losses • Short circuit withstand time – 10 µs • Designed for: - Motor controls - Inverter • NPT-Technology for 600V applications offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour - parallel switching capability • Very soft, fast recovery anti-parallel EmCon diode C G E P-TO-247-3-1 (TO-247AC) • Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type SKW30N60 Maximum Ratings Parameter Collector-emitter voltage DC collector current TC = 25°C TC = 100°C Pulsed collector current, tp limited by Tjmax Turn off safe operating area VCE ≤ 600V, Tj ≤ 150°C Diode forward current TC = 25°C TC = 100°C Diode pulsed current, tp limited by Tjmax Gate-emitter voltage Short circuit withstand time Power dissipation TC = 25°C Operating junction and storage temperature Tj , Tstg -55...+150 °C 1) VCE 600V IC 30A VCE(sat) 2.5V Tj 150°C Package TO-247AC Ordering Code Q67040-S4244 Symbol VCE IC Value 600 41 30 Unit V A ICpul s IF 112 112 41 30 IFpul s VGE tSC Ptot 112 ±20 10 250 V µs W VGE = 15V, VCC ≤ 600V, Tj ≤ 150°C 1) Allowed number of short circuits: 1s. 1 Jul-02 SKW30N60 Thermal Resistance Parameter Characteristic IGBT thermal resistance, junction – case Diode thermal resistance, junction – case Thermal resistance, junction – ambient Electrical Characteristic, at Tj = 25 °C, unless otherwise specified Parameter Static Characteristic Collector-emitter breakdown voltage Collector-emitter saturation voltage V ( B R ) C E S V G E = 0V , I C = 5 00 µ A VCE(sat) V G E = 1 5 V , I C = 30 A T j =2 5 ° C T j =1 5 0 ° C Diode forward voltage VF V G E = 0V , I F = 3 0 A T j =2 5 ° C T j =1 5 0 ° C Gate-emitter threshold voltage Zero gate voltage collector current VGE(th) ICES I C = 70 0 µ A , V C E = V G E V C E = 60 0 V, V G E = 0 V T j =2 5 ° C T j =1 5 0 ° C Gate-emitter leakage current Transconductance Dynamic Characteristic Input capacitance Output capacitance Reverse transfer capacitance Gate charge Internal emitter inductance measured 5mm (0.197 in.) from case Short circuit collector current 1) Symbol Conditions Max. Value Unit RthJC RthJCD RthJA TO-247AC 0.5 1 40 K/W Symbol Conditions Value min. 600 1.7 1.2 3 Typ. 2.1 2.5 1.4 1.25 4 20 1600 150 92 140 13 300 max. 2.4 3.0 1.8 1.65 5 Unit V µA 40 3000 100 1920 180 110 182 nC nH A nA S pF IGES gfs Ciss Coss Crss QGate LE IC(SC) V C E = 0V , V G E =2 0 V V C E = 20 V , I C = 30 A V C E = 25 V , V G E = 0V , f = 1 MH z V C C = 48 0 V, I C =3 0 A V G E = 15 V T O - 24 7A C V G E = 15 V , t S C ≤ 10 µ s V C C ≤ 6 0 0 V, Tj ≤ 150°C 1) Allowed number of short circuits: 1s. 2 Jul-02 SKW30N60 Switching Characteristic, Inductive Load, at Tj=25 °C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy Anti-Parallel Diode Characteristic Diode reverse recovery time trr tS tF Diode reverse recovery charge Diode peak reverse recovery current Diode peak rate of fall of reverse recovery current during t b Qrr Irrm d i r r /d t T j =2 5 ° C , V R = 2 00 V , I F = 3 0 A, d i F / d t =2 0 0 A/ µ s 400 32 368 610 5.5 180 nC A A/µs ns td(on) tr td(off) tf Eon Eoff Ets T j =2 5 ° C , V C C = 40 0 V, I C = 3 0 A, V G E = 0/ 15 V , R G =11Ω , 1) L σ = 18 0 nH , 1) C σ = 90 0 pF Energy losses include “tail” and diode reverse recovery. 44 34 291 58 0.64 0.65 1.29 53 40 349 70 0.77 0.85 1.62 mJ ns Symbol Conditions Value min. typ. max. Unit Switching Characteristic, Inductive Load, at Tj=150 °C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy Anti-Parallel Diode Characteristic Diode reverse recovery time trr tS tF Diode reverse recovery charge Diode peak reverse recovery current Diode peak rate of fall of reverse recovery current during t b Qrr Irrm d i r r /d t T j =1 5 0 ° C V R = 2 00 V , I F = 3 0 A, d i F / d t =2 0 0 A/ µ s 520 56 464 1740 9.0 200 nC A A/µs ns td(on) tr td(off) tf Eon Eoff Ets T j =1 5 0 ° C V C C = 40 0 V, I C = 3 0 A, V G E = 0/ 15 V , RG= 11Ω, 1) L σ = 18 0 nH , 1) C σ = 90 0 pF Energy losses include “tail” and diode reverse recovery. 44 34 324 67 0.98 0.92 1.90 53 40 389 80 1.18 1.19 2.38 mJ ns Symbol Conditions Value min. typ. max. Unit 1) Leakage inductance L σ a n d Stray capacity C σ due to dynamic test circuit in Figure E. 3 Jul-02 SKW30N60 160A Ic 140A 120A 100A tp=4µs 15µs IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 100A 80A TC=80°C 60A 40A 20A 0A 10Hz TC=110°C 10A 50µs 200µs 1ms 1A DC Ic 0.1A 1V 10V 100V 100Hz 1kHz 10kHz 100kHz 1000V f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj ≤ 150°C, D = 0.5, VCE = 400V, VGE = 0/+15V, RG = 11Ω) VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25°C, Tj ≤ 150°C) 300W 60A 250W 50A Limited by bond wire 200W IC, COLLECTOR CURRENT 50°C 75°C 100°C 125°C Ptot, POWER DISSIPATION 40A 150W 30A 100W 20A 50W 10A 0W 25°C 0A 25°C 50°C 75°C 100°C 125°C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj ≤ 150°C) TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE ≤ 15V, Tj ≤ 150°C) 4 Jul-02 SKW30N60 90A 80A 70A 90A 80A 70A IC, COLLECTOR CURRENT 60A 50A 40A 30A 20A 10A 0A 0V IC, COLLECTOR CURRENT VGE=20V 15V 13V 11V 9V 7V 5V 60A 50A 40A 30A 20A 10A 0A 0V VGE=20V 15V 13V 11V 9V 7V 5V 1V 2V 3V 4V 5V 1V 2V 3V 4V 5V VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25°C) VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150°C) 90A 80A Tj=+25°C -55°C +150°C VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE 100A 4.0V 3.5V IC = 60A IC, COLLECTOR CURRENT 70A 60A 50A 40A 30A 20A 10A 0A 0V 3.0V 2.5V IC = 30A 2.0V 1.5V 2V 4V 6V 8V 10V 1.0V -50°C 0°C 50°C 100°C 150°C VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 10V) Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) 5 Jul-02 SKW30N60 1000ns 1000ns td(off) td(off) t, SWITCHING TIMES 100ns t, SWITCHING TIMES tf 100ns tf td(on) tr td(on) tr 10ns 10A 20A 30A 40A 50A 60A 10ns 0Ω 10Ω 20Ω 30Ω 40Ω IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 11Ω, Dynamic test circuit in Figure E) RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 30A, Dynamic test circuit in Figure E) 1000ns 5.5V VGE(th), GATE-EMITTER THRESHOLD VOLTAGE 5.0V 4.5V 4.0V 3.5V 3.0V 2.5V 2.0V typ. max. td(off) t, SWITCHING TIMES 100ns tf tr td(on) min. 10ns 0°C 50°C 100°C 150°C -50°C 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 30A, RG = 11Ω, Dynamic test circuit in Figure E) Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.7mA) 6 Jul-02 SKW30N60 5.0mJ 4.5mJ *) Eon and Ets include losses due to diode recovery. 4.0mJ Ets* 3.5mJ *) Eon and Ets include losses due to diode recovery. E, SWITCHING ENERGY LOSSES E, SWITCHING ENERGY LOSSES 4.0mJ 3.5mJ 3.0mJ 2.5mJ 2.0mJ 1.5mJ 1.0mJ 0.5mJ 0.0mJ 10A 20A 30A 40A 50A 60A 70A Eon* Eoff 3.0mJ 2.5mJ 2.0mJ 1.5mJ 1.0mJ 0.5mJ 0.0mJ 0Ω Eoff Eon* Ets* 10Ω 20Ω 30Ω 40Ω IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 11Ω, Dynamic test circuit in Figure E) RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 30A, Dynamic test circuit in Figure E) 3.0mJ 10 K/W 0 2.5mJ ZthJC, TRANSIENT THERMAL IMPEDANCE *) Eon and Ets include losses due to diode recovery. D=0.5 -1 E, SWITCHING ENERGY LOSSES 0.2 0.1 0.05 0.02 10 K/W 2.0mJ Ets* 1.5mJ 10 K/W 0.01 -2 1.0mJ Eon* Eoff 10 K/W -3 R,(1/W) 0.3681 0.0938 0.0380 R1 τ, (s)= 0.0555 1.26*10-3 1.49*10-4 R2 0.5mJ single pulse C 1= τ1/R 1 C 2= τ2/R 2 0.0mJ 0°C 50°C 100°C 150°C 10 K/W 1µs -4 10µs 100µs 1ms 10ms 100ms 1s Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 30A, RG = 11Ω, Dynamic test circuit in Figure E) tp, PULSE WIDTH Figure 16. IGBT transient thermal impedance as a function of pulse width (D = tp / T) 7 Jul-02 SKW30N60 25V 20V 120V 480V 1nF Ciss VGE, GATE-EMITTER VOLTAGE 15V C, CAPACITANCE Coss 100pF Crss 10V 5V 0V 0nC 50nC 100nC 150nC 200nC 10pF 0V 10V 20V 30V QGE, GATE CHARGE Figure 17. Typical gate charge (IC = 30A) VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz) 25 µ s 500A tsc, SHORT CIRCUIT WITHSTAND TIME 20 µ s IC(sc), SHORT CIRCUIT COLLECTOR CURRENT 450A 400A 350A 300A 250A 200A 150A 100A 50A 0A 10V 12V 14V 16V 18V 20V 15 µ s 10 µ s 5µ s 0µ s 10V 11V 12V 13V 14V 15V VGE, GATE-EMITTER VOLTAGE Figure 19. Short circuit withstand time as a function of gate-emitter voltage (VCE = 600V, start at Tj = 25°C) VGE, GATE-EMITTER VOLTAGE Figure 20. Typical short circuit collector current as a function of gate-emitter voltage (VCE ≤ 600V, Tj = 150°C) 8 Jul-02 SKW30N60 700ns 3500nC 600ns 3000nC Qrr, REVERSE RECOVERY CHARGE IF = 60A trr, REVERSE RECOVERY TIME 500ns 2500nC IF = 60A IF = 30A 400ns IF = 30A 2000nC 300ns 1500nC IF = 15A 200ns IF = 15A 1000nC 100ns 500nC 0ns 100A/µs 300A/µs 500A/µs 700A/µs 900A/µs 0nC 100A/µs 300A/µs 500A/µs 700A/µs 900A/µs d i F / d t , DIODE CURRENT SLOPE Figure 21. Typical reverse recovery time as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E) d i F / d t , DIODE CURRENT SLOPE Figure 22. Typical reverse recovery charge as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E) 24A 1 000A/µs 20A d i r r /d t , DIODE PEAK RATE OF FALL 16A IF = 60A OF REVERSE RECOVERY CURRENT Irr, REVERSE RECOVERY CURRENT 800A/µs 600A/µs 12A IF = 30A IF = 15A 400A/µs 8A 200A/µs 4A 0A 100A/µs 300A/µs 500A/µs 700A/µs 900A/µs 0A/µs 100A/ µs 300A/ µs 500A/ µs 700A/ µs 900A/ µs d i F / d t , DIODE CURRENT SLOPE Figure 23. Typical reverse recovery current as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E) diF/dt, DIODE CURRENT SLOPE Figure 24. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E) 9 Jul-02 SKW30N60 60A 2.0V 50A I F = 60A VF, FORWARD VOLTAGE IF, FORWARD CURRENT 40A 150°C 30A 100°C 20A 25°C 10A -55°C 1.5V I F = 30A 0A 0.0V 0.5V 1.0V 1.5V 2.0V 1.0V -40°C 0°C 40°C 80°C 120°C VF, FORWARD VOLTAGE Figure 25. Typical diode forward current as a function of forward voltage Tj, JUNCTION TEMPERATURE Figure 26. Typical diode forward voltage as a function of junction temperature ZthJCD, TRANSIENT THERMAL IMPEDANCE 10 K/W D=0.5 0.2 10 K/W -1 0 0.1 0.05 0.02 10 K/W single pulse -2 0.01 R,(1/W) 0.270 0.231 0.221 0.203 0.070 R1 τ, (s)= 0.157 2.08*10-2 2.29*10-3 2.04*10-4 1.03*10-5 R2 C1= τ1/R1 C2=τ2/R2 10 K/W 1µs -3 10µs 100µs 1ms 10ms 100ms 1s tp, PULSE WIDTH Figure 27. Diode transient thermal impedance as a function of pulse width (D = tp / T) 10 Jul-02 SKW30N60 TO-247AC symbol min A B C D E F G H K L M N ∅P Q 6.12 4.78 2.29 1.78 1.09 1.73 2.67 [mm] dimensions [inch] max 5.28 2.51 2.29 1.32 2.06 3.18 min 0.1882 0.0902 0.0701 0.0429 0.0681 0.1051 max 0.2079 0.0988 0.0902 0.0520 0.0811 0.1252 0.76 max 20.80 15.65 5.21 19.81 3.560 21.16 16.15 5.72 20.68 4.930 0.0299 max 0.8189 0.6161 0.2051 0.7799 0.1402 0.8331 0.6358 0.2252 0.8142 0.1941 3.61 6.22 0.1421 0.2409 0.2449 11 Jul-02 SKW30N60 i,v diF /dt tr r =tS +tF Qr r =QS +QF tr r IF tS QS tF 10% Ir r m t VR Ir r m QF dir r /dt 90% Ir r m Figure C. Definition of diodes switching characteristics τ1 Tj (t) p(t) τ2 r2 r1 τn rn r1 r2 rn Figure A. Definition of switching times TC Figure D. Thermal equivalent circuit Figure B. Definition of switching losses Figure E. Dynamic test circuit Leakage inductance Lσ =180nH an d Stray capacity C σ =900pF. Published by Infineon Technologies AG, 12 Jul-02 SKW30N60 Bereich Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 2000 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 13 Jul-02
SKW30N60 价格&库存

很抱歉,暂时无法提供与“SKW30N60”相匹配的价格&库存,您可以联系我们找货

免费人工找货