0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SKW30N60_08

SKW30N60_08

  • 厂商:

    INFINEON

  • 封装:

  • 描述:

    SKW30N60_08 - Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode - Infin...

  • 数据手册
  • 价格&库存
SKW30N60_08 数据手册
SKW30N60 Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode • 75% lower Eoff compared to previous generation combined with low conduction losses • Short circuit withstand time – 10 µs • Designed for: - Motor controls - Inverter • NPT-Technology for 600V applications offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour - parallel switching capability • Very soft, fast recovery anti-parallel EmCon diode • Pb-free lead plating; RoHS compliant • Qualified according to JEDEC1 for target applications • Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type SKW30N60 Maximum Ratings Parameter Collector-emitter voltage DC collector current TC = 25°C TC = 100°C Pulsed collector current, tp limited by Tjmax Turn off safe operating area VCE ≤ 600V, Tj ≤ 150°C Diode forward current TC = 25°C TC = 100°C Diode pulsed current, tp limited by Tjmax Gate-emitter voltage Short circuit withstand time Power dissipation TC = 25°C Soldering temperature wavesoldering, 1.6 mm (0.063 in.) from case for 10s Operating junction and storage temperature Tj , Tstg -55...+150 °C Ts 260 °C 2 C G E PG-TO-247-3 VCE 600V IC 30A VCE(sat) 2.5V Tj 150°C Marking Package K30N60 PG-TO-247-3 Symbol VCE IC Value 600 41 30 Unit V A ICpuls IF 112 112 41 30 IFpuls VGE tSC Ptot 112 ±20 10 250 V µs W VGE = 15V, VCC ≤ 600V, Tj ≤ 150°C 1 2 J-STD-020 and JESD-022 Allowed number of short circuits: 1s. 1 Rev. 2_2 Sep 08 SKW30N60 Thermal Resistance Parameter Characteristic IGBT thermal resistance, junction – case Diode thermal resistance, junction – case Thermal resistance, junction – ambient Electrical Characteristic, at Tj = 25 °C, unless otherwise specified Parameter Static Characteristic Collector-emitter breakdown voltage Collector-emitter saturation voltage V ( B R ) C E S V G E = 0 V , I C =500 µ A VCE(sat) V G E = 1 5 V, I C =30A T j = 25 ° C T j = 150 ° C Diode forward voltage VF VGE=0V, IF=30A T j = 25 ° C T j = 150 ° C Gate-emitter threshold voltage Zero gate voltage collector current VGE(th) ICES I C =700 µ A, V C E = V G E V C E = 60 0 V, V G E = 0 V T j = 25 ° C T j = 150 ° C Gate-emitter leakage current Transconductance Dynamic Characteristic Input capacitance Output capacitance Reverse transfer capacitance Gate charge Internal emitter inductance measured 5mm (0.197 in.) from case Short circuit collector current1) IC(SC) V G E =15V, t S C ≤ 1 0 µ s V C C ≤ 6 0 0V, T j ≤ 1 50 ° C 300 A Ciss Coss Crss QGate LE V C E =25V, VGE=0V, f =1MHz V C C = 48 0 V, I C =30A V G E =15V 13 nH 1600 150 92 140 1920 180 110 182 nC pF IGES gfs V C E = 0 V , V G E =20V V C E =20V, I C =30A 20 40 3000 100 nA S 1.2 3 1.4 1.25 4 1.8 1.65 5 µA 1.7 2.1 2.5 2.4 3.0 600 V Symbol Conditions Value min. Typ. max. Unit RthJA 40 RthJCD 1 RthJC 0.5 K/W Symbol Conditions Max. Value Unit 1) Allowed number of short circuits: 1s. 2 Rev. 2_2 Sep 08 SKW30N60 Switching Characteristic, Inductive Load, at Tj=25 °C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy Anti-Parallel Diode Characteristic Diode reverse recovery time trr tS tF Diode reverse recovery charge Diode peak reverse recovery current Diode peak rate of fall of reverse recovery current during t b Qrr Irrm dirr/dt T j = 25 ° C , V R = 20 0 V , I F =30A, d i F /d t = 200A/ µ s 400 32 368 610 5.5 180 nC A A/µs ns td(on) tr td(off) tf Eon Eoff Ets T j = 25 ° C , V C C = 40 0 V, I C =30A, V G E = 0 /1 5 V, R G = 11Ω , L σ 1 ) = 1 80nH , C σ 1 ) = 9 00p F Energy losses include “tail” and diode reverse recovery. 44 34 291 58 0.64 0.65 1.29 53 40 349 70 0.77 0.85 1.62 mJ ns Symbol Conditions Value min. typ. max. Unit Switching Characteristic, Inductive Load, at Tj=150 °C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy Anti-Parallel Diode Characteristic Diode reverse recovery time trr tS tF Diode reverse recovery charge Diode peak reverse recovery current Diode peak rate of fall of reverse recovery current during t b Qrr Irrm dirr/dt T j = 150 ° C V R = 20 0 V , I F =30A, d i F /d t = 200A/ µ s 520 56 464 1740 9.0 200 nC A A/µs ns td(on) tr td(off) tf Eon Eoff Ets T j = 150 ° C V C C = 40 0 V, I C =30A, V G E = 0 /1 5 V, RG= 11Ω, L σ 1 ) = 1 80nH , C σ 1 ) = 9 00p F Energy losses include “tail” and diode reverse recovery. 44 34 324 67 0.98 0.92 1.90 53 40 389 80 1.18 1.19 2.38 mJ ns Symbol Conditions Value min. typ. max. Unit 1) Leakage inductance L σ a nd Stray capacity C σ due to dynamic test circuit in Figure E. 3 Rev. 2_2 Sep 08 SKW30N60 160A 140A 120A Ic 100A tp=4µs 15µs IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 100A 80A TC=80°C 60A 40A 20A 0A 10Hz TC=110°C 10A 50µs 200µs 1ms 1A DC Ic 0.1A 1V 10V 100V 100Hz 1kHz 10kHz 100kHz 1000V f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj ≤ 150°C, D = 0.5, VCE = 400V, VGE = 0/+15V, RG = 11Ω) VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25°C, Tj ≤ 150°C) 300W 60A 250W 50A Limited by bond wire 200W IC, COLLECTOR CURRENT 50°C 75°C 100°C 125°C POWER DISSIPATION 40A 150W 30A 100W 20A Ptot, 50W 10A 0W 25°C 0A 25°C 50°C 75°C 100°C 125°C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj ≤ 150°C) TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE ≤ 15V, Tj ≤ 150°C) 4 Rev. 2_2 Sep 08 SKW30N60 90A 80A 70A 90A 80A 70A IC, COLLECTOR CURRENT 60A 50A 40A 30A 20A 10A 0A 0V IC, COLLECTOR CURRENT VGE=20V 15V 13V 11V 9V 7V 5V 60A 50A 40A 30A 20A 10A 0A 0V VGE=20V 15V 13V 11V 9V 7V 5V 1V 2V 3V 4V 5V 1V 2V 3V 4V 5V VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25°C) VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150°C) 90A 80A Tj=+25°C -55°C +150°C VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE 100A 4.0V 3.5V IC = 60A IC, COLLECTOR CURRENT 70A 60A 50A 40A 30A 20A 10A 0A 0V 2V 4V 6V 3.0V 2.5V IC = 30A 2.0V 1.5V 8V 10V 1.0V -50°C 0°C 50°C 100°C 150°C VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 10V) Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) 5 Rev. 2_2 Sep 08 SKW30N60 1000ns 1000ns td(off) td(off) t, SWITCHING TIMES 100ns tf t, SWITCHING TIMES 100ns tf td(on) tr td(on) tr 10ns 10A 20A 30A 40A 50A 60A 10ns 0Ω 10Ω 20Ω 30Ω 40Ω IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 11Ω, Dynamic test circuit in Figure E) RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 30A, Dynamic test circuit in Figure E) 1000ns 5.5V VGE(th), GATE-EMITTER THRESHOLD VOLTAGE 5.0V 4.5V 4.0V 3.5V 3.0V 2.5V 2.0V -50°C 0°C 50°C 100°C 150°C typ. max. td(off) t, SWITCHING TIMES 100ns tf tr td(on) min. 10ns 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 30A, RG = 11Ω, Dynamic test circuit in Figure E) Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.7mA) 6 Rev. 2_2 Sep 08 SKW30N60 5.0mJ 4.5mJ *) Eon and Ets include losses due to diode recovery. 4.0mJ Ets* 3.5mJ *) Eon and Ets include losses due to diode recovery. E, SWITCHING ENERGY LOSSES E, SWITCHING ENERGY LOSSES 4.0mJ 3.5mJ 3.0mJ 2.5mJ 2.0mJ 1.5mJ 1.0mJ 0.5mJ 0.0mJ 10A 20A 30A 40A 50A 60A 70A Eon* Eoff 3.0mJ 2.5mJ 2.0mJ 1.5mJ 1.0mJ 0.5mJ 0.0mJ 0Ω Eoff Eon* Ets* 10Ω 20Ω 30Ω 40Ω IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 11Ω, Dynamic test circuit in Figure E) RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 30A, Dynamic test circuit in Figure E) 3.0mJ 10 K/W 0 2.5mJ ZthJC, TRANSIENT THERMAL IMPEDANCE *) Eon and Ets include losses due to diode recovery. D=0.5 -1 E, SWITCHING ENERGY LOSSES 10 K/W 0.2 0.1 0.05 2.0mJ Ets* 1.5mJ Eon* Eoff 0.5mJ 10 K/W 0.01 -3 -2 0.02 1.0mJ 10 K/W single pulse R,(1/W) 0.3681 0.0938 0.0380 R1 τ, (s) 0.0555 -3 1.26*10 -4 1.49*10 R2 C 1= τ1/R 1 C 2= τ2/R 2 0.0mJ 0°C 50°C 100°C 150°C 10 K/W 1µs -4 10µs 100µs 1ms 10ms 100ms 1s Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 30A, RG = 11Ω, Dynamic test circuit in Figure E) tp, PULSE WIDTH Figure 16. IGBT transient thermal impedance as a function of pulse width (D = tp / T) 7 Rev. 2_2 Sep 08 SKW30N60 25V 20V 120V 480V 1nF Ciss VGE, GATE-EMITTER VOLTAGE 15V C, CAPACITANCE Coss 100pF Crss 10V 5V 0V 0nC 50nC 100nC 150nC 200nC 10pF 0V 10V 20V 30V QGE, GATE CHARGE Figure 17. Typical gate charge (IC = 30A) VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz) 25 µ s 500A tsc, SHORT CIRCUIT WITHSTAND TIME 20 µ s IC(sc), SHORT CIRCUIT COLLECTOR CURRENT 450A 400A 350A 300A 250A 200A 150A 100A 50A 0A 10V 12V 14V 16V 18V 20V 15 µ s 10 µ s 5µ s 0µ s 1 0V 11V 12V 13V 14V 15V VGE, GATE-EMITTER VOLTAGE Figure 19. Short circuit withstand time as a function of gate-emitter voltage (VCE = 600V, start at Tj = 25°C) VGE, GATE-EMITTER VOLTAGE Figure 20. Typical short circuit collector current as a function of gate-emitter voltage (VCE ≤ 600V, Tj = 150°C) 8 Rev. 2_2 Sep 08 SKW30N60 700ns 3500nC 600ns Qrr, REVERSE RECOVERY CHARGE IF = 60A 3000nC trr, REVERSE RECOVERY TIME 500ns 2500nC IF = 60A IF = 30A 400ns IF = 30A 2000nC 300ns 1500nC IF = 15A 200ns IF = 15A 1000nC 100ns 500nC 0ns 100A/µs 300A/µs 500A/µs 700A/µs 900A/µs 0nC 100A/µs 300A/µs 500A/µs 700A/µs 900A/µs d i F /d t , DIODE CURRENT SLOPE Figure 21. Typical reverse recovery time as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E) d i F /d t , DIODE CURRENT SLOPE Figure 22. Typical reverse recovery charge as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E) 24A 1000A/µs 20A 16A IF = 60A IF = 30A IF = 15A DIODE PEAK RATE OF FALL OF REVERSE RECOVERY CURRENT Irr, REVERSE RECOVERY CURRENT 800A/µs 600A/µs 12A 400A/µs 8A dirr/dt, 4A 200A/µs 0A 100A/µs 300A/µs 500A/µs 700A/µs 900A/µs 0A/µs 1 00A/µs 300A/µs 500A/µs 700A/µs 900A/µs d i F /d t , DIODE CURRENT SLOPE Figure 23. Typical reverse recovery current as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E) diF/dt, DIODE CURRENT SLOPE Figure 24. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E) 9 Rev. 2_2 Sep 08 SKW30N60 60A 2.0V 50A I F = 6 0A VF, FORWARD VOLTAGE IF, FORWARD CURRENT 40A 150°C 30A 100°C 20A 25°C 10A -55°C 1.5V I F = 30A 0A 0.0V 0.5V 1.0V 1.5V 2.0V 1.0V -40°C 0°C 40°C 80°C 120°C VF, FORWARD VOLTAGE Figure 25. Typical diode forward current as a function of forward voltage Tj, JUNCTION TEMPERATURE Figure 26. Typical diode forward voltage as a function of junction temperature ZthJCD, TRANSIENT THERMAL IMPEDANCE 10 K/W D=0.5 0.2 10 K/W -1 0 0.1 0.05 0.02 R,(1/W) 0.270 0.231 0.221 0.203 0.070 R1 10 K/W -2 0.01 τ, (s) 0.157 -2 2.08*10 -3 2.29*10 -4 2.04*10 -5 1.03*10 R2 single pulse C1=τ1/R1 C2=τ2/R2 10 K/W 1µs -3 10µs 100µs 1ms 10ms 100ms 1s tp, PULSE WIDTH Figure 27. Diode transient thermal impedance as a function of pulse width (D = tp / T) 10 Rev. 2_2 Sep 08 SKW30N60 PG-TO247-3 M M MIN 4.90 2.27 1.85 1.07 1.90 1.90 2.87 2.87 0.55 20.82 16.25 1.05 15.70 13.10 3.68 1.68 5.44 3 19.80 4.17 3.50 5.49 6.04 MAX 5.16 2.53 2.11 1.33 2.41 2.16 3.38 3.13 0.68 21.10 17.65 1.35 16.03 14.15 5.10 2.60 MIN 0.193 0.089 0.073 0.042 0.075 0.075 0.113 0.113 0.022 0.820 0.640 0.041 0.618 0.516 0.145 0.066 0.214 3 MAX 0.203 0.099 0.083 0.052 0.095 0.085 0.133 0.123 0.027 0.831 0.695 0.053 0.631 0.557 0.201 0.102 Z8B00003327 0 0 55 7.5mm 20.31 4.47 3.70 6.00 6.30 0.780 0.164 0.138 0.216 0.238 0.799 0.176 0.146 0.236 0.248 17-12-2007 03 11 Rev. 2_2 Sep 08 SKW30N60 i,v diF /dt tr r =tS +tF Qr r =QS +QF IF tS QS tr r tF 10% Ir r m t VR Ir r m QF dir r /dt 90% Ir r m Figure C. Definition of diodes switching characteristics τ1 Tj (t) p(t) r1 r2 τ2 τn rn r1 r2 rn Figure A. Definition of switching times TC Figure D. Thermal equivalent circuit Figure B. Definition of switching losses Figure E. Dynamic test circuit Leakage inductance Lσ =180nH a nd Stray capacity C σ =900pF. Published by Infineon Technologies AG, 12 Rev. 2_2 Sep 08 SKW30N60 Published by Infineon Technologies AG 81726 Munich, Germany © 2008 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 13 Rev. 2_2 Sep 08
SKW30N60_08 价格&库存

很抱歉,暂时无法提供与“SKW30N60_08”相匹配的价格&库存,您可以联系我们找货

免费人工找货