0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MRF175GU

MRF175GU

  • 厂商:

    MACOM

  • 封装:

  • 描述:

    MRF175GU - N-CHANNEL MOS BROADBAND RF POWER FETs - Tyco Electronics

  • 数据手册
  • 价格&库存
MRF175GU 数据手册
SEMICONDUCTOR TECHNICAL DATA Order this document by MRF175GU/D The RF MOSFET Line RF Power Field-Effect Transistors N–Channel Enhancement–Mode Designed for broadband commercial and military applications using push pull circuits at frequencies to 500 MHz. The high power, high gain and broadband performance of these devices makes possible solid state transmitters for FM broadcast or TV channel frequency bands. • Guaranteed Performance MRF175GV @ 28 V, 225 MHz (“V” Suffix) Output Power — 200 Watts Power Gain — 14 dB Typ Efficiency — 65% Typ MRF175GU @ 28 V, 400 MHz (“U” Suffix) Output Power — 150 Watts Power Gain — 12 dB Typ Efficiency — 55% Typ • 100% Ruggedness Tested At Rated Output Power • Low Thermal Resistance • Low Crss — 20 pF Typ @ VDS = 28 V G G S (FLANGE) MRF175GU MRF175GV 200/150 WATTS, 28 V, 500 MHz N–CHANNEL MOS BROADBAND RF POWER FETs D CASE 375–04, STYLE 2 D MAXIMUM RATINGS Rating Drain–Source Voltage Drain–Gate Voltage (RGS = 1.0 MΩ) Gate–Source Voltage Drain Current — Continuous Total Device Dissipation @ TC = 25°C Derate above 25°C Storage Temperature Range Operating Junction Temperature Symbol VDSS VDGR VGS ID PD Tstg TJ Characteristic Thermal Resistance, Junction to Case Symbol RθJC Value 65 65 ±40 26 400 2.27 –65 to +150 200 Unit Vdc Vdc Vdc Adc Watts W/°C °C °C THERMAL CHARACTERISTICS Max 0.44 Unit °C/W ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit OFF CHARACTERISTICS (1) Drain–Source Breakdown Voltage (VGS = 0, ID = 50 mA) Zero Gate Voltage Drain Current (VDS = 28 V, VGS = 0) Gate–Source Leakage Current (VGS = 20 V, VDS = 0) V(BR)DSS IDSS IGSS 65 — — — — — — 2.5 1.0 Vdc mAdc µAdc (continued) Handling and Packaging — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed. REV 8 1 ELECTRICAL CHARACTERISTICS — continued (TC = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit ON CHARACTERISTICS (1) Gate Threshold Voltage (VDS = 10 V, ID = 100 mA) Drain–Source On–Voltage (VGS = 10 V, ID = 5.0 A) Forward Transconductance (VDS = 10 V, ID = 2.5 A) VGS(th) VDS(on) gfs 1.0 0.1 2.0 3.0 0.9 3.0 6.0 1.5 — Vdc Vdc mhos DYNAMIC CHARACTERISTICS (1) Input Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Output Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Reverse Transfer Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Ciss Coss Crss — — — 180 200 20 — — — pF pF pF FUNCTIONAL CHARACTERISTICS — MRF175GV (2) (Figure 1) Common Source Power Gain (VDD = 28 Vdc, Pout = 200 W, f = 225 MHz, IDQ = 2.0 x 100 mA) Drain Efficiency (VDD = 28 Vdc, Pout = 200 W, f = 225 MHz, IDQ = 2.0 x 100 mA) Electrical Ruggedness (VDD = 28 Vdc, Pout = 200 W, f = 225 MHz, IDQ = 2.0 x 100 mA, VSWR 10:1 at all Phase Angles) NOTES: 1. Each side of device measured separately. 2. Measured in push–pull configuration. Gps η ψ No Degradation in Output Power 12 55 14 65 — — dB % R1 BIAS 0-6 V C3 C4 C8 C9 L2 C10 + 28 V - R2 D.U.T. T1 T2 L1 C5 C1 C2 C6 C7 C1 — Arco 404, 8.0–60 pF C2, C3, C7, C8 — 1000 pF Chip C4, C9 — 0.1 µF Chip C5 — 180 pF Chip C6 — 100 pF and 130 pF Chips in Parallel C10 — 0.47 µF Chip, Kemet 1215 or Equivalent L1 — 10 Turns AWG #16 Enamel Wire, Close L1 — Wound, 1/4″ I.D. L2 — Ferrite Beads of Suitable Material for L2 — 1.5–2.0 µH Total Inductance Board material — .062″ fiberglass (G10), Two sided, 1 oz. copper, εr ^ 5 Unless otherwise noted, all chip capacitors are ATC Type 100 or Equivalent. R1 — 100 Ohms, 1/2 W R2 — 1.0 k Ohm, 1/2 W T1 — 4:1 Impedance Ratio RF Transformer. T1 — Can Be Made of 25 Ohm Semirigid Coax, T1 — 47–52 Mils O.D. T2 — 1:9 Impedance Ratio RF Transformer. T2 — Can Be Made of 15–18 Ohms Semirigid T2 — Coax, 62–90 Mils O.D. NOTE: For stability, the input transformer T1 should be loaded NOTE: with ferrite toroids or beads to increase the common NOTE: mode inductance. For operation below 100 MHz. The NOTE: same is required for the output transformer. Figure 1. 225 MHz Test Circuit REV 8 2 ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit FUNCTIONAL CHARACTERISTICS — MRF175GU (1) (Figure 2) Common Source Power Gain (VDD = 28 Vdc, Pout = 150 W, f = 400 MHz, IDQ = 2.0 x 100 mA) Drain Efficiency (VDD = 28 Vdc, Pout = 150 W, f = 400 MHz, IDQ = 2.0 x 100 mA) Electrical Ruggedness (VDD = 28 Vdc, Pout = 150 W, f = 400 MHz, IDQ = 2.0 x 100 mA, VSWR 10:1 at all Phase Angles) NOTE: 1. Measured in push–pull configuration. Gps η ψ No Degradation in Output Power 10 50 12 55 — — dB % A B C14 L5 C15 L6 C18 L3 Z3 Z5 28 V BIAS C10 C11 C1 L1 R1 C12 R2 C13 C8 D.U.T. Z1 B1 C3 C4 C5 C6 C7 B2 C2 L2 Z2 Z4 Z6 C9 R3 A C16 L4 B C17 0.180″ B1 — Balun 50 Ω Semi Rigid Coax 0.086″ O.D. 2″ Long B2 — Balun 50 Ω Semi Rigid Coax 0.141″ O.D. 2″ Long C1, C2, C8, C9 — 270 pF ATC Chip Cap C3, C5, C7 — 1.0–20 pF Trimmer Cap C4 — 15 pF ATC Chip Cap C6 — 33 pF ATC Chip Cap C10, C12, C13, C16, C17 — 0.01 µF Ceramic Cap C11 — 1.0 µF 50 V Tantalum C14, C15 — 680 pF Feedthru Cap C18 — 20 µF 50 V Tantalum L1, L2 — Hairpin Inductor #18 Wire L3, L4 — 12 Turns #18 Enameled Wire 0.340″ I.D. L5 — Ferroxcube VK200 20/4B L6 — 3 Turns #16 Enameled Wire 0.340″ I.D. R1 — 1.0 kΩ 1/4 W Resistor R2, R3 — 10 kΩ 1/4 W Resistor Z1, Z2 — Microstrip Line 0.400″ x 0.250″ Z3, Z4 — Microstrip Line 0.870″ x 0.250″ Z5, Z6 — Microstrip Line 0.500″ x 0.250″ Board material — 0.060″ Teflon–fiberglass, εr = 2.55, copper clad both sides, 2 oz. copper. 0.200″ Figure 2. 400 MHz Test Circuit REV 8 3 TYPICAL CHARACTERISTICS 4000 f T, UNITY GAIN FREQUENCY (MHz) 100 3000 VDS = 20 V 2000 I D, DRAIN CURRENT (AMPS) VDS = 10 V 10 1000 TC = 25°C 0 0 2 4 6 8 10 12 14 ID, DRAIN CURRENT (AMPS) 16 18 20 1 1 10 VDS, DRAIN-SOURCE VOLTAGE (VOLTS) 100 Figure 3. Common Source Unity Current Gain Frequency versus Drain Current 5 I D, DRAIN CURRENT (AMPS) 4 VDS = 10 V 3 2 TYPICAL DEVICE SHOWN, VGS(th) = 3 V 1 VGS, GATE SOURCE VOLTAGE (NORMALIZED) 1.2 Figure 4. DC Safe Operating Area VDD = 28 V 1.1 ID = 4 A 3A 2A 0.9 100 mA 0.8 -25 0 25 50 75 100 125 TC, CASE TEMPERATURE (°C) 150 175 1 1 2 3 4 5 VGS, GATE-SOURCE VOLTAGE (VOLTS) 6 Figure 5. Drain Current versus Gate Voltage (Transfer Characteristics) 1000 500 C, CAPACITANCE (pF) Coss 200 100 50 Crss 20 10 0 Ciss Figure 6. Gate–Source Voltage versus Case Temperature VGS = 0 V f = 1 MHz 5 10 15 20 VDS, DRAIN-SOURCE VOLTAGE (VOLTS) 25 Figure 7. Capacitance versus Drain–Source Voltage* * Data shown applies to each half of MRF175GU/GV. REV 8 4 TYPICAL CHARACTERISTICS MRF175GV 300 Pout , POWER OUTPUT (WATTS) 320 Pout , OUTPUT POWER (WATTS) 280 240 200 160 120 80 40 24 0 12 14 16 18 20 22 24 VDD, SUPPLY VOLTAGE (VOLTS) 26 28 8W 4W IDQ = 2 x 100 mA f = 225 MHz Pin = 12 W 200 100 VDD = 28 V IDQ = 2 x 100 mA f = 225 MHz 0 0 12 Pin, POWER INPUT (WATTS) Figure 8. Power Input versus Power Output Figure 9. Output Power versus Supply Voltage MRF175GU 200 180 Pout , OUTPUT POWER (WATTS) 160 140 120 100 80 60 40 20 0 12 14 f = 400 MHz 16 18 20 22 24 VDD, SUPPLY VOLTAGE (VOLTS) 26 28 10 W 6W Pin = 14 W 200 180 Pout , OUTPUT POWER (WATTS) 160 140 120 100 80 60 40 20 0 0 5 10 15 Pin, INPUT POWER (WATTS) 20 25 VDS = 28 V IDQ = 2 x 100 mA f = 400 MHz 500 MHz Figure 10. Output Power versus Supply Voltage Figure 11. Output Power versus Input Power MRF175GV 30 25 POWER GAIN (dB) 20 15 10 5 VDS = 28 V IDQ = 2 x 100 mA 150 W Pout = 200 W 5 10 20 50 100 f, FREQUENCY (MHz) 200 500 Figure 12. Power Gain versus Frequency REV 8 5 ÁÁÁÁÁ Á Á Á Á Á Á Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁ Á Á Á Á Á Á Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á Á Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁ ÁÁ Á f MHz 375 350 325 300 275 250 245 240 235 230 225 220 215 210 205 200 195 192 190 185 180 175 170 165 160 155 150 145 140 135 130 120 105 103 100 110 90 80 70 50 0.939 0.957 0.969 0.966 0.948 0.935 0.936 0.935 0.933 0.932 0.935 0.933 0.930 0.907 0.923 0.933 0.935 0.937 0.939 0.941 0.941 0.937 0.936 0.934 0.936 0.934 0.931 0.931 0.929 0.929 0.928 0.923 0.921 0.920 0.920 0.918 0.921 0.923 0.924 0.926 |S11| 6 REV 8 Table 1. Common Source S–Parameters (VDS = 28 V, ID = 4.5 A) (continued) S11 –180 –180 –180 –179 –179 –178 –178 –178 –178 –177 –176 –176 –174 174 175 175 175 176 178 178 178 178 179 179 180 180 178 179 179 179 179 179 179 179 179 180 180 180 180 180 ∠φ |S21| 0.45 0.51 0.57 0.64 0.72 0.82 0.85 0.87 0.90 0.92 0.96 0.99 1.01 1.04 1.09 1.12 1.15 1.18 1.20 1.25 1.29 1.34 1.40 1.44 1.48 1.55 1.63 1.68 1.77 1.86 1.93 2.08 2.32 2.47 2.52 2.57 2.94 3.35 3.85 5.43 S21 ∠φ 25 27 30 33 36 39 40 41 42 43 43 45 45 46 47 47 48 49 49 50 51 52 53 54 55 56 57 58 59 60 61 63 65 67 67 68 70 73 76 81 0.015 0.013 0.012 0.010 0.009 0.010 0.009 0.009 0.009 0.009 0.009 0.008 0.008 0.013 0.012 0.010 0.010 0.009 0.010 0.009 0.009 0.008 0.009 0.007 0.008 0.007 0.008 0.009 0.007 0.008 0.005 0.008 0.008 0.007 0.008 0.008 0.008 0.009 0.009 0.011 |S12| S12 ∠φ 80 60 66 59 55 47 56 46 43 39 37 39 27 22 46 49 44 44 49 39 40 35 38 36 35 29 39 30 27 22 34 27 21 20 23 17 17 18 12 6 0.941 0.939 0.935 0.932 0.928 0.921 0.920 0.918 0.917 0.915 0.913 0.912 0.910 0.906 0.903 0.903 0.904 0.901 0.897 0.894 0.893 0.891 0.888 0.889 0.891 0.894 0.890 0.887 0.887 0.883 0.862 0.877 0.875 0.871 0.875 0.871 0.864 0.869 0.861 0.911 |S22| S22 –180 –180 –180 –179 –179 –179 –179 –179 –179 –179 –178 –178 –178 –178 –178 –178 –178 –178 –178 –178 –178 –178 –178 –178 –178 –178 –178 –179 –178 –178 –178 –178 –178 –177 177 178 178 179 180 180 ∠φ ÁÁÁÁÁ Á Á Á Á Á Á Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁ Á Á Á Á Á Á Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á Á Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁ ÁÁ Á f MHz 515 510 505 500 495 490 485 480 475 470 465 460 455 450 445 440 435 430 425 420 415 410 405 400 0.943 0.948 0.951 0.957 0.957 0.960 0.964 0.970 0.973 0.973 0.977 0.978 0.977 0.978 0.978 0.971 0.970 0.968 0.966 0.963 0.956 0.948 0.945 0.943 |S11| 7 REV 8 Table 1. Common Source S–Parameters (VDS = 28 V, ID = 4.5 A) (continued) S11 167 168 168 169 169 169 169 169 169 169 169 170 170 169 169 170 170 170 171 171 171 171 172 172 ∠φ |S21| 0.25 0.26 0.26 0.27 0.27 0.28 0.28 0.28 0.29 0.29 0.30 0.31 0.31 0.31 0.32 0.36 0.36 0.37 0.37 0.38 0.39 0.40 0.40 0.41 S21 ∠φ 13 13 13 13 14 14 14 15 15 15 16 16 17 17 17 19 19 20 20 21 21 22 22 23 0.022 0.022 0.023 0.023 0.023 0.022 0.022 0.022 0.021 0.021 0.020 0.019 0.019 0.019 0.017 0.019 0.019 0.019 0.018 0.018 0.017 0.016 0.016 0.017 |S12| S12 ∠φ 72 68 70 71 71 73 74 71 72 71 73 70 73 70 71 73 75 72 70 72 74 68 71 75 0.966 0.965 0.966 0.963 0.963 0.965 0.963 0.967 0.967 0.966 0.963 0.967 0.965 0.964 0.965 0.952 0.949 0.948 0.947 0.946 0.949 0.944 0.946 0.946 |S22| S22 175 176 176 176 176 176 176 177 177 177 177 177 177 177 177 175 175 176 176 176 176 176 176 176 ∠φ ÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁ Á Á Á Á Á Á Á ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á Á Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁ ÁÁ Á 1000 f MHz 950 900 850 800 750 700 675 650 625 600 575 570 565 560 555 550 545 540 535 530 525 520 0.902 0.869 0.915 0.928 0.907 0.952 0.946 0.928 0.933 0.955 0.973 0.970 0.963 0.962 0.958 0.956 0.952 0.951 0.945 0.944 0.943 0.940 0.940 |S11| 8 REV 8 Table 1. Common Source S–Parameters (VDS = 28 V, ID = 4.5 A) (continued) S11 146 148 152 151 155 158 158 160 162 164 164 164 164 164 164 164 164 165 165 166 166 167 167 ∠φ |S21| 0.12 0.13 0.14 0.15 0.16 0.17 0.19 0.20 0.21 0.22 0.22 0.22 0.23 0.23 0.23 0.23 0.24 0.24 0.25 0.25 0.11 0.11 0.11 S21 ∠φ 10 10 10 12 12 11 11 11 11 4 4 4 5 5 4 6 6 7 8 8 9 9 9 0.055 0.053 0.049 0.049 0.044 0.040 0.034 0.034 0.031 0.030 0.029 0.024 0.024 0.024 0.025 0.023 0.023 0.023 0.022 0.022 0.022 0.022 0.021 |S12| S12 ∠φ 44 49 52 55 65 67 67 69 69 69 71 70 71 70 70 70 72 70 69 69 67 74 68 0.943 0.941 0.955 0.963 0.962 0.969 0.973 0.969 0.966 0.970 0.973 0.972 0.972 0.969 0.968 0.969 0.969 0.969 0.965 0.964 0.965 0.968 0.966 |S22| S22 159 161 163 164 166 168 169 170 171 172 173 174 174 174 174 174 174 174 174 174 175 175 175 ∠φ INPUT AND OUTPUT IMPEDANCE Zin 300 225 ZOL* 150 100 50 30 30 Zo = 10 Ω ZOL* = Conjugate of the optimum load impedance into which the device operates at a given output power, voltage and frequency. 225 225 400 ZOL* 400 300 f = 500 MHz f = 500 MHz VDD = 28 V, IDQ = 2 x 100 mA f MHz 225 300 400 500 30 50 100 150 225 Zin OHMS (Pout = 150 W) 1.95 - j2.30 1.75 - j0.20 1.60 + j2.20 1.35 + j4.00 6.50 - j5.10 5.00 - j4.80 3.60 - j4.20 2.80 - j3.60 1.95 - j2.30 3.10 - j0.25 2.60 + j0.20 2.00 + j1.20 1.70 + j2.70 6.30 - j2.50 5.75 - j2.75 4.60 - j2.65 2.60 - j2.20 2.60 - j0.60 ZOL* OHMS 150 100 50 (Pout = 200 W) NOTE: Input and output impedance values given are measured from gate to gate and drain to drain respectively. Figure 13. Series Equivalent Input/Output Impedance RF POWER MOSFET CONSIDERATIONS MOSFET CAPACITANCES The physical structure of a MOSFET results in capacitors between the terminals. The metal oxide gate structure determines the capacitors from gate–to–drain (Cgd), and gate–to– source (Cgs). The PN junction formed during the fabrication of the MOSFET results in a junction capacitance from drain– to–source (Cds). These capacitances are characterized as input (Ciss), output (Coss) and reverse transfer (Crss) capacitances on data sheets. The relationships between the inter–terminal capacitances and those given on data sheets are shown below. The Ciss can be specified in two ways: 1. Drain shorted to source and positive voltage at the gate. 2. Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case the numbers are lower. However, neither method represents the actual operating conditions in RF applications. DRAIN Ciss = Cgd + Cgs Coss = Cgd + Cds Crss = Cgd provided for general information about the device. They are not RF design parameters and no attempt should be made to use them as such. LINEARITY AND GAIN CHARACTERISTICS In addition to the typical IMD and power gain, data presented in Figure 3 may give the designer additional information on the capabilities of this device. The graph represents the small signal unity current gain frequency at a given drain current level. This is equivalent to fT for bipolar transistors. Since this test is performed at a fast sweep speed, heating of the device does not occur. Thus, in normal use, the higher temperatures may degrade these characteristics to some extent. DRAIN CHARACTERISTICS One figure of merit for a FET is its static resistance in the full–on condition. This on–resistance, VDS(on), occurs in the linear region of the output characteristic and is specified under specific test conditions for gate–source voltage and drain current. For MOSFETs, VDS(on) has a positive temperature coefficient and constitutes an important design consideration at high temperatures, because it contributes to the power dissipation within the device. GATE CHARACTERISTICS The gate of the MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high — on the order of 109 ohms — resulting in a leakage current of a few nanoamperes. Cgd GATE Cds Cgs SOURCE The Ciss given in the electrical characteristics table was measured using method 2 above. It should be noted that Ciss, Coss, Crss are measured at zero drain current and are REV 8 9 Gate control is achieved by applying a positive voltage slightly in excess of the gate–to–source threshold voltage, VGS(th). Gate Voltage Rating — Never exceed the gate voltage rating (or any of the maximum ratings on the front page). Exceeding the rated VGS can result in permanent damage to the oxide layer in the gate region. Gate Termination — The gates of this device are essentially capacitors. Circuits that leave the gate open–circuited or floating should be avoided. These conditions can result in turn–on of the devices due to voltage build–up on the input capacitor due to leakage currents or pickup. Gate Protection — These devices do not have an internal monolithic zener diode from gate–to–source. If gate protection is required, an external zener diode is recommended. Using a resistor to keep the gate–to–source impedance low also helps damp transients and serves another important function. Voltage transients on the drain can be coupled to the gate through the parasitic gate–drain capacitance. If the gate–to–source impedance and the rate of voltage change on the drain are both high, then the signal coupled to the gate may be large enough to exceed the gate–threshold voltage and turn the device on. HANDLING CONSIDERATIONS When shipping, the devices should be transported only in antistatic bags or conductive foam. Upon removal from the packaging, careful handling procedures should be adhered to. Those handling the devices should wear grounding straps and devices not in the antistatic packaging should be kept in metal tote bins. MOSFETs should be handled by the case and not by the leads, and when testing the device, all leads should make good electrical contact before voltage is applied. As a final note, when placing the FET into the system it is designed for, soldering should be done with grounded equipment. DESIGN CONSIDERATIONS The MRF175G is a RF power N–channel enhancement mode field–effect transistor (FETs) designed for HF, VHF and UHF power amplifier applications. M/A-COM RF MOSFETs feature a vertical structure with a planar design. M/A-COM Application Note AN211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs. The major advantages of RF power FETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal. DC BIAS The MRF175G is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain current flows when a positive voltage is applied to the gate. RF power FETs require forward bias for optimum performance. The value of quiescent drain current (IDQ) is not critical for many applications. The MRF175G was characterized at IDQ = 100 mA, each side, which is the suggested minimum value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters. The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may be just a simple resistive divider network. Some applications may require a more elaborate bias sytem. GAIN CONTROL Power output of the MRF175G may be controlled from its rated value down to zero (negative gain) by varying the dc gate voltage. This feature facilitates the design of manual gain control, AGC/ALC and modulation systems. REV 8 10 PACKAGE DIMENSIONS U G 1 2 Q RADIUS 2 PL 0.25 (0.010) M TA M B M NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. DIM A B C D E G H J K N Q R U STYLE 2: PIN 1. 2. 3. 4. 5. INCHES MIN MAX 1.330 1.350 0.370 0.410 0.190 0.230 0.215 0.235 0.050 0.070 0.430 0.440 0.102 0.112 0.004 0.006 0.185 0.215 0.845 0.875 0.060 0.070 0.390 0.410 1.100 BSC MILLIMETERS MIN MAX 33.79 34.29 9.40 10.41 4.83 5.84 5.47 5.96 1.27 1.77 10.92 11.18 2.59 2.84 0.11 0.15 4.83 5.33 21.46 22.23 1.52 1.78 9.91 10.41 27.94 BSC R 5 –B– K 3 4 D N J E H –T– –A– C SEATING PLANE DRAIN DRAIN GATE GATE SOURCE CASE 375–04 ISSUE D Specifications subject to change without notice. n North America: Tel. (800) 366-2266, Fax (800) 618-8883 n Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298 n Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020 Visit www.macom.com for additional data sheets and product information. REV 8 11
MRF175GU 价格&库存

很抱歉,暂时无法提供与“MRF175GU”相匹配的价格&库存,您可以联系我们找货

免费人工找货