0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRG4IBC30W

IRG4IBC30W

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRG4IBC30W - INSULATED GATE BIPOLAR TRANSISTOR - International Rectifier

  • 数据手册
  • 价格&库存
IRG4IBC30W 数据手册
PD 91791A IRG4IBC30W INSULATED GATE BIPOLAR TRANSISTOR Features • Designed expressly for Switch-Mode Power Supply and PFC (power factor correction) applications • 2.5kV, 60s insulation voltage V • Industry-benchmark switching losses improve efficiency of all power supply topologies • 50% reduction of Eoff parameter • Low IGBT conduction losses • Latest-generation IGBT design and construction offers tighter parameters distribution, exceptional reliability • Industry standard Isolated TO-220 FullpakTM outline C VCES = 600V G E VCE(on) typ. = 2.1V @VGE = 15V, IC = 12 A n-channel Benefits • Lower switching losses allow more cost-effective operation than power MOSFETs up to 150 kHz ("hard switched" mode) • Of particular benefit to single-ended converters and boost PFC topologies 150W and higher • Low conduction losses and minimal minority-carrier recombination make these an excellent option for resonant mode switching as well (up to >>300 kHz) TO-220 FULLPAK Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM VGE EARV PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Breakdown Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Q Clamped Inductive Load Current R Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy S Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 screw. Max. 600 17 8.4 92 92 ± 20 180 45 18 -55 to + 150 300 (0.063 in. (1.6mm from case ) 10 lbf•in (1.1N•m) Units V A V mJ W °C Thermal Resistance Parameter RθJC RθJA Wt Junction-to-Case - IGBT Junction-to-Ambient, typical socket mount Weight Typ. ––– ––– 2.0 (0.07) Max. 2.8 65 ––– Units °C/W g (oz) www.irf.com 1 12/30/00 IRG4IBC30W Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES V(BR)ECS Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 600 — Emitter-to-Collector Breakdown Voltage T 18 — ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — 0.34 — 2.1 VCE(ON) Collector-to-Emitter Saturation Voltage — 2.45 — 1.95 VGE(th) Gate Threshold Voltage 3.0 — ∆VGE(th)/∆TJ Temperature Coeff. of Threshold Voltage — -11 gfe Forward Transconductance U 11 16 — — ICES Zero Gate Voltage Collector Current — — — — IGES Gate-to-Emitter Leakage Current — — Max. Units Conditions — V VGE = 0V, IC = 250µA — V VGE = 0V, IC = 1.0A — V/°C VGE = 0V, IC = 1.0mA VGE = 15V 2.7 IC = 12A — IC = 23A See Fig.2, 5 V — IC = 12A , TJ = 150°C 6.0 VCE = VGE, IC = 250µA — mV/°C VCE = VGE, IC = 250µA — S VCE = 100 V, IC = 12A 250 VGE = 0V, VCE = 600V µA 2.0 VGE = 0V, VCE = 10V, TJ = 25°C 1000 VGE = 0V, VCE = 600V, TJ = 150°C ±100 nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres Notes: Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. — — — — — — — — — — — — — — — — — — — Typ. 51 7.6 18 25 16 99 67 0.13 0.13 0.26 24 17 150 150 0.55 7.5 980 71 18 Max. Units Conditions 76 IC = 12A 11 nC VCC = 400V See Fig.8 27 VGE = 15V — — TJ = 25°C ns 150 IC = 12A, VCC = 480V 100 VGE = 15V, RG = 23Ω — Energy losses include "tail" — mJ See Fig. 9, 10, 13, 14 0.35 — TJ = 150°C, — IC = 12A, VCC = 480V ns — VGE = 15V, RG = 23Ω — Energy losses include "tail" — mJ See Fig. 11,13, 14 — nH Measured 5mm from package — VGE = 0V — pF VCC = 30V See Fig. 7 — ƒ = 1.0MHz Q Repetitive rating; VGE = 20V, pulse width limited by max. junction temperature. ( See fig. 13b ) R VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 23Ω, (See fig. 13a) T Pulse width ≤ 80µs; duty factor ≤ 0.1%. U Pulse width 5.0µs, single shot. V t = 60s, f = 60Hz S Repetitive rating; pulse width limited by maximum junction temperature. 2 www.irf.com IRG4IBC30W 25 For both: Triangular wave: 20 Load C urre nt (A ) Duty cycle: 50% T J = 125°C T sink= 90°C Gate drive as specified Power Dissipation = 10.6W Clamp voltage: 80% of rated 15 Square wave: 60% of rated voltage 10 5 Ideal diodes 0 0.1 1 10 100 A 1000 f, F re q ue n c y ( kH z ) Fig. 1 - Typical Load Current vs. Frequency (For square wave, I=IRMS of fundamental; for triangular wave, I=IPK) 100 100 I C , Collector-to-Emitter Current (A) I C , Collector-to-Emitter Current (A) TJ = 150 °C  10 TJ = 150 °C  10 TJ = 25 ° C  TJ = 25 °C  1 1 1 V = 15V  20µs PULSE WIDTH GE 10 0.1 5.0 V = 50V  5µs PULSE WIDTH CC 6.0 7.0 8.0 9.0 10.0 11.0 VCE , Collector-to-Emitter Voltage (V) VGE , Gate-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics Fig. 3 - Typical Transfer Characteristics www.irf.com 3 IRG4IBC30W 20 3.0 VCE , Collector-to-Emitter Voltage(V) V = 15V  80 us PULSE WIDTH GE Maximum DC Collector Current(A)  IC = 24 A 2.5 15 10  IC = 12 A 2.0  IC = 6 A 5 0 25 50 75 100 125 150 1.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 TC , Case Temperature ( ° C) TJ , Junction Temperature (° C) Fig. 4 - Maximum Collector Current vs. Temperature Case Fig. 5 - Collector-to-Emitter Voltage vs. Junction Temperature 10 Thermal Response (Z thJC) D = 0.50 1 0.20 0.10 0.05 0.1 0.02 0.01 SINGLE PULSE  (THERMAL RESPONSE) 0.01 0.00001  Notes: 1. Duty factor D = t 1 / t2 2. Peak T = PDM x Z thJC + TC J 0.1 1 0.01 10  P DM t1 t2 0.0001 0.001 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4IBC30W 2000 VGE , Gate-to-Emitter Voltage (V) C, Capacitance (pF) 1500  VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc 20  VCC = 400V I C = 12A 16 Cies  1000 12 8 500 C oes C res 4 0 1 10 100 0 0 10 20 30 40 50 60 VCE , Collector-to-Emitter Voltage (V) QG , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage 0.5 Total Switching Losses (mJ) Total Switching Losses (mJ) V CC = 480V V GE = 15V TJ = 25 ° C 0.4 I C = 12A  10  RG = 23Ω Ohm VGE = 15V VCC = 480V  IC = 24 A 1 0.3  IC = 12 A  IC = 6 A 0.2 0.1 0.1 0.0 10 0 10 20 30 40 50 0.01 -60 -40 -20 0 20 40 60 80 100 120 140 160 RGRG,Gate Resistance (Ohm) , Gate Resistance (Ω) TJ , Junction Temperature (° C ) Fig. 9 - Typical Switching Losses vs. Gate Resistance Fig. 10 - Typical Switching Losses vs. Junction Temperature www.irf.com 5 IRG4IBC30W 1.5 I C , C ollector-to-E m itter C urrent (A ) Total Switching Losses (mJ)  RG TJ VCC VGE 23Ω = Ohm = 150 ° C = 480V = 15V 1000 VG E E 2 0V G= T J = 125 ° C 100 1.0 S A FE O P E R A TIN G A R E A 10 0.5 1 0.0 0 5 10 15 20 25 30 0.1 1 10 100 1000 I C , Collector-to-emitter Current (A) V C E , C o lle cto r-to-E m itte r V olta g e (V ) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Fig. 12 - Turn-Off SOA 6 www.irf.com IRG4IBC30W L 50V 1 000V VC * D .U .T. RL = 0 - 480V 480V 4 X IC@25°C 480µF 960V Q R * D river sam e t y p e as D.U.T .; Vc = 80% of Vce ( m ax ) * N ote: Due to the 50V p ow er su p p ly , p ulse w idth and inductor w ill increase to obtain rated Id. Fig. 13a - Clamped Inductive Load Test Circuit Fig. 13b - Pulsed Collector Current Test Circuit IC L D river* 50V 1000V Q * Driver same type as D.U.T., VC = 480V D .U .T. VC Fig. 14a - Switching Loss Test Circuit R S Q R 90% S 10 % 90 % VC t d (o ff) Fig. 14b - Switching Loss Waveforms 10% I C 5% t d (o n ) tr E on E ts = (E o n +E off ) tf t =5µs E o ff www.irf.com 7 IRG4IBC30W Case Outline — TO-220 FULLPAK 1 0 .6 0 (.4 17 ) 1 0 .4 0 (.4 09 ) ø 3.4 0 (.13 3) 3.1 0 (.12 3) -A3.7 0 (.145 ) 3.2 0 (.126 ) 4 .80 (.1 89 ) 4 .60 (.1 81 ) 2 .8 0 (.1 10 ) 2 .6 0 (.1 02 ) LE A D A S S IG N M E N TS LEAD ASSIGMENTS 1-G 1- GATE A TE 2 - D RA IN 2- COLLECTOR 3 - SOU 3- EMITTERRC E NOTES: 1 D IM E N S IO N IN G & TO LE R A NC ING P E R A N S I Y 14.5M , 1 98 2 7.10 (.28 0 ) 6.70 (.26 3 ) 1 6.0 0 (.63 0) 1 5.8 0 (.62 2) 1.1 5 (.0 45) M IN . 1 2 3 2 C O N TR O LL IN G D IM E N S IO N : IN C H . 3.3 0 (.130 ) 3.1 0 (.122 ) -B1 3.7 0 (.54 0) 1 3.5 0 (.53 0) C D A 3X 1 .4 0 (.0 55) 1 .0 5 (.0 42) 0 .90 (.0 35) 3X 0 .70 (.0 28) 0 .2 5 (.0 10) 2.5 4 (.10 0 ) 2X M AM B 3X 0.4 8 (.01 9) 0.4 4 (.01 7) B 2 .85 (.1 12 ) 2 .65 (.1 04 ) M IN IM U M C R E E P A G E D IS T A N C E B E TW E E N A -B -C -D = 4.8 0 (.189 ) IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 12/00 8 www.irf.com
IRG4IBC30W 价格&库存

很抱歉,暂时无法提供与“IRG4IBC30W”相匹配的价格&库存,您可以联系我们找货

免费人工找货