0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRG7PH42UD-EP

IRG7PH42UD-EP

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRG7PH42UD-EP - INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE - International...

  • 数据手册
  • 价格&库存
IRG7PH42UD-EP 数据手册
PD - 97391B INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features • • • • • • • • Low VCE (ON) trench IGBT technology Low switching losses Square RBSOA 100% of the parts tested for ILM  Positive VCE (ON) temperature co-efficient Ultra fast soft recovery co-pak diode Tight parameter distribution Lead-Free IRG7PH42UDPbF IRG7PH42UD-EP C VCES = 1200V IC = 45A, TC = 100°C G E TJ(max) = 150°C Benefits • High efficiency in a wide range of applications • Suitable for a wide range of switching frequencies due to low VCE (ON) and low switching losses • Rugged transient performance for increased reliability • Excellent current sharing in parallel operation n-channel C VCE(on) typ. = 1.7V C Applications • • • • U.P.S. Welding Solar Inverter Induction Heating GC E TO-247AC IRG7PH42UDPbF E GC TO-247AD IRG7PH42UD-EP G Gate C Collector E Emitter Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C INOMINAL ICM ILM IF @ TC = 25°C IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current (Silicon Limited) Continuous Collector Current (Silicon Limited) Nominal Current Pulse Collector Current, VGE = 15V Clamped Inductive Load Current, VGE = 20V Diode Continous Forward Current Diode Continous Forward Current Diode Maximum Forward Current Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw 300 (0.063 in. (1.6mm) from case) 10 lbf·in (1.1 N·m) Max. 1200 85 45 30 90 120 85 45 120 ±30 320 130 -55 to +150 Units V g c A d Continuous Gate-to-Emitter Voltage V W °C Thermal Resistance RθJC (IGBT) RθJC (Diode) RθCS RθJA f Thermal Resistance Junction-to-Case-(each Diode) f Thermal Resistance Junction-to-Case-(each IGBT) Thermal Resistance, Case-to-Sink (flat, greased surface) Thermal Resistance, Junction-to-Ambient (typical socket mount) Parameter Min. ––– ––– ––– ––– Typ. ––– ––– 0.24 40 Max. 0.39 0.56 ––– ––– Units °C/W 1 www.irf.com 10/26/09 IRG7PH42UDPbF/IRG7PH42UD-EP Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)CES ∆V(BR)CES/∆TJ Min. 1200 — — — 3.0 — — — — — — — Typ. — 0.18 1.7 2.1 — -14 32 4.4 1200 2.0 2.2 — Max. Units — — 2.0 — 6.0 — — 150 — 2.4 — ±100 nA V V Conditions VGE = 0V, IC = 100µA Collector-to-Emitter Breakdown Voltage Temperature Coeff. of Breakdown Voltage e VCE(on) VGE(th) ∆VGE(th)/∆TJ Collector-to-Emitter Saturation Voltage Gate Threshold Voltage Threshold Voltage temp. coefficient Forward Transconductance Collector-to-Emitter Leakage Current Diode Forward Voltage Drop Gate-to-Emitter Leakage Current V/°C VGE = 0V, IC = 2.0mA (25°C-150°C) IC = 30A, VGE = 15V, TJ = 25°C V V S µA IC = 30A, VGE = 15V, TJ = 150°C VCE = VGE, IC = 1.0mA VCE = 50V, IC = 30A, PW = 80µs VGE = 0V, VCE = 1200V VGE = 0V, VCE = 1200V, TJ = 150°C IF = 30A IF = 30A, TJ = 150°C VGE = ±30V mV/°C VCE = VGE, IC = 1.0mA (25°C - 150°C) gfe ICES VFM IGES Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Qg Qge Qgc Eon Eoff Etotal td(on) tr td(off) tf Eon Eoff Etotal td(on) tr td(off) tf Cies Coes Cres RBSOA Erec trr Irr Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area Reverse Recovery Energy of the Diode Diode Reverse Recovery Time Peak Reverse Recovery Current Min. — — — — — — — — — — — — — — — — — — — — Typ. 157 21 69 2105 1182 3287 25 32 229 63 2978 1968 4946 19 32 290 154 3338 124 75 Max. Units 236 32 104 2374 1424 3798 34 41 271 86 — — — — — — — — — — pF VGE = 0V VCC = 30V ns µJ ns µJ nC IC = 30A VGE = 15V VCC = 600V Conditions IC = 30A, VCC = 600V, VGE = 15V RG = 10Ω , L = 200µH,TJ = 25°C Energy losses include tail & diode reverse recovery IC = 30A, VCC = 600V, VGE=15V RG=10Ω , L=200µH, TJ = 150°C eà Energy losses include tail & diode reverse recovery f = 1.0Mhz TJ = 150°C, IC = 120A VCC = 960V, Vp =1200V Rg = 10Ω , VGE = +20V to 0V FULL SQUARE — — — 1475 153 34 — — — µJ ns A TJ = 150°C VCC = 600V, IF = 30A Rg = 10Ω , L =1.0mH Notes:  VCC = 80% (VCES), VGE = 20V, L = 22µH, RG = 10Ω. ‚ Pulse width limited by max. junction temperature. ƒ Refer to AN-1086 for guidelines for measuring V(BR)CES safely. „ Rθ is measured at TJ of approximately 90°C. … Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 78A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. 2 www.irf.com IRG7PH42UDPbF/IRG7PH42UD-EP 60 50 Load Current ( A ) 40 30 Square wave: 60% of rated voltage I For both: Duty cycle : 50% Tj = 150°C Tsink = 90°C Gate drive as specified Power Dissipation = 95W 20 10 0 0.1 Ideal diodes 1 f , Frequency ( kHz ) 10 100 Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 100 350 300 250 80 60 Ptot (W) IC (A) 200 150 100 50 40 20 0 25 50 75 100 T C (°C) 125 150 175 0 0 20 40 60 80 100 120 140 160 T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature 1000 Fig. 2 - Power Dissipation vs. Case Temperature 1000 100 100 IC (A) 10 DC 1 Tc = 25°C Tj = 150°C Single Pulse 0.1 1 10 100 VCE (V) 1000 10000 100µsec 1msec IC (A) 10 1 10 100 VCE (V) 1000 10000 10µsec Fig. 3 - Forward SOA TC = 25°C, TJ ≤ 150°C; VGE =15V Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE = 20V www.irf.com 3 IRG7PH42UDPbF/IRG7PH42UD-EP 120 100 80 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 120 100 80 ICE (A) VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V ICE (A) 60 40 20 0 0 2 4 6 8 10 VCE (V) 60 40 20 0 0 2 4 6 8 10 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs 120 100 80 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs 120 100 80 -40°C 25°C 150°C ICE (A) IF (A) 60 40 20 0 0 2 4 6 8 10 VCE (V) 60 40 20 0 0.0 1.0 2.0 3.0 VF (V) 4.0 5.0 6.0 Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 80µs 12 10 8 VCE (V) Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs 12 10 8 VCE (V) 6 4 2 0 4 8 ICE = 15A ICE = 30A ICE = 60A 6 4 2 0 ICE = 15A ICE = 30A ICE = 60A 12 VGE (V) 16 20 4 8 12 VGE (V) 16 20 Fig. 9 - Typical VCE vs. VGE TJ = -40°C Fig. 10 - Typical VCE vs. VGE TJ = 25°C 4 www.irf.com IRG7PH42UDPbF/IRG7PH42UD-EP 12 ICE, Collector-to-Emitter Current (A) 120 100 80 60 40 20 0 4 8 12 VGE (V) 16 20 4 6 8 10 12 VGE, Gate-to-Emitter Voltage (V) T J = 25°C T J = 150°C 10 8 6 4 2 0 ICE = 15A ICE = 30A ICE = 60A VCE (V) Fig. 11 - Typical VCE vs. VGE TJ = 150°C 7000 6000 5000 Energy (µJ) Fig. 12 - Typ. Transfer Characteristics VCE = 50V 1000 tF Swiching Time (ns) 4000 EON 3000 2000 EOFF 1000 0 0 10 20 30 IC (A) 40 50 60 tdOFF 100 tR tdON 10 0 10 20 30 IC (A) 40 50 60 Fig. 13 - Typ. Energy Loss vs. IC TJ = 150°C; L = 200µH; VCE = 600V, RG = 10Ω; VGE = 15V 6000 Fig. 14 - Typ. Switching Time vs. IC TJ = 150°C; L = 200µH; VCE = 600V, RG = 10Ω; VGE = 15V 10000 5000 Swiching Time (ns) Energy (µJ) 4000 EON EOFF 1000 td OFF 3000 tF 100 tR tdON 2000 1000 0 20 40 60 80 100 RG ( Ω) 10 0 20 40 60 80 100 RG ( Ω) Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L = 200µH; VCE = 600V, ICE = 30A; VGE = 15V Fig. 16 - Typ. Switching Time vs. RG TJ = 150°C; L = 200µH; VCE = 600V, ICE = 30A; VGE = 15V www.irf.com 5 IRG7PH42UDPbF/IRG7PH42UD-EP 50 RG = 5.0Ω 40 RG = 10Ω 30 RG = 47Ω 35 40 IRR (A) IRR (A) 60 30 20 RG = 100Ω 25 10 15 20 25 30 35 40 45 50 55 IF (A) 20 0 20 40 60 80 100 RG (Ω) Fig. 17 - Typ. Diode IRR vs. IF TJ = 150°C 40 9000 8000 Fig. 18 - Typ. Diode IRR vs. RG TJ = 150°C 60A 5.0Ω 10Ω 47Ω 100Ω 30A 35 QRR (nC) 7000 6000 5000 4000 3000 IRR (A) 30 25 15A 20 0 200 400 600 800 1000 1200 diF /dt (A/µs) 2000 0 200 400 600 800 1000 1200 1400 diF /dt (A/µs) Fig. 19 - Typ. Diode IRR vs. diF/dt VCC = 600V; VGE = 15V; IF = 30A; TJ = 150°C 3500 RG = 5.0 Ω 3000 2500 RG = 10 Ω RG = 47Ω RG = 100Ω Fig. 20 - Typ. Diode QRR vs. diF/dt VCC = 600V; VGE = 15V; TJ = 150°C Energy (µJ) 2000 1500 1000 500 15 20 25 30 35 40 45 50 55 60 IF (A) Fig. 21 - Typ. Diode ERR vs. IF TJ = 150°C 6 www.irf.com IRG7PH42UDPbF/IRG7PH42UD-EP 10000 16 VGE, Gate-to-Emitter Voltage (V) 14 12 10 8 6 4 2 0 Cies VCES = 600V VCES = 400V Capacitance (pF) 1000 100 Coes Cres 10 0 100 200 300 VCE (V) 400 500 600 0 20 40 60 80 100 120 140 160 180 Q G, Total Gate Charge (nC) Fig. 22 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 1 Fig. 23 - Typical Gate Charge vs. VGE ICE = 30A; L = 600µH D = 0.50 Thermal Response ( Z thJC ) 0.1 0.20 0.10 0.05 0.01 0.02 0.01 τJ R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 R4 R4 τC τ τ4 Ri (°C/W) 0.1306 0.1752 0.0814 0.0031 0.000313 0.002056 0.008349 0.043100 τi (sec) τ1 τ2 τ3 τ4 0.001 SINGLE PULSE ( THERMAL RESPONSE ) Ci= τi/Ri Ci i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 0.0001 1E-006 1E-005 t1 , Rectangular Pulse Duration (sec) Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 1 D = 0.50 Thermal Response ( Z thJC ) 0.1 0.20 0.10 0.05 0.01 0.02 0.01 τJ R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 R4 R4 τC τ τ4 Ri (°C/W) 0.1254 0.0937 0.1889 0.1511 τi (sec) 0.000515 0.000515 0.001225 0.018229 τ1 τ2 τ3 τ4 0.001 SINGLE PULSE ( THERMAL RESPONSE ) Ci= τi/Ri Ci i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1 0.0001 1E-006 1E-005 0.0001 t1 , Rectangular Pulse Duration (sec) Fig. 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 7 IRG7PH42UDPbF/IRG7PH42UD-EP L L 0 DUT 1K VCC 80 V + - DUT Rg VCC Fig.C.T.1 - Gate Charge Circuit (turn-off) diode clamp / DUT L Fig.C.T.2 - RBSOA Circuit R= V CC ICM -5V DUT / DRIVER Rg VCC Rg DUT VCC Fig.C.T.3 - Switching Loss Circuit Fig.C.T.4 - Resistive Load Circuit C force 100K D1 DUT 0.0075µF 22K C sens e G force E sense E force Fig.C.T.5 - BVCES Filter Circuit 8 www.irf.com IRG7PH42UDPbF/IRG7PH42UD-EP 900 800 700 600 500 VCE (V) 400 300 200 100 0 -100 -0.5 Eof f Loss 90% ICE 90 tf 80 70 60 50 900 800 700 600 500 VCE (V) I CE (A) 90% test current 90 tr TEST CURRENT 80 70 60 50 40 30 I CE (A) 40 30 20 10 0 -10 1.5 2 400 300 200 100 0 -100 9.4 5% V CE 5% ICE 10% test current 20 5% V CE 10 0 Eon Loss 0 0.5 1 9.6 9.8 time (µs) 10 -10 10.2 time(µs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4 40 30 20 10 I F (A) 0 -10 -20 -30 -40 -0.25 Peak IRR E REC tRR 10% Peak IRR 0.00 0.25 0.50 0.75 1.00 time (µS) Fig. WF3 - Typ. Diode Recovery Waveform @ TJ = 150°C using Fig. CT.4 www.irf.com 9 IRG7PH42UDPbF/IRG7PH42UD-EP Dimensions are shown in millimeters (inches) TO-247AC Package Outline TO-247AC Part Marking Information @Y6HQG@) UCDTÃDTÃ6IÃDSAQ@"à XDUCÃ6TT@H7G`à GPUÃ8P9@Ã$%$& 6TT@H7G@9ÃPIÃXXÃ"$Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅCÅ I‚‡r)ÃÅQÅÃvÃh††r€iy’Ãyvr†v‡v‚ vqvph‡r†ÃÅGrhqA…rrÅ DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S ,5)3( à "$C $%ÃÃÃÃÃÃÃÃÃÃÃ$& 96U@Ã8P9@ `@6Sà Ã2Ã! X@@FÃ"$ GDI@ÃC TO-247AC package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com IRG7PH42UDPbF/IRG7PH42UD-EP Dimensions are shown in millimeters (inches) TO-247AD Package Outline TO-247AD Part Marking Information @Y6HQG@) UCDTÃDTÃ6IÃDSBQ"7 !F9@ XDUCÃ6TT@H7G`à GPUÃ8P9@Ã$%$& 6TT@H7G@9ÃPIÃXXÃ"$Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅCÅ I‚‡r)ÃÅQÅÃvÃh††r€iy’Ãyvr†v‡v‚ vqvph‡r†ÃÅGrhqA…rrÅ DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S Ã"$C $%ÃÃÃÃÃÃÃÃÃÃÃ$& 96U@Ã8P9@ `@6SÃÃ2Ã! X@@FÃ"$ GDI@ÃC TO-247AD package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 10/2009 www.irf.com 11
IRG7PH42UD-EP 价格&库存

很抱歉,暂时无法提供与“IRG7PH42UD-EP”相匹配的价格&库存,您可以联系我们找货

免费人工找货