0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
UPC8131TA

UPC8131TA

  • 厂商:

    NEC(日电电子)

  • 封装:

  • 描述:

    UPC8131TA - VARIABLE GAIN AMPLIFIER SILICON MMIC FOR TRANSMITTER AGC OF DIGITAL CELLULAR TELEPHONE -...

  • 数据手册
  • 价格&库存
UPC8131TA 数据手册
DATA SHEET BIPOLAR ANALOG INTEGRATED CIRCUITS µPC8119T, µPC8120T VARIABLE GAIN AMPLIFIER SILICON MMIC FOR TRANSMITTER AGC OF DIGITAL CELLULAR TELEPHONE DESCRIPTION The µPC8119T and µPC8120T are silicon monolithic integrated circuits designed as variable gain amplifier. Due to 100 MHz to 1.9 GHz operation, these ICs are suitable for RF transmitter AGC stage of digital cellular telephone. Two types of gain control let users choose in accordance with system design. 3 V supply voltage and mini mold package contribute to make system lower voltage, decreased space and fewer components. The µPC8119T and µPC8120T are manufactured using NEC’s 20 GHz fT NESATTM III silicon bipolar process. This process uses silicon nitride passivation film and gold electrodes. These materials can protect chip surface from external pollution and prevent corrosion / migration. Thus, this IC has excellent performance, uniformity and reliability. FEATURES • Recommended operating frequency : f = 100 MHz to 1.92 GHz • Supply voltage • Low current consumption • Gain control voltage • Two types of gain control : VCC = 2.7 to 3.3 V : ICC = 11 mA TYP. @ VCC = 3.0 V : VAGC = 0.6 to 2.4 V (recommended) : µPC8119T = VAGC up vs. Gain down (Forward control) (Reverse control) µPC8120T = VAGC up vs. Gain up • AGC control can be constructed by external control circuit. • High-density surface mounting APPLICATIONS • 1.9 GHz cordless telephone (PHS base-station and so on) • 800 MHz to 900 MHz or 1.5 GHz Digital cellular telephone (PDC800M, PDC1.5G and so on) ORDERING INFORMATION Part Number Package 6-pin minimold Marking C2M C2N Supplying Form Embossed tape 8 mm wide. 1, 2, 3 pins face to perforation side of the tape. Qty 3 kp/reel. Gain Control Type Forward control Reverse control µPC8119T-E3 µPC8120T-E3 Remark To order evaluation samples, please contact your local NEC sales office. (Part number for sample order: µPC8119T, µPC8120T) Caution Electro-static sensitive devices The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Document No. P11027EJ2V0DS00 (2nd edition) Date Published October 1998 N CP(K) Printed in Japan The mark shows major revised points. © 1996 µPC8119T, µPC8120T PIN CONNECTIONS (Top View) (Bottom View) 4 4 3 Pin No. 1 2 Pin Name INPUT GND GND OUTPUT VCC VAGC 3 C2M 2 5 5 2 3 4 5 1 6 6 1 Marking is a example for µPC8119T. 6 VARIABLE GAIN AMPLIFIER PRODUCT LINE-UP Part No. VCC (V) 4.5 to 5.5 2.7 to 3.3 2.7 to 3.3 2.7 to 3.3 2.7 to 3.3 ICC (mA) 15 11 11 11 11 VAGC (V) 3.3 to 5.0 0.6 to 2.4 0.6 to 2.4 0.6 to 2.4 0 to 2.4 VAGC up vs.Gain down down up up down f (GHz) up to 1.1 0.1 to 1.92 0.1 to 1.92 0.8 to 1.5 0.8 to 1.5 PO (1 dB) –4 +3 +3 +5 +5 Low distortion Low distortion Excellent VCC fluctuation Features µPC2723T µPC8119T µPC8120T µPC8130TA µPC8131TA Remark Typical performance. Please refer to ELECTRICAL CHARACTERISTICS in detail. To know the associated product, please refer to each latest data sheet. SYSTEM APPLICATION EXAMPLE LNA RX DEMO I Q SW ÷N PLL PLL µPC8119T or µPC8120T TX PA I 0° φ 90° Q 2 µPC8119T, µPC8120T PIN EXPLANATION Applied Voltage V – Pin Voltage V Note Pin No. 1 Pin Name Function and Applications Internal Equivalent Circuit IN 1.2 RF input pin. This pin should be coupled with capacitor (eg 1000 pF) for DC cut. This pin can be input from 50 Ω impedance signal source without matching circuit. Ground pin. This pin should be connected to system ground with minimum inductance. Ground pattern on the board should be formed as wide as possible. RF output pin. This pin is designed as open collector of high impedance. This pin must be externally equipped with matching circuits. Control circuit 5 4 2 3 GND 0 – 4 OUT Voltage as same as VCC through external inductor 2.7 to 3.3 – 1 Bias circuit 2 3 5 VCC – Supply voltage pin. This pin must be externally equipped with low pass filter (eg π type) in order to suppress leakage from input pin. This pin also must be equipped with bypass capacitor (eg 1000 pF) to minimize ground impedance. Gain control pin. The relation between product number and control performance is shown below; Part No. VAGC up vs. Gain down up 2 3 6 5 6 VAGC 0 to 3.3 – Control circuit µPC8119T µPC8120T Note Pin voltage is measured at VCC = 3.0 V. 3 µPC8119T, µPC8120T ABSOLUTE MAXIMUM RATINGS Parameter Supply Voltage Gain Control Voltage Operating Ambient Temperature Storage Temperature Power Dissipation of Package Symbol VCC VAGC TA TA = +25°C TA = +25°C Conditions Ratings 3.6 3.6 −40 to +85 Unit V mA °C Tstg PD Mounted on double-sided copper-clad 50 × 50 × 1.6 mm epoxy glass PWB TA = +85°C –55 to +150 280 °C mW RECOMMENDED OPERATING CONDITIONS Parameter Supply Voltage Symbol VCC MIN. 2.7 TYP. 3.0 MAX. 3.3 Unit V Notice Same voltage should be applied to 4 and 5 pins. IAGC ≤ 0.1 mA Padj ≤ –60 dBc @ ∆f = ±50 kHzNote 1 Padj ≤ –60 dBc @ ∆f = ±600 kHzNote 2 °C Gain Control Voltage Input Level VAGC Pin 0.6 – – – – – +25 2.4 –18 –10 +85 V dBm Operating Ambient Temperature Operating Frequency AGC Pin Drive Current TA –40 f IAGC 100 0.5 – – 1920 – MHz mA With external output-matching VAGC ≤ 3.3 V Notes 1. Adjacent Channel Interference (Padj) wave form condition: f = 950 MHz or 1440 MHz, π/4QPSK modulation signal, data rate = 42 kbps, rolloff ratio = 0.5, PN9 bits (pseudo random pattern) 2. Adjacent Channel Interference (Padj) wave form condition: f = 1900 MHz, π/4QPSK modulation signal, data rate = 384 kbps, rolloff ratio = 0.5, PN9 bits (pseudo random pattern) 4 µPC8119T, µPC8120T ELECTRICAL CHARACTERISTICS (Unless otherwise specified, TA = +25°C, VCC = Vout = 3.0 V, ZS = ZL = 50 Ω , External matched output port) µPC8119T Parameter Circuit Current Maximum Power Gain Gain Control RangeNote Symbol ICC GPMAX Test Conditions MIN. No signal, ICC = IVCC + Iout f = 950 MHz, Pin = –30 dBm f = 1440 MHz, Pin = –30 dBm f = 950 MHz, Pin = –30 dBm f = 1440 MHz, Pin = –30 dBm f = 950 MHz, GPMAX f = 1440 MHz, GPMAX f = 950 MHz, GPMAX f = 1440 MHz, GPMAX f = 950 MHz, GPMAX f = 1440 MHz, GPMAX f = 950 MHz, GPMAX f = 1440 MHz, GPMAX 7.5 10 10 40 35 – – 27 31 3 3 0 +1.0 TYP. MAX. MIN. 11 12.5 13 50 45 8.5 7.5 32 36 6 6 +3 +4 15 15 16 – – 11.5 10.5 – – – – – – 7.5 10.5 10.5 40 35 – – 26 30 3 3 +0.5 0 TYP. MAX. 11 13 13.5 50 45 9.0 7.5 31 35 6 6 +3.5 +3 15 15.5 16.5 – mA dB µPC8120T Unit GCR dB Noise Figure NF 12 10.5 – – – – – – dB Isolation ISL dB Input Return Loss RLin dB 1 dB Compression Output Power PO (1 dB) dBm Note Gain Control Range (GCR) specification: GCR = GPMAX – GPMIN (dB) Conditions µPC8119T: GPMAX @ VAGC = 0 V, GPMIN @ VAGC = VCC µPC8120T: GPMAX @ VAGC = VCC, GPMIN @ VAGC = 0 V Remark Measured on TEST CIRCUIT 1 and 2 STANDARD CHARACTERISTICS FOR REFERENCE (Unless otherwise specified, TA = +25°C, VCC = Vout = 3.0 V, ZS = ZL = 50 Ω , External matched output port) Reference Value Parameter Maximum Power Gain Gain Control RangeNote Noise Figure 1 dB Compression Output Power Symbol GPMAX GCR NF PO (1 dB) Test Conditions f = 1900 MHz, Pin = –30 dBm f = 1900 MHz, Pin = –30 dBm f = 1900 MHz, GPMAX f = 1900 MHz, GPMAX µPC8119T 12.5 22 7.2 +3.0 µPC8120T 13 22 7.3 +2.5 Unit dB dB dB dBm Note Gain Control Range (GCR) specification: GCR = GPMAX – GPMIN (dB) Conditions µPC8119T: GPMAX @ VAGC = 0 V, GPMIN @ VAGC = VCC µPC8120T: GPMAX @ VAGC = VCC, GPMIN @ VAGC = 0 V Remark Measured on APPLICATION CIRCUIT EXAMPLE 5 µPC8119T, µPC8120T TEST CIRCUIT1 (f = 950 MHz, both products in common) Vcc line low pass filter C6 1000 pF VCC C7 L 4 5 nH C2 OUT 1 pF Output matching circuit 1000 pF Jumper wire VAGC 1000 pF C4 6 C1 IN 1000 pF 1 2, 3 1000 pF 5 C3 C5 1000 pF ILLUSTRATION OF TEST CIRCUIT1 ASSEMBLED ON EVALUATION BOARD TYPE1 C2 OUT L C7 C3 C4 VAGC C5 C6 Jumper wire VAGC IN IN C1 COMPONENT LIST Form Chip capacitor Symbol C1, C3 to C7 C2 Chip inductor Jumper wire L Jumper wire Value 1000 pF 1 pFNote 1 5 nH (10 nH × 2 pcs parallel)Note 2 5 nH Notes 1. 1 pF : Murata Mfg. Co., Ltd. GR40CK010C 2. 10 nH : Murata Mfg. Co., Ltd. LQP31A10NG04 6 OUT VCC µPC8119/20T µPC8119T, µPC8120T TEST CIRCUIT2 (f = 1440 MHz, both products in common) Vcc line low pass filter C6 1000 pF VCC C7 L 4 2 nH C2 OUT 1 pF Output matching circuit 1000 pF Pattern L VAGC 1000 pF C4 6 1000 pF C1 IN 1000 pF 1 2, 3 5 C3 C5 1000 pF ILLUSTRATION OF TEST CIRCUIT2 ASSEMBLED ON EVALUATION BOARD TYPE2 C2 OUT L C5 C3 VAGC C4 Pattern L (5 nH) C4 IN C6 C7 C7 GND C1 IN VAGC COMPONENT LIST Form Chip capacitor Symbol C1, C3 to C7 C2 Chip inductor Printed on board L Pattern L Value 1000 pF 1 pFNote 1 2 nH (4.7 nH + 6.8 nH × 2 pcs parallel)Note 2 5 nH Notes 1. 1 pF : Murata Mfg. Co., Ltd. GR40CK010C 2. 4.7 nH : Murata Mfg. Co., Ltd. LQP31A4N7J04 6.8 nH : Murata Mfg. Co., Ltd. LQP31A6N8J04 OUT VCC Vcc 1 (Monitor of Vcc pin) µPC8119/20T 7 µPC8119T, µPC8120T APPLICATION CIRCUIT EXAMPLE (f = 1900 MHz, both products in common) Vcc line low pass filter C6 1000 pF VCC C7 L 4 100 nH 1000 pF OUT C2 C8 2 to 2.5 pF Output matching circuit 1000 pF Jumper wire VAGC 1000 pF C4 6 C1 IN 1000 pF 1 2, 3 1000 pF 5 C3 C5 1000 pF ILLUSTRATION OF APPLICATION CIRCUIT EXAMPLE ASSEMBLED ON EVALUATION BOARD TYPE1 C8 OUT C2 L C7 C4 VAGC C5 C6 Jumper wire VAGC IN IN C1 COMPONENT LIST Form Chip capacitor Symbol C1 to C7 C8 Chip inductor Printed on board L Jumper wire Value 1000 pF 2 to 2.5 pF 100 nH Note 5 nH Note 100 nH: Murata Mfg. Co., Ltd. LQP31A10NG04 8 OUT GND VCC µPC8119/20T µPC8119T, µPC8120T LLUSTRATION AND EXPLANATIONS OF EVALUATION BOARD TYPE2 IN IN VAGC VCC EXPLANATION This board prints the pattern inductor which inductance is as same as jumper wire in TEST CIRCUITs (inductance: approx. 5 nH to 6 nH). Input leakage to VCC pin can be monitored through ‘VCC monitor line’. This leakage can be suppressed with π type low pass filter attached to VCC pin. The filter performance depends on parallel capacitors. After adjusted low pass filter, monitor line should be removed before output matching circuit is attached. EVALUATION BOARD CHARACTERS (1) 35 µm thick double-sided copper clad 35 × 42 × 0.4 mm polyimide board (2) Back side: GND pattern (3) Solder plated patterns (4) : Through holes ATTENTION Test circuit or print pattern in this sheet is for testing IC characteristics. In the case of actual system application, external circuits including print pattern and matching circuit constant of output port should be designed in accordance with IC’s S parameters and environmental components. OUT OUT Vcc VAGC 1 Vcc monitor line µPC8119/20T 9 µPC8119T, µPC8120T APPLICATION for µPC8119T, µPC8120T 1. TO GET MINIMUM GAIN –1. VCC line filtering A low pass filter must be attached to VCC line in order to suppress RF input leakage to VCC. (The low pass filter: for example π type.) This filter must be inserted between VCC pin and matching inductor. If the low pass filter is not attached to this point, minimum output level would not go down under the leakage level. For example, µPC8119T’s RF input leakage level to VCC shows –30 dBm at 950 MHz and –17 dBm at 1440 dBm. π type low pass filter constant example Pattern L = 5 to 6 nH, C5 = C6 = 1000 pF (Refer to TEST CIRCUIT1, 2 and APPLICATION CIRCUIT EXAMPLE) In the case of testing on ‘µPC8119/20T TYPE2’ board, monitor the input leakage to VCC pin through ‘VCC monitor line’ and adjust parallel capacitors to suppress leakage. –2. Capacitor feed-back between VAGC and VCC pins Feed-back capacitor between VAGC and VCC pins must be externally attached in order to decrease impedance difference. 2. TO GET MAXIMUM GAIN –1. Output matching As for external matching circuit, only output port should be equipped in order to get maximum gain. Output port matching in accordance with impedance of these ICs and next stage must keep the points as follows; AC points • IC output impedance at maximum gain must be used. • Inductance of L must be chosen to get S22 ~ –20 dBm at maximum gain. DC point • On LC matching, L of low DC resistance must be chosen to apply voltage as same as VCC to output pin. 3. OTHERS –1. Input connection Input port does not need to match externally. These ICs can be connected to front stage through coupling capacitor (eg 1000 pF) for DC cut. –2. VCC ON/OFF while voltage applied to VAGC Due to internal transistor’s voltage rating, ON/OFF can be controlled with VCC voltage while 3.0 V or less is applied to VAGC. For the usage and application of µPC8119T and µPC8120T, please refer to the application note (Document No. P12763E). 10 µPC8119T, µPC8120T TYPICAL CHARACTERISTICS (TA = +25°C) µPC8119T CIRCUIT CURRENT vs. SUPPLY VOLTAGE 14 12 Circuit Current ICC (mA) GAIN CONTROL CURRENT vs. GAIN CONTROL VOLTAGE 150 Gain Control Current IAGC ( µ A) no signals Vcc = Vout 125 100 75 no signals Vcc = Vout Vcc = 2.7 V 10 8 6 4 2 0 0 1 2 3 4 Supply Voltage VCC (V) CIRCUIT CURRENT vs. OPERATING AMBIENT TEMPERATURE 18 16 no signals Vcc = Vout Vcc = 3.0 V 50 Vcc = 3.3 V 25 0 0 0.5 1 1.5 2 2.5 3 3.5 Gain Control Voltage VAGC (V) CURRENT INTO OUTPUT PIN AND CURRENT INTO VCC PIN vs. GAIN CONTROL VOLTAGE 14 12 10 8 Vcc = 2.7 V 6 Iout 4 2 IVCC no signals Vcc = Vout Vcc = 3.3 V Vcc = 3.0 V Vcc = 2.7 V Vcc = 3.3 V Vcc = 3.0 V Vcc = 3.3 V Circuit Current ICC (mA) 14 12 10 8 Vcc = 3.0 V 6 Vcc = 2.7 V 4 2 0 –50 –25 0 +25 +50 +5 +100 Current into Output pin Iout (mA) Current into VCC pin IVCC (mA) 0 0 0.5 1 1.5 2 2.5 3 3.5 Operating Ambient Temperature TA (°C) S11 vs. FREQUENCY Vcc = Vout = 3.0 V, VAGC = 0 V (GPMAX), Pin = –30 dBm 1 : 900 MHz 52.545 Ω – 39.801 Ω 2 : 1500 MHz 33.402 Ω – 32.457 Ω 3 : 1900 MHz 27.989 Ω – 24.408 Ω Gain Control Voltage VAGC (V) S22 vs. FREQUENCY Vcc = Vout = 3.0 V, VAGC = 0 V (GPMAX) 1 : 900 MHz 36.039 Ω – 190.09 Ω 2 : 1500 MHz 39.668 Ω – 125.84 Ω 3 : 1900 MHz 34.668 Ω – 106.88 Ω 2 3 1 3 2 1 START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz 11 µPC8119T, µPC8120T µPC8119T Output port matching at f = 950 MHz Vcc = Vout = 3.0 V, VAGC = 0 V (GPMAX), Pin = –30 dBm S11 vs. FREQUENCY 1; 39.367 Ω –52.375 3.1987 pF 950.000 000 MHz S22 vs. FREQUENCY 1; 59.756 Ω –11.957 14.011 pF 950.000 000 MHz MARKER 1 950 MHz MARKER 1 950 MHz 1 1 START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz S11 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = –30 dBm 10 0 S11 log MAG 5 dB/ REF 0 dB 1: –6.1221 dB 950.000 000 MHz 1 10 0 S11 vs. FREQUENCY Vcc = 3.0 V, VAGC = 0 V (GPMAX), Pin = –30 dBm S11 log MAG REF 0 dB 1: –5.8713 dB 950.000 000 MHz TA = +85 °C TA = +25 °C 1 5 dB/ Vcc = 2.7 V –10 Vcc = 3.0 V Vcc = 3.3 V –10 TA = –40 °C –20 –20 –30 –40 –30 –40 START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz S22 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = –30 dBm 10 0 S22 log MAG 5 dB/ REF 0 dB 1: –15.889 dB 950.000 000 MHz 10 0 S22 vs. FREQUENCY Vcc = 3.0 V, VAGC = 0 V (GPMAX), Pin = –30 dBm S22 log MAG 5 dB/ REF 0 dB 1: –15.858 dB 950.000 000 MHz –10 Vcc = 2.7 V –20 Vcc = 3.0 V Vcc = 3.3 V –30 –40 –10 TA = +85 °C TA = +25 °C TA = –40 °C –20 –30 –40 START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz 12 µPC8119T, µPC8120T µPC8119T Output port matching at f = 950 MHz S21 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = –30 dBm 16 14 S21 log MAG 1 dB/ REF 6 dB 1: 12.738 dB 16 950.000 000 MHz 14 Vcc = 3.3 V Vcc = 3.0 V 12 12 Vcc = 2.7 V 10 TA = –40 °C TA = +25 °C TA = +85 °C S21 vs. FREQUENCY Vcc = 3.0 V, VAGC = 0 V (GPMAX), Pin = –30 dBm S21 log MAG 1 dB/ REF 6 dB 1: 12.854 dB 950.000 000 MHz 10 8 8 6 START 100.000 000 MHz STOP 3 100.000 000 MHz 6 START 100.000 000 MHz STOP 3 100.000 000 MHz S12 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = –30 dBm 0 S12 log MAG 5 dB/ REF 0 dB 1: –31.911 dB 950.000 000 MHz 0 S12 vs. FREQUENCY Vcc = 3.0 V, VAGC = 0 V (GPMAX), Pin = –30 dBm S12 log MAG 5 dB/ REF 0 dB 1: –32.053 dB 950.000 000 MHz –10 –10 –20 1 Vcc = 3.3 V Vcc = 3.0 V –20 1 TA = –40 °C TA = –25 °C TA = –85 °C –30 –30 –40 Vcc = 2.7 V –50 START 100.000 000 MHz STOP 3 100.000 000 MHz –40 –50 START 100.000 000 MHz STOP 3 100.000 000 MHz 13 µPC8119T, µPC8120T µPC8119T Output port matching at f = 950 MHz POWER GAIN vs. GAIN CONTROL VOLTAGE 20 10 Power Gain GP (dB) POWER GAIN vs. GAIN CONTROL VOLTAGE 20 10 Power Gain GP (dB) TA = +25 °C TA = –25 °C TA = +75 °C 0 –10 Vcc = 3.3 V –20 –30 –40 –50 –60 0 0.5 1 1.5 2 2.5 3 3.5 Gain Control Voltage VAGC (V) S21 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S21 log MAG 1 VAGC = 1.2 V VAGC = 1.4 V VAGC = 1.6 V VAGC = 1.7 V VAGC = 1.8 V VAGC = 1.9 V 5 dB/ REF 0 dB 1:12.926 dB VAGC = 0 V 950.000 000 MHz VAGC = 0.9 V VAGC = 1.0 V Vcc = 2.7 V Vcc = 3.0 V 0 –10 –20 –30 –40 –50 –60 0 0.5 TA = –25 °C TA = +25 °C TA = +75 °C 1 1.5 2 2.5 3 3.5 Gain Control Voltage VAGC (V) S12 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm 0 S12 log MAG 5 dB/ REF 0 dB 1: –32.063 dB 950.000 000 MHz –10 10 0 –20 –10 –30 –20 VAGC = 2.0 V –30 START 100.000 000 MHz VAGC = 2.1 V STOP 3 100.000 000 MHz –50 START 100.000 000 MHz STOP 3 100.000 000 MHz –40 1 VAGC = 0 V VAGC = 3.0 V S11 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S11 log MAG 10 5 dB/ REF 0 dB 1: –5.7199 dB 10 950.000 000 MHz VAGC = 3.0 to 2.0 V VAGC = 1.8 V 0 1 VAGC = 1.6 V 0 S22 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S22 log MAG 5 dB/ REF 0 dB 1: –15.219 dB 950.000 000 MHz –10 VAGC = 1.4 V –20 VAGC = 1.2 V VAGC = 1.0 V –30 START 100.000 000 MHz STOP 3 100.000 000 MHz VAGC = 0 to 0.7 V VAGC = 1.4 V –10 VAGC = 0 to 0.7 V –20 VAGC = 3.0 to 2.4 V –30 START 100.000 000 MHz STOP 3 100.000 000 MHz 14 µPC8119T, µPC8120T µPC8119T Output port matching at f = 950 MHz OUTPUT POWER vs. INPUT POWER +10 +5 0 Vcc = 3.0 V Vcc = 2.7 V –5 –10 –15 –20 f = 950 MHz VAGC = 0 V +10 Vcc = 3.3 V 0 Output Power Pout (dBm) OUTPUT POWER vs. INPUT POWER f = 950 MHz VCC = 3.0 V VAGC = 0 V Output Power Pout (dBm) –10 –20 –30 –40 –50 –60 VAGC = 2.00 V VAGC = 2.15 V –30 –25 –20 –15 –10 –5 0 +5 +10 VAGC = 1.60 V VAGC = 1.85 V –30 –25 –20 –15 –10 –5 0 +5 +10 –70 Input Power Pin (dBm) OUTPUT POWER vs. INPUT POWER +10 0 Output Power Pout (dBm) Input Power Pin (dBm) OUTPUT POWER vs. INPUT POWER +10 Output Power Pout (dBm) f = 950 MHz VCC = 3.3 V VAGC = 0 V VAGC = 1.6 V VAGC = 1.9 V VAGC = 2.05 V 0 –10 –20 –30 –40 f = 950 MHz VCC = 2.7 V VAGC = 0 V VAGC = 1.55 V VAGC = 1.8 V VAGC = 1.95 V VAGC = 2.1 V –10 –20 –30 –40 –50 –60 –70 VAGC = 2.2 V –50 –60 VAGC = 3.3 V –30 –25 –20 –15 –10 –5 0 +5 +10 –70 –30 –25 –20 –15 –10 –5 0 +5 +10 Input Power Pin (dBm) Input Power Pin (dBm) 15 µPC8119T, µPC8120T µPC8119T Output port matching at f = 950 MHz OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) +10 0 –10 –20 –30 2f2 – f1 (952 MHz) –40 –50 –60 –70 –30 2f1 – f2 (949 MHz) Vcc = 3.0 V VAGC = 0 V (GPMAX) f1 = 950 MHz f2 = 951 MHz –25 –20 –15 –10 –5 0 Pout +10 0 –10 –20 IM3 –30 2f2 – f1 (952 MHz) –40 2f1 – f2 (949 MHz) –50 –60 –70 –30 Vcc = 3.0 V VAGC = 1.6 V (GP ~ dB) ~ f1 = 950 MHz f2 = 951 MHz –25 –20 –15 –10 –5 0 Pout IM3 Input Power Pin (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Input Power Pin (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER +10 0 –10 –20 –30 –40 –50 –60 –70 –30 2f1 – f2 (949 MHz) –25 –20 –15 –10 –5 0 2f2 – f1 (952 MHz) IM3 Pout Vcc = 3.0 V VAGC = 2.0 V (GP ~ –20 dB) ~ f1 = 950 MHz f2 = 951 MHz +10 0 –10 –20 –30 –40 –50 –60 –70 –30 Vcc = 3.0 V VAGC = 1.85 V (GP ~ 10 dB) ~ f1 = 950 MHz f2 = 951 MHz Pout 2f2 – f1 (952 MHz) IM3 2f1 - f2 (949 MHz) –25 –20 –15 –10 –5 0 Input Power Pin (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Input Power Pin (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) +10 0 –10 –20 –30 –40 –50 –60 –70 –30 Vcc = 3.0 V VAGC = 2.15 V (GP ~ –30 dB) ~ f1 = 950 MHz f2 = 951 MHz +10 0 –10 –20 –30 –40 –50 –60 –70 –30 Vcc = 3.0 V VAGC = 2.3 V (GP ~ –40 dB) ~ f1 = 950 MHz f2 = 951 MHz Pout 2f2 – f1 (952 MHz) Pout 2f1 – f2 (949 MHz) IM3 2f2 – f1 (952 MHz) IM3 2f1 – f2 (949 MHz) –25 –20 –15 –10 –5 0 –25 –20 –15 –10 –5 0 Input Power Pin (dBm) Input Power Pin (dBm) 16 µPC8119T, µPC8120T µPC8119T Output port matching at f = 950 MHz OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER +10 0 –10 IM3 –20 2f2 – f1 (952 MHz) –30 –40 –50 –60 –70 –30 –25 –20 –15 2f1 – f2 (949 MHz) Vcc = 2.7 V VAGC = 0 V (GPMAX) f1 = 950 MHz f2 = 951 MHz –10 –5 0 Pout +10 0 –10 IM3 –20 2f2 – f1 (952 MHz) –30 –40 –50 –60 –70 –30 –25 –20 –15 2f1 – f2 (949 MHz) Vcc = 3.3 V VAGC = 0 V (GPMAX) f1 = 950 MHz f2 = 951 MHz –10 –5 0 Pout Input Power Pin (dBm) ADJACENT CHANNEL INTERFERENCE vs. INPUT POWER Adjacent Channel Interference Padj (dBc) Input Power Pin (dBm) ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE Adjacent Channel Interference Padj (dBc) –20 f = 950 MHz VAGC = 0 V (GPMAX) –30 –40 –50 –60 –70 –80 –30 Vcc = 2.7 V ∆ ±50kHz Vcc = 3.0 V ∆ ±50kHz Vcc = 3.3 V ∆ ±50kHz Vcc = 2.7 V ∆ ±100kHz Vcc = 3.0 V ∆ ±100kHz Vcc = 3.3 V ∆ ±100kHz –45 –50 –55 –60 –65 –70 –75 f = 950 MHz Vcc = 3.0 V Pin = –17.4 dBm ∆ ±50 kHz Pin = –19.4 dBm ∆ ±50 kHz Pin = –17.4 dBm ∆ ±100 kHz Pin = –19.4 dBm ∆ ±100 kHz –25 –20 –15 –10 –5 0 0 0.5 1 1.5 2 2.5 3 Input Power Pin (dBm) Gain Control Voltage VAGC (V) 17 µPC8119T, µPC8120T µPC8119T Output port matching at f = 1440 MHz Vcc = 3.0 V, VAGC = 0 V (GPMAX), Pin = –30 dBm S11 vs. FREQUENCY 1; 36.172 Ω –45.977 Ω 2.4039 pF 1 440.000 000 MHz S22 vs. FREQUENCY 1; 48.932 Ω –13.582 Ω 8.1375 pF 1 440.000 000 MHz MARKER 1 1.44 MHz MARKER 1 1.44 MHz 1 1 START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz S11 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = –30 dBm S11 log MAG 10 MARKER 1 1.44 GHz 0 –10 Vcc = 3.3 V –20 –20 Vcc = 2.7 V Vcc = 3.0 V 1 5 dB/ REF 0 dB 1: –6.1588 dB 10 1 440.000 000 MHz S11 vs. FREQUENCY Vcc = 3.0 V, VAGC = 0 V (GPMAX) , Pin = –30 dBm S11 log MAG 5 dB/ REF 0 dB 1: –6.2593 dB 1 440.000 000 MHz MARKER 1 1.44 GHz 0 –10 TA = +85 °C TA = +25 °C 1 TA = –40 °C –30 START 100.000 000 MHz STOP 3 100.000 000 MHz –30 START 100.000 000 MHz STOP 3 100.000 000 MHz S22 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = –30 dBm S22 log MAG 10 5 dB/ REF 0 dB 1: –17.51 dB 10 1 440.000 000 MHz MARKER 1 1.44 GHz S22 vs. FREQUENCY Vcc = 3.0 V, VAGC = 0 V (GPMAX), Pin = –30 dBm S22 log MAG MARKER 1 1.44 GHz 5 dB/ REF 0 dB 1: –16.978 dB 1 440.000 000 MHz 0 –10 Vcc = 3.3 V Vcc = 3.0 V –20 Vcc = 2.7 V 0 –10 TA = +85 °C –20 TA = +25 °C TA = –40 °C –30 START 100.000 000 MHz STOP 3 100.000 000 MHz –30 START 100.000 000 MHz STOP 3 100.000 000 MHz 18 µPC8119T, µPC8120T µPC8119T Output port matching at f = 1440 MHz S21 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = –30 dBm 16 S21 log MAG 1 dB/ REF 6 dB 1:13.355 dB 1 440.000 000 MHz MARKER 1 1.44 GHz 1 Vcc = 3.3 V Vcc = 3.0 V Vcc = 2.7 V 16 S21 vs. FREQUENCY Vcc = 3.0 V, VAGC = 0 V (GPMAX), Pin = –30 dBm S21 log MAG 1 dB/ REF 6 dB TA = –40 °C TA = +25 °C TA = +85 °C 12 1: –13.23 dB 1 440.000 000 MHz MARKER 1 1.44 GHz 1 14 14 12 10 10 8 8 6 START 100.000 000 MHz STOP 3 100.000 000 MHz 6 START 100.000 000 MHz STOP 3 100.000 000 MHz S12 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = –30 dBm 0 S12 log MAG 5 dB/ REF 0 dB 1: –35.55 dB 1 440.000 000 MHz MARKER 1 1.44 GHz 0 S12 vs. FREQUENCY Vcc = 3.0 V, VAGC = 0 V (GPMAX), Pin = –30 dBm S12 log MAG 5 dB/ REF 0 dB 1: –36.039 dB 1 440.000 000 MHz MARKER 1 1.44 GHz –10 –10 –20 Vcc = 3.3 V Vcc = 3.0 V Vcc = 2.7 V –20 TA = +85 °C –30 –40 –50 START 100.000 000 MHz STOP 3 100.000 000 MHz TA = –40 °C 1 TA = +25 °C –30 –40 –50 1 START 100.000 000 MHz STOP 3 100.000 000 MHz 19 µPC8119T, µPC8120T µPC8119T Output port matching at f = 1440 MHz POWER GAIN vs. GAIN CONTROL VOLTAGE +20 +10 Power Gain GP (dB) Power Gain GP (dB) POWER GAIN vs. GAIN CONTROL VOLTAGE +20 +10 0 –10 –20 –30 –40 –50 –60 TA = +25 °C TA = +5 °C TA = –25 °C TA = –25 °C 0 –10 –20 –30 –40 Vcc = 2.7 V –50 –60 0 0.5 1 1.5 2 2.5 3 3.5 Gain Control Voltage VAGC (V) S21 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S21 log MAG 5 dB/ 1 VAGC = 0 to 0.6 V VAGC = 0.9 V VAGC = 1.0 V VAGC = 1.2 V VAGC = 1.4 V VAGC = 1.6 V VAGC = 1.8 V VAGC = 1.9 V VAGC = 2.0 V REF 0 dB 1: 13.362 dB 1 440.000 000 MHz Vcc = 3.3 V Vcc = 3.0 V TA = +75 °C TA = +25 °C 0 0.5 1 1.5 2 2.5 3 3.5 Gain Control Voltage VAGC (V) S12 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm 0 S12 log MAG 5 dB/ REF 0 dB 1: –35.661 dB 1 440.000 000 MHz 10 –10 0 –20 VAGC = 0 V –30 VAGC = 2.1 V –40 VAGC = 3.0 V VAGC = 2.2 V –50 START 100.000 000 MHz STOP 3 100.000 000 MHz S22 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S22 log MAG 10 5 dB/ REF 0 dB 1: –17.471 dB 1 440.000 000 MHz 1 –10 –20 –30 START 100.000 000 MHz STOP 3 100.000 000 MHz S11 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S11 log MAG 10 5 dB/ REF 0 dB 1: –6.1536 dB 1 440.000 000 MHz VAGC = 3.0 to 2.0 V VAGC = 1.8 V VAGC = 1.6 V 1 VAGC = 1.4 V 0 0 –10 VAGC = 1.2 V VAGC = 1.0 V VAGC = 0 to 0.7 V –30 START 100.000 000 MHz STOP 3 100.000 000 MHz –10 VAGC = 1.4 V VAGC = 0 to 0.7 V VAGC = 1.8 V –20 –20 –30 START 100.000 000 MHz STOP 3 100.000 000 MHz 20 µPC8119T, µPC8120T µPC8119T Output port matching at f = 1440 MHz OUTPUT POWER vs. INPUT POWER +10 f = 1440 MHz Vcc = 3.3 V VAGC = 0 V Output Power Pout (dBm) OUTPUT POWER vs. INPUT POWER +10 0 –10 VAGC = 1.6 V –20 VAGC = 1.85 V –30 –40 –50 –60 VAGC = 3.0 V VAGC = 2.0 V VAGC = 2.75 V f = 1440 MHz Vcc = 3.0 V VAGC = 0 V +5 Output Power Pout (dBm) 0 Vcc = 3.0 V Vcc = 2.7 V –5 –10 –15 –20 –30 –25 –20 –15 –10 –5 0 +5 +10 –70 –30 –25 –20 –15 –10 –5 0 +5 +10 Input Power Pin (dBm) Input Power Pin (dBm) OUTPUT POWER vs. INPUT POWER +10 0 Output Power Pout (dBm) OUTPUT POWER vs. INPUT POWER +10 f = 1440 MHz Vcc = 2.7 V VAGC = 0 V VAGC = 1.6 V Output Power Pout (dBm) f = 1440 MHz Vcc = 3.3 V VAGC = 0 V VAGC = 1.7 V VAGC = 1.9 V VAGC = 2.05 V 0 –10 –10 –20 –30 –40 –50 –60 VAGC = 1.8 V –20 VAGC = 1.95 V –30 –40 VAGC = 2.1 V –50 –60 VAGC = 2.7 V VAGC = 2.2 V VAGC = 3.3 V –70 –30 –25 –20 –15 –10 –5 0 +5 +10 –70 –30 –25 –20 –15 –10 –5 0 +5 +10 Input Power Pin (dBm) Input Power Pin (dBm) 21 µPC8119T, µPC8120T µPC8119T Output port matching at f = 1440 MHz OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) 10 0 –10 IM3 –20 2f2 – f1 (1442 MHz) –30 –40 2f1 – f2 (1439 MHz) –50 –60 –70 –30 VCC = 3.0 V VAGC = 0 V (GPMAX) f1 = 1440 MHz f2 = 1441 MHz –25 –20 –15 –10 –5 0 Input Power Pin (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER Pout 10 0 –10 Pout –20 IM3 –30 –40 2f1 – f2 (1439 MHz) –50 –60 –70 –30 VCC = 3.0 V VAGC = 1.65 V ~ (GP ~ 0 dB) f1 = 1440 MHz f2 = 1441 MHz –25 –20 –15 –10 –5 0 Input Power Pin (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER 2f2 – f1 (1442 MHz) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) 10 0 –10 –20 –30 –40 –50 –60 –70 –30 Pout VCC = 3.0 V VAGC = 2.0 V 0 (GP ~ –20 dB) ~ f1 = 1440 MHz f2 = 1441 MHz –10 –20 –30 –40 –50 –60 –70 –30 2f1 – f2(1439 MHz) –25 –20 –15 –10 –5 0 Pout 2f2 – f1 (1442 MHz) IM3 10 IM3 2f2 – f1 (1442 MHz) 2f1 – f2 (1439 MHz) VCC = 3.0 V VAGC = 1.85 V (GP ~ –10 dB) ~ f1 = 1440 MHz f2 = 1441 MHz –25 –20 –15 –10 –5 0 Input Power Pin (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Input Power Pin (dBm) VCC = 3.0 V VAGC = 2.0 V 0 (GP ~ –30 dB) ~ f1 = 1440 MHz f2 = 1441 MHz –10 –20 –30 Pout –40 –50 –60 –70 –30 2f2 – f1 (1442 MHz) IM3 2f1 – f2 (1439 MHz) –25 –20 –15 –10 –5 0 10 Input Power Pin (dBm) 22 µPC8119T, µPC8120T µPC8119T Output port matching at f = 1440 MHz OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) 10 0 –10 –20 –30 –40 –50 –60 –70 –30 2f2 – f1 (1442 MHz) 2f1 – f2 (1439 MHz) VCC = 3.3 V VAGC = 0 V (GPMAX) f1 = 1440 MHz f2 = 1441 MHz –25 –20 –15 –10 –5 0 IM3 Pout 10 Pout 0 –10 IM3 –20 –30 –40 –50 –60 –70 –30 2f2 – f1 (1442 MHz) 2f1 – f2 (1439 MHz) VCC = 2.7 V VAGC = 0 V (GPMAX) f1 = 1440 MHz f2 = 1441 MHz –25 –20 –15 –10 –5 0 OUTPUT POWER AND IM3 vs. INPUT POWER Input Power Pin (dBm) ADJACENT CHANNEL INTERFERENCE vs. INPUT POWER Adjacent Channel Interference Padj (dBc) Adjacent Channel Interference Padj (dBc) –20 f = 1440 MHz VAGC = 0 V (GPMAX) –30 –40 –50 –60 –70 –80 –30 VCC = 3.0 V ∆ ±100 kHz VCC = 2.7 V ∆ ±100 kHz VCC = 2.7 V ∆ ±50 kHz VCC = 3.0 V ∆ ±50 kHz VCC = 3.3 V ∆ ±50 kHz –45 –50 Input Power Pin (dBm) ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE f = 1440 MHz VCC = 3.0 V Pin = –17.4 dBm ∆ ±50 kHz –55 Pin = –19.4 dBm ∆ ±50 kHz –60 –65 –70 –75 0 0.5 1 1.5 Pin = –19.4 dBm ∆ ±100 kHz 2 2.5 3 Pin = –17.4 dBm ∆ ±100 kHz VCC = 3.3 V ∆ ±100 kHz –25 –20 –15 –10 –5 0 Input Power Pin (dBm) Gain Control Voltage VAGC (V) 23 µPC8119T, µPC8120T µPC8119T Output port matching at f = 1900 MHz Vcc = Vout = 3.0 V, VAGC = 0 V (GPMAX), Pin = –30 dBm S11 vs. FREQUENCY 1; 25.644 Ω ––28.377 Ω 2.9519 pF 1 900.000 000 MHz S22 vs. FREQUENCY 1; 43.631 Ω 8.0605 Ω 675.2 pH 1 900.000 000 MHz MARKER 1 1.9 GHz MARKER 1 1.9 GHz 1 1 START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz S11 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = –30 dBm S11 10 VCC = 2.7 V 1 log MAG 5 dB/ REF 0 dB 1: 6.8063 dB 10 S22 1 900.000 000 MHz S22 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = –30 dBm log MAG 5 dB/ REF 0 dB 1: –20.108 dB 1 900.000 000 MHz 0 0 –10 VCC = 3.3 V VCC = 3.0 V –10 1 –20 VCC = 3.3 V VCC = 3.0 V VCC = 2.7 V –20 –30 START 100.000 000 MHz STOP 3 100.000 000 MHz –30 START 100.000 000 MHz STOP 3 100.000 000 MHz S21 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = –30 dBm S21 log MAG 1 dB/ REF 7 dB 1: 12.887 dB 1 900.000 000 MHz 15 0 S12 S12 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = –30 dBm log MAG 5 dB/ REF 0 dB 1: –37.473 dB 1 900.000 000 MHz VCC = 3.3 V –10 13 VCC = 2.7 V 11 VCC = 3.0 V –20 VCC = 3.3 V VCC = 3.0 V –30 9 –40 VCC = 2.7 V 7 START 100.000 000 MHz STOP 3 100.000 000 MHz –50 START 100.000 000 MHz STOP 3 100.000 000 MHz 24 µPC8119T, µPC8120T µPC8119T Output port matching at f = 1900 MHz POWER GAIN vs. GAIN CONTROL VOLTAGE 20 20 TA = –25 °C Power Gain GP (dB) Power Gain GP (dB) POWER GAIN vs. GAIN CONTROL VOLTAGE 10 VCC = 3.0 V 0 VCC = 3.3 V –10 VCC = 2.7 V 10 TA = +25 °C 0 TA = +75 °C TA = +75 °C TA = +25 °C –10 TA = –25 °C 0 0.5 1 1.5 2 2.5 3 3.5 –20 0 0.5 1 1.5 2 2.5 3 3.5 –20 Gain Control Voltage VAGC (V) S21 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S21 log MAG REF –10.0 dB 5.0 dB/13.038 dB 1 MARKER 1 VAGC = 0 V 1.9 GHz 10 VAGC = 1.0 V VAGC = 1.4 V 0 VAGC = 1.7 V –10 VAGC = 2.0 V –20 VAGC = 3.0 V –40 –30 START 0.100000000 GHz STOP 3.100000000 GHz –50 –30 –20 Gain Control Voltage VAGC (V) S12 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S12 log MAG REF –25.0 dB 5.0 dB/–38.732 dB MARKER 1 1.9 GHz 0 –10 VAGC = 3.0 V 1 VAGC = 0 V START 0.100000000 GHz STOP 3.100000000 GHz S11 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S11 log MAG REF –10.0 dB 5.0 dB/–6.025 dB 10 MARKER 1 1.9 GHz S22 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S22 log MAG REF –10.0 dB 5.0 dB/–18.194 dB 10 MARKER 1 1.9 GHz 0 1 –10 VAGC = 3.0 V VAGC = 1.6 V 0 VAGC = 1.4 V VAGC = 0 V –20 1 VAGC = 3.0 V VAGC = 1.8 V VAGC = 1.4 V VAGC = 0 V –10 –20 –30 START 0.100000000 GHz STOP 3.100000000 GHz –30 START 0.100000000 GHz STOP 3.100000000 GHz 25 µPC8119T, µPC8120T µPC8119T Output port matching at f = 1900 MHz OUTPUT POWER vs. INPUT POWER +10 f = 1900 MHz VAGC = 0 V +5 Output Power Pout (dBm) Output Power Pout (dBm) VCC = 3.3 V 0 +10 OUTPUT POWER vs. INPUT POWER f = 1900 MHz VCC = 3.0 V VAGC = 0 V VAGC = 1.4 V VAGC = 1.65 V –10 0 VCC = 3.0 V –5 VCC = 2.7 V –20 VAGC = 1.8 V –30 VAGC = 2.0 V VAGC = 3.0 V –10 –15 –40 –20 –30 –25 –20 –15 –10 –5 0 +5 +10 –30 –25 –20 –15 –10 –5 0 +5 +10 Input Power Pin (dBm) Input Power Pin (dBm) OUTPUT POWER vs. INPUT POWER +10 f = 1900 MHz VCC = 3.3 V VAGC = 0 V Output Power Pout (dBm) VAGC = 1.4 V –10 VAGC = 1.7 V VAGC = 1.85 V VAGC = 2.0 V –30 VAGC = 3.3 V +10 OUTPUT POWER vs. INPUT POWER f = 1900 MHz VCC = 2.7 V VAGC = 0 V 0 Output Power Pout (dBm) 0 VAGC = 1.4 V VAGC = 1.6 V VAGC = 1.75 V –10 –20 –20 VAGC = 1.9 V –30 VAGC = 2.7 V –40 –30 –25 –20 –15 –10 –5 0 +5 +10 –40 –30 –25 –20 –15 –10 –5 0 +5 +10 Input Power Pin (dBm) Input Power Pin (dBm) 26 µPC8119T, µPC8120T µPC8119T Output port matching at f = 1900 MHz OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER +10 VCC = 3.0 V VAGC = 1.8 V 0 (GP ~ –5 dB) ~ f1 = 1900 MHz f2 = 1900.3 MHz –10 Pout –20 –30 –40 –50 –60 –70 –30 2f1 – f2 (1899.7 MHz) –25 –20 –15 –10 –5 0 IM3 2f2 – f1 (1900.6 MHz) +10 Pout 0 –10 IM3 –20 –30 –40 –50 –60 –70 –30 2f2 – f1 (1900.6 MHz) 2f1 – f2 (1899.7 MHz) VCC = 3.0 V VAGC = 0 V (GPMAX) f1 = 1900.0 MHz f2 = 1900.3 MHz –25 –20 –15 –10 –5 0 Input Power Pin (dBm) Input Power Pin (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) +10 VCC = 3.0 V VAGC = 1.7 V 0 (GP ~ –10 dB) ~ f1 = 1900 MHz f2 = 1900.3 MHz –10 –20 –30 –40 –50 –60 –70 –30 2f2 – f1 (1900.6 MHz) 2f1 – f2 (1899.7 MHz) –25 –20 –15 –10 –5 0 IM3 Pout +10 VCC = 3.0 V VAGC = 3.0 V 0 (GPMIN) f1 = 1900 MHz –10 f2 = 1900.3 MHz –20 –30 –40 –50 –60 –70 –30 2f2 – f1 (1900.6 MHz) 2f1 – f2 (1899.7 MHz) –25 –20 –15 –10 –5 0 IM3 Pout Input Power Pin (dBm) Input Power Pin (dBm) 27 µPC8119T, µPC8120T µPC8119T Output port matching at f = 1900 MHz OUTPUT POWER AND IM3 vs. INPUT POWER +10 0 –10 IM3 –20 –30 –40 –50 –60 –70 –30 –25 –20 –15 2f1 – f2 (1899.7 MHz) VCC = 3.3 V VAGC = 0 V (GPMAX) f1 = 1900.0 MHz f2 = 1900.3 MHz –10 –5 0 2f2 – f1 (1900.6 MHz) Pout OUTPUT POWER AND IM3 vs. INPUT POWER +10 0 –10 IM3 –20 –30 –40 –50 –60 –70 –30 –25 –20 –15 2f1 – f2 (1899.7 MHz) VCC = 2.7 V VAGC = 0 V (GPMAX) f1 = 1900.0 MHz f2 = 1900.3 MHz –10 –5 0 2f2 – f1 (1900.6 MHz) Pout Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Input Power Pin (dBm) ADJACENT CHANNEL INTERFERENCE vs. INPUT POWER Adjacent Channel Interference Padj (dBc) f = 1900 MHz VAGC = 0 V (GPMAX) Adjacent Channel Interference Padj (dBc) –20 –30 –40 –50 –60 –70 VCC = 3.3 V ∆ ±600 kHz –80 –30 –25 –20 –15 –10 –5 0 –45 –50 –55 –60 –65 –70 –75 0 0.5 Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Input Power Pin (dBm) ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE f = 1900 MHz VCC = 3.0 V Pin = –10 dBm, ∆ 600 kHz Pin = –12 dBm, ∆ ±600 kHz VCC = 2.7 V ∆ ±600 kHz VCC = 3.0 V ∆ ±600 kHz Pin = –15 dBm, ∆ 600 kHz 1.0 1.5 2.0 2.5 3.0 Input Power Pin (dBm) Gain Control Voltage VAGC (V) 28 µPC8119T, µPC8120T µPC8120T CIRCUIT CURRENT vs. SUPPLY VOLTAGE 14 12 no signals GAIN CONTROL CURRENT vs. GAIN CONTROL VOLTAGE 200 no signals 175 Gain Control Current IAGC ( µ A) Circuit Current ICC (mA) 10 8 6 4 2 0 0 1 2 3 4 Supply Voltage VCC (V) 150 VCC = 2.7 V 125 100 VCC = 3.0 V 75 50 VCC = 3.3 V 25 0 0 0.5 1 1.5 2 2.5 3 3.5 Gain Control Voltage VAGC (V) CIRCUIT CURRENT vs. OPERATING AMBIENT TEMPERATURE 20 no signals 18 16 12 11 CURRENT INTO OUTPUT PIN AND CURRENT INTO VCC PIN vs. GAIN CONTROL VOLTAGE VCC = 3.3 V Iout Current into Output Pin Iout (mA) Current into VCC Pin IVCC (mA) 10 9 VCC = 3.0 V 8 7 VCC = 2.7 V 6 5 4 3 2 1 0 no signals 0 0.5 1 1.5 2 2.5 3 3.5 VCC = 3.0 V VCC = 2.7 V IVCC VCC = 3.3 V Circuit Current ICC (mA) VCC = 3.3 V 14 12 10 8 6 4 2 0 –40 –20 0 VCC = 3.0 V VCC = 2.7 V +20 +40 +60 +80 +100 Operating Ambient temperature TA (°C) S11 vs. FREQUENCY VCC = 3.0 V, VAGC = 3.0 V (GPMAX), Pin = –30 dBm Gain Control Voltage VAGC (V) S22 vs. FREQUENCY VCC = 3.0 V, VAGC = 3.0 V (GPMAX), Pin = –30 dBm 1 : 950 MHz 49.6 Ω – 43.49 Ω 2 : 1440 MHz 32.908 Ω – 34.803 Ω 3 : 1900 MHz 26.389 Ω – 24.797 Ω 1 : 950 MHz 33.758 Ω – 173.11 Ω 2 : 1440 MHz 35.742 Ω – 123.63 Ω 3 : 1900 MHz 34.758 Ω – 105.66 Ω 2 3 1 3 2 1 START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz 29 µPC8119T, µPC8120T µPC8120T Output port matching at f = 950 MHz VCC = 3.0 V, VAGC = 3.0 V (GPMAX), Pin = –30 dBm 1; 42.344 Ω –55.41 Ω 3.0235 pF S11 vs. FREQUENCY 950.000.000 MHz S22 vs. FREQUENCY 1; 50.91 Ω –5.9805 Ω 28.013 pF 950.000 000 MHz 1 1 START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz S11 vs. FREQUENCY VAGC = 3.0 V (GPMAX), Pin = –30 dBm S11 log MAG 5dB/ REF 0 dB 10 VCC = 2.7 V 1 VCC = 3.0 V 1: –5.6328 dB 10 S11 vs. FREQUENCY VCC = 3.0 V VAGC = 3.0 V (GPMAX), Pin = –30 dBm S11 log MAG 5dB/ REF 0 dB 1: –5.7196 dB 950.000 000 MHz TA = +85 °C TA = –25 °C 1 950.000 000 MHz 0 0 –10 VCC = 3.3 V –10 TA = –40 °C –20 –20 –30 START 100.000 000 MHz STOP 3 100.000 000 MHz –30 START 100.000 000 MHz STOP 3 100.000 000 MHz S22 vs. FREQUENCY VAGC = 3.0 V (GPMAX), Pin = –30 dBm S22 log MAG 10 5dB/ REF 0 dB 1: –19 .447 dB 10 950.000 000 MHz S22 vs. FREQUENCY VCC = 3.0 V, VAGC = 3.0 V (GPMAX), Pin = –30 dBm S22 log MAG 5dB/ REF 0 dB 1: –18.205 dB 950.000 000 MHz 0 0 –10 VCC = 2.7 V VCC = 3.0 V VCC = 3.3 V –10 TA = +85 °C –20 TA = +25 °C TA = –40 °C –20 –30 START 100.000 000 MHz STOP 3 100.000 000 MHz –30 START 100.000 000 MHz STOP 3 100.000 000 MHz 30 µPC8119T, µPC8120T µPC8120T Output port matching at f = 950 MHz S21 vs. FREQUENCY VAGC = 3.0 V (GPMAX), Pin = –30 dBm 17 S21 log MAG 1 dB/ REF 7 dB 1:12.768 dB 950.000 000 MHz 17 S21 S21 vs. FREQUENCY VAGC = 3.0 V (GPMAX), Pin = –30 dBm log MAG 1dB/ REF 7 dB 1: –12.78 dB 950.000 000 MHz 15 1 13 VCC = 3.3 V VCC = 3.0 V VCC = 2.7 V 15 1 13 TA = –40 °C TA = +25 °C TA = +85 °C 11 11 9 9 7 START 100.000 000 MHz STOP 3 100.000 000 MHz 7 START 100.000 000 MHz STOP 3 100.000 000 MHz S12 vs. FREQUENCY VAGC = 3.0 V (GPMAX), Pin = –30 dBm 0 S12 log MAG 5dB/ REF 0 dB 1: –31.551 dB 950.000 000 MHz 0 S12 S12 vs. FREQUENCY VAGC = 3.0 V (GPMAX), Pin = –30 dBm log MAG 5dB/ REF 0 dB 1: –31.543 dB 950.000 000 MHz –10 –10 –20 1 –30 VCC = 3.3 V VCC = 3.0 V VCC = 2.7 V –20 1 –30 TA = –40 °C TA = +25 °C TA = +85 °C –40 –40 –50 START 100.000 000 MHz STOP 3 100.000 000 MHz –50 START 100.000 000 MHz STOP 3 100.000 000 MHz 31 µPC8119T, µPC8120T µPC8120T Output port matching at f = 950 MHz POWER GAIN vs. GAIN CONTROL VOLTAGE +20 +10 Power Gain GP (dB) POWER GAIN vs. GAIN CONTROL VOLTAGE +20 +10 TA = –25 °C TA = +75 °C VCC = 2.7 V Power Gain GP (dB) 0 –10 –20 –30 –40 –50 0 0.5 1 1.5 2 2.5 3.0 3.5 VCC = 3.0 V VCC = 3.3 V 0 –10 –20 –30 –40 –50 0 0.5 1 TA = +75 °C TA = +25 °C TA = –25 °C 1.5 2.0 2.5 3.0 3.5 Gain Control Voltage VAGC (V) S21 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm log MAG 1 10 VAGC = 1.7 V VAGC = 1.6 V VAGC = 1.5 V 0 VAGC = 1.4 V VAGC = 1.3 V VAGC = 1.2 V –10 S21 5 dB/ REF 0 dB 1: 12.776 dB 950.000.000 MHz VAGC = 3.0 V VAGC = 2.0 V VAGC = 1.9 V VAGC = 1.8 V 0 Gain Control Voltage VAGC (V) S12 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S12 log MAG 5 dB/ REF 0 dB 1: –31.081 dB 950.000.000 MHz –10 –20 VAGC = 3.0 V –30 1 VAGC = 0 V VAGC = 1.1 V VAGC = 1.0 V VAGC = 0.9 V STOP 3 100.000 000 MHz –40 –20 –30 START 100.000 000 MHz –50 START 100.000 000 MHz STOP 3 100.000 000 MHz S22 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S22 10 log MAG 5 dB/ REF 0 dB 1: –19.041 dB 950.000.000 MHz S11 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S11 10 VAGC = 0 to 1.2 V VAGC = 1.4 V VAGC = 1.6 V log MAG 5 dB/ REF 0 dB 1: –5.6855 dB 0 1 0 VAGC = 1.6 V VAGC = 2.3 to 3.0 V –10 VAGC = 1.8 V –20 VAGC = 2.2 to 3.0 V –10 –20 VAGC = 0 to 0.9 V VAGC = 1.2 V –30 START 100.000 000 MHz STOP 3 100.000 000 MHz –30 START 100.000 000 MHz STOP 3 100.000 000 MHz 32 µPC8119T, µPC8120T µPC8120T Output port matching at f = 950 MHz OUTPUT POWER vs. INPUT POWER +10 f = 950 MHz VAGC = 3.0 V +5 Output Power Pout (dBm) Output Power Pout (dBm) OUTPUT POWER vs. INPUT POWER +10 f = 950 MHz VCC = 3.0 V VAGC = 3.0 V VAGC = 1.5 V VAGC = 1.3 V VAGC = 1.15 V VAGC = 1.0 V –30 –40 VAGC = 0 V –50 –60 VCC = 3.3 V 0 –10 –20 0 VCC = 2.7 V –5 VCC = 3.0 V –10 –15 –20 –30 –25 –20 –15 –10 –5 0 +5 +10 –70 –30 –25 –20 –15 –10 –5 0 +5 +10 Input Power Pin (dBm) OUTPUT POWER vs. INPUT POWER +10 0 Output Power Pout (dBm) Input Power Pin (dBm) OUTPUT POWER vs. INPUT POWER +10 0 Output Power Pout (dBm) f = 950 MHz VCC = 3.3 V VAGC = 3.3 V VAGC = 1.7 V VAGC = 1.5 V VAGC = 1.35 V f = 950 MHz VCC = 2.7 V VAGC = 2.7 V VAGC = 1.3 V –10 –20 –30 –40 –10 VAGC = 1.1 V –20 VAGC = 0.95 V –30 –40 –50 –60 –70 –30 –25 –20 –15 –10 –5 VAGC = 1.2 V –50 –60 –70 –30 –25 –20 –15 –10 –5 VAGC = 0 V VAGC = 0.8 V VAGC = 0 V 0 +5 +10 0 +5 +10 Input Power Pin (dBm) Input Power Pin (dBm) 33 µPC8119T, µPC8120T µPC8120T Output port matching at f = 950 MHz OUTPUT POWER AND IM3 vs. INPUT POWER OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) +10 0 –10 –20 –30 –40 –50 –60 –70 –30 2f2 – f1 (952 MHz) 2f1 – f2 (949 MHz) VCC = 3.0 V VAGC = 3.0 V (GPMAX) f1 = 950 MHz f2 = 951 MHz –10 –5 0 Pout +10 0 –10 –20 –30 –40 –50 –60 –70 –30 VCC = 3.0 V VAGC = 1.5 V (GP ~ 0 dB) ~ f1 = 950 MHz f2 = 951 MHz Pout IM3 IM3 2f1 – f2 (949 MHz) 2f2 – f1 (952 MHz) –25 –20 –15 –25 –20 –15 –10 –5 0 Input Power Pin (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER +10 0 –10 –20 –30 IM3 –40 –50 –60 –70 –30 2f1 – f2 (949 MHz) 2f2 – f1 (952 MHz) Input Power Pin (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) VCC = 3.0 V VAGC = 1.3 V (GP ~ –10 dB) ~ f1 = 950 MHz f2 = 951 MHz Pout +10 VCC = 3.0 V VAGC = 1.15 V 0 (GP ~ –20 dB) ~ f1 = 950 MHz –10 f2 = 951 MHz –20 Pout –30 –40 –50 –60 –70 –30 –25 –20 –15 2f1 – f2 (949 MHz) 2f2 – f1 (952 MHz) –10 –5 0 IM3 –25 –20 –15 –10 –5 0 Input Power Pin (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER Input Power Pin (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) +10 0 –10 –20 –30 VCC = 3.0 V VAGC = 1.0 V (GP ~ –30 dB) ~ f1 = 950 MHz f2 = 951 MHz +10 VCC = 3.0 V VAGC = 1.15 V 0 (GP ~ –38 dB) ~ f1 = 950 MHz –10 f2 = 951 MHz –20 –30 –40 –50 –60 –70 –30 –25 2f1 – f2 IM3 (949 MHz) 2f2 – f1 (952 MHz) –5 –20 –15 –10 Input Power Pin (dBm) Pout –40 IM3 –50 –60 –70 –30 2f1 – f2 (949 MHz) 2f2 – f1 (952 MHz) –10 –5 0 Pout –25 –20 –15 0 Input Power Pin (dBm) 34 µPC8119T, µPC8120T µPC8120T Output port matching at f = 950 MHz OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER +10 0 –10 –20 –30 –40 –50 –60 –70 –30 2f2 – f1 (952 MHz) 2f1 – f2 (949 MHz) Pout +10 Pout 0 –10 –20 –30 –40 –50 –60 –70 –30 2f2 – f1 (952 MHz) 2f1 – f2 (949 MHz) VCC = 3.3 V VAGC = 3.3 V (GPMAX) f1 = 950 MHz f2 = 951 MHz –25 –20 –15 –10 –5 0 VCC = 2.7 V VAGC = 2.7 V (GPMAX) f1 = 950 MHz f2 = 951 MHz –25 –20 –15 –10 –5 0 Input Power Pin (dBm) ADJACENT CHANNEL INTERFERENCE vs. INPUT POWER Adjacent Channel Interference Padj (dBc) Adjacent Channel Interference Padj (dBc) Input Power Pin (dBm) ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE –45 –50 –55 –60 –65 –70 –75 Pin = –17.4 dBm ∆ ±100 kHz Pin = –19.4 dBm ∆ ±100 kHz Pin = –17.4 dBm ∆ ±50 kHz Pin = –19.4 dBm ∆ ±50 kHz f = 950 MHz VCC = 3.0 V –20 –30 –40 –50 –60 –70 f = 950 MHz VAGC = VCC (GPMAX) VCC = 2.7 V ∆ ±50 kHz VCC = 3.0 V ∆ ±50 kHz VCC = 3.3 V ∆ ±50 kHz VCC = 2.7 V ∆ ±100 kHz VCC = 3.0 V ∆ ±100 kHz VCC = 3.3 V ∆ ±100 kHz –80 –30 –25 –20 –15 –10 –5 0 0 0.5 1 1.5 2 2.5 3 Input Power Pin (dBm) Gain Control Voltage VAGC (V) 35 µPC8119T, µPC8120T µPC8120T Output port matching at f = 1440 MHz VCC = 3.0 V , VAGC = 3.0 V (GPMAX), Pin = –30 dBm S11 vs. FREQUENCY 1; 36.68 Ω –50.342 Ω 2.2582 pF 1 400.000 000 MHz S22 vs. FREQUENCY 1; 48.615 Ω –5.4863 Ω –20.145 pF 1 440.000 000 MHz MARKER 1 1.44 GHz MARKER 1 1.44 GHz 1 1 START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz S11 vs. FREQUENCY VAGC = 3.0 V (GPMAX), Pin = –30 dBm S11 log MAG 10 1.44 GHz 0 VCC = 2.7 V VCC = 3.0 V 1 5 dB/ REF 0 dB 1; –6.064 dB 10 1 440.000 000 MHz S11 vs. FREQUENCY VCC = 3.0 V, VAGC = 3.0 V (GpMAX), Pin = –30 dBm S11 log MAG 5 dB/ REF 0 dB 1; –6.0673 dB 1 440.000 000 MHz TA = +85 °C 0 TA = +25 °C 1 TA = –40 °C –10 VCC = 3.3 V –20 –10 –20 –30 START 100.000 000 MHz STOP 3 100.000 000 MHz –30 START 100.000 000 MHz STOP 3 100.000 000 MHz S22 vs. FREQUENCY VAGC = 3.0 V (GPMAX), Pin = –30 dBm S22 log MAG 10 MARKER 1 1.44 GHz 0 0 5 dB/ REF 0 dB 1; –24.057 dB 10 1 440.000 000 MHz S22 vs. FREQUENCY VCC = 3.0 V, VAGC = 3.0 V (GpMAX), Pin = –30 dBm S22 log MAG 5 dB/ REF 0 dB 1; –22.951 dB 1 440.000 000 MHz –10 –10 –20 VCC = 3.0 V –30 START 100.000 000 MHz 1 VCC = 3.3 V VCC = 2.7 V STOP 3 100.000 000 MHz –20 TA = +85 °C –30 START 100.000 000 MHz TA = +25 °C TA = –40 °C STOP 3 100.000 000 MHz 36 µPC8119T, µPC8120T µPC8120T Output port matching at f = 1440 MHz S21 vs. FREQUENCY VAGC = 3.0 V (GPMAX), Pin = –30 dBm 17 S21 log MAG 1 dB/ REF 7 dB 1; 12.974 dB 17 1 440.000 000 MHz 15 MARKER 1 1.44 GHz 1 13 VCC = 3.3 V VCC = 3.0 V VCC = 2.7 V 15 MARKER 1 1.44 GHz 1 13 TA = –40 °C TA = +25 °C TA = +85 °C S21 vs. FREQUENCY VAGC = 3.0 V, (GPMAX), Pin = –30 dBm S21 log MAG 1 dB/ REF 7 dB 1;13.025 dB 1 440.000 000 MHz 11 11 9 9 7 START 100.000 000 MHz STOP 3 100.000 000 MHz 7 START 100.000 000 MHz STOP 3 100.000 000 MHz S12 vs. FREQUENCY VAGC = 3.0 V (GPMAX), Pin = –30 dBm 0 S12 log MAG 5 dB/ REF 0 dB 1; –35.378 dB 0 1 440.000 000 MHz –10 MARKER 1 1.44 GHz –10 S12 vs. FREQUENCY VAGC = 3.0 V, (GPMAX), Pin = –30 dBm S12 log MAG 5 dB/ REF 0 dB 1; –35.238 dB 1 440.000 000 MHz –20 VCC = 3.3 V –30 1 VCC = 3.0 V –20 TA = +85 °C TA = +25 °C TA = –40 °C –30 1 –40 VCC = 2.7 V –50 START 100.000 000 MHz STOP 3 100.000 000 MHz –40 –50 START 100.000 000 MHz STOP 3 100.000 000 MHz 37 µPC8119T, µPC8120T µPC8120T Output port matching at f = 1440 MHz POWER GAIN vs. GAIN CONTROL VOLTAGE +20 VCC = 2.7 V +10 Power Gain GP (dB) Power Gain GP (dB) POWER GAIN vs. GAIN CONTROL VOLTAGE +20 TA = –25 °C +10 0 –10 TA = +75 °C –20 –30 –40 TA = +25 °C TA = –25 °C 0 0.5 1 1.5 2 2.5 3 3.5 TA = +25 °C TA = +75 °C 0 VCC = 3.0 V –10 –20 –30 –40 0 VCC = 3.3 V 0.5 1 1.5 2 2.5 3 3.5 Gain Control Voltage VAGC (V) S21 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S21 log MAG 5 dB/ REF 0 dB 1: –12.908 dB 1 VAGC = 3.0 V 1.440.000 000 MHz VAGC = 2.0 V 10 VAGC = 1.9 V VAGC = 1.8 V VAGC = 1.7 V VAGC = 1.6 V 0 VAGC = 1.5 V VAGC = 1.4 V VAGC = 1.3 V VAGC = 1.2 V –10 Gain Control Voltage VAGC (V) S12 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S12 log MAG 5 dB/ REF 0 dB 1: –34.801 dB 1.440.000 000 MHz MARKER 1 1.44 GHz 0 –10 –20 VAGC = 3.0 V 1 VAGC = 0 V –30 –20 VAGC = 1.1 V VAGC = 1.0 V VAGC = 0.9 V VAGC = 0 V START 100.000 000 MHz STOP 3 100.000 000 MHz –40 –30 –50 START 100.000 000 MHz STOP 3 100.000 000 MHz S11 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S11 log MAG 5 dB/ REF 0 dB 1: –6.1639 dB 1.440.000 000 MHz 10 0 MARKER 1 1.44 GHz 1 10 VAGC = 0 to 1.2 V VAGC = 1.4 V VAGC = 1.6 V 0 S22 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S22 log MAG 5 dB/ REF 0 dB 1: –23.731 dB 1.440.000 000 MHz MARKER 1 1.44 GHz –10 VAGC = 1.8 V VAGC = 2.2 to 3.0 V –20 –10 VAGC = 1.6 V VAGC = 0 to 0.9 V –20 VAGC = 2.3 to 3.0 V VAGC = 1.35 V START 100.000 000 MHz STOP 3 100.000 000 MHz –30 START 100.000 000 MHz STOP 3 100.000 000 MHz –30 38 µPC8119T, µPC8120T µPC8120T Output port matching at f = 1440 MHz OUTPUT POWER vs. INPUT POWER +10 +5 0 –5 –10 –15 –20 –30 –25 –20 –15 –10 f = 1440 MHz VAGC = 3.0 V VCC = 3.3 V +10 0 Output Power Pout (dBm) OUTPUT POWER vs. INPUT POWER f = 1440 MHz VCC = 3.0 V VAGC = 3.0 V VAGC = 1.5 V VAGC = 1.3 V Output Power Pout (dBm) –10 –20 –30 –40 –50 –60 VCC = 3.0 V VCC = 2.7 V VAGC = 1.15 V VAGC = 0.95 V VAGC = 0 V –5 0 +5 +10 Input Power Pin (dBm) –70 –30 –25 –20 –15 –10 –5 0 +5 +10 Input Power Pin (dBm) OUTPUT POWER vs. INPUT POWER +10 0 Output Power Pout (dBm) OUTPUT POWER vs. INPUT POWER +10 f = 1440 MHz VCC = 2.7 V VAGC = 2.7 V VAGC = 1.3 V VAGC = 1.1 V –20 –30 –40 –50 –60 –70 –30 –25 –20 –15 –10 –5 VAGC = 0.75 V VAGC = 0 V VAGC = 0.95 V f = 1440 MHz VCC = 3.3 V VAGC = 3.3 V VAGC = 1.65 V VAGC = 1.45 V Output Power Pout (dBm) 0 –10 –10 –20 –30 –40 –50 –60 VAGC = 1.3 V VAGC = 1.1 V VAGC = 0 V –70 –30 –25 –20 –15 –10 –5 0 +5 +10 0 +5 +10 Input Power Pin (dBm) Input Power Pin (dBm) 39 µPC8119T, µPC8120T µPC8120T Output port matching at f = 1440 MHz OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER +10 VCC = 3.0 V VAGC = 1.5 V 0 (GP ~ 0 dB) ~ f1 = 1440 MHz f2 = 1441 MHz –10 –20 –30 –40 –50 –60 –70 –30 2f1 – f2 (1439 MHz) 2f2 – f1 (1442 MHz) IM3 +10 0 –10 IM3 –20 –30 –40 –50 –60 –70 –30 2f1 – f2 (1439 MHz) 2f2 – f1 (1442 MHz) Pout Pout VCC = 3.0 V VAGC = 3.0 V (GPMAX) f1 = 1440 MHz f2 = 1441 MHz –25 –20 –15 –10 –5 0 –25 –20 –15 –10 –5 0 Input Power Pin (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Input Power Pin (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) +10 VCC = 3.0 V VAGC = 1.3 V 0 (GP ~ –10 dB) ~ f1 = 1440 MHz f2 = 1441 MHz –10 –20 –30 –40 –50 –60 –70 –30 IM3 2f1 – f2 (1439 MHz) 2f2 – f1 (1442 MHz) –25 –20 –15 –10 –5 0 Pout +10 VCC = 3.0 V VAGC = 1.15 V 0 (GP ~ –20 dB) ~ f1 = 1440 MHz f2 = 1441 MHz –10 –20 Pout –30 –40 –50 –60 –70 –30 2f2 – f1 (1442 MHz) –25 –20 –15 –10 –5 0 IM3 2f1 – f2 (1439 MHz) Input Power Pin (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Input Power Pin (dBm) +10 VCC = 3.0 V VAGC = 0 V 0 (GP ~ –30 dB) ~ f1 = 1440 MHz f2 = 1441 MHz –10 –20 –30 Pout –40 –50 2f2 – f1 (1442 MHz) –60 2f1 – f2 (1439 MHz) –70 –30 –25 –20 –15 –10 –5 0 IM3 Input Power Pin (dBm) 40 µPC8119T, µPC8120T µPC8120T Output port matching at f = 1440 MHz OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER +10 0 –10 –20 –30 –40 –50 –60 –70 –30 2f2 – f1 (1442 MHz) 2f1 – f2 (1439 MHz) VCC = 2.7 V VAGC = 2.7 V (GPMAX) f1 = 1440 MHz f2 = 1441 MHz –25 –20 –15 –10 –5 0 Pout +10 Pout 0 –10 –20 –30 –40 –50 –60 –70 –30 2f2 – f1 (1442 MHz) 2f1 – f2 (1439 MHz) VCC = 3.3 V VAGC = 3.3 V (GPMAX) f1 = 1440 MHz f2 = 1441 MHz –25 –20 –15 –10 –5 0 IM3 Input Power Pin (dBm) ADJACENT CHANNEL INTERFERENCE vs. INPUT POWER Adjacent Channel Interference Padj (dBc) Adjacent Channel Interference Padj (dBc) Input Power Pin (dBm) ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE –45 –50 –55 –60 –65 –70 –75 0 0.5 1 1.5 2 2.5 3 Gain Control Voltage VAGC (V) Pin = –19.4 dBm ∆ ±50 kHz f = 1440 MHz VCC = 3.0 V –20 f = 1440 MHz VAGC = VCC (GPMAX) –30 VCC = 2.7 V ∆ ±50 kHz VCC = 3.0 V ∆ ±50 kHz VCC = 3.3 V ∆ ±50 kHz –40 –50 –60 –70 –80 –30 VCC = 3.0 V ∆ ±100 kHz VCC = 3.3 V ∆ ±100 kHz –25 –20 –15 –10 –5 0 VCC = 2.7 V ∆ ±100 kHz Pin = –17.4 dBm ∆ ±50 kHz Pin = –17.4 dBm ∆ ±100 kHz Pin = –19.4 dBm ∆ ±100 kHz Input Power Pin (dBm) 41 µPC8119T, µPC8120T µPC8120T Output port matching at f = 1900 MHz Vcc = 3.0 V, VAGC = 3.0 V (GPMAX), Pin = –30 dBm S11 vs. FREQUENCY 1; 24.991 Ω –27.029 Ω 3.0991 pF 1 900.000 000 MHz S22 vs. FREQUENCY 1; 52.643 Ω 16.369 Ω 1.3712 nH 1 900.000 000 MHz MARKER 1 1.9 GHz MARKER 1 1.9 GHz 1 1 START 100.000 000 MHz STOP 100.000 000 MHz START 100.000 000 MHz STOP 100.000 000 MHz S11 vs. FREQUENCY VAGC = 3.0 V (GPMAX), Pin = –30 dBm S11 log MAG 10 MARKER 1 1.9 GHz 0 VCC = 3.0 V 1 –10 VCC = 2.7 V –10 5 dB/ REF 0 dB 1; –5.5512 dB 10 1 900.000 000 MHz VCC = 3.3 V 0 S22 vs. FREQUENCY VAGC = 3.0 V (GPMAX), Pin = –30 dBm S22 log MAG 5 dB/ REF 0 dB 1; –24.124 dB 1 900.000 000 MHz MARKER 1 1.9 GHz –20 –20 1 VCC = 2.7 V VCC = 3.0 V VCC = 3.3 V –30 START 100.000 000 MHz STOP 3 100.000 000 MHz –30 START 100.000 000 MHz STOP 3 100.000 000 MHz S21 vs. FREQUENCY VAGC = 3.0 V (GPMAX), Pin = –30 dBm 17 S21 log MAG 1 dB/ REF 7 dB 1; 12.505 dB 1 900.000 000 MHz 15 MARKER 1 1.9 GHz 1 13 VCC = 3.3 V VCC = 3.0 V VCC = 2.7 V 0 S12 vs. FREQUENCY VAGC = 3.0 V (GPMAX), Pin = –30 dBm S12 log MAG 5 dB/ REF 0 dB 1; –37.895 dB 1 900.000 000 MHz –10 MARKER 1 1.9 GHz –20 VCC = 3.3 V VCC = 3.0 V 11 –30 9 –40 VCC = 2.7 V START 100.000 000 MHz STOP 3 100.000 000 MHz 7 START 100.000 000 MHz STOP 3 100.000 000 MHz –50 42 µPC8119T, µPC8120T µPC8120T Output port matching at f = 1900 MHz POWER GAIN vs. GAIN CONTROL VOLTAGE 20 VCC = 2.7 V Power Gain GP (dB) Power Gain GP (dB) POWER GAIN vs. GAIN CONTROL VOLTAGE 20 TA = –25 °C 10 VCC = 3.0 V 0 VCC = 3.3 V –10 10 TA = +25 °C TA = +75 °C 0 –10 –20 0 0.5 1 1.5 2 2.5 3 3.5 –20 0 0.5 1 1.5 2 2.5 3 3.5 Gain Control Voltage VAGC (V) S21 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S21 log MAG 5.0 dB/ REF –10.0 dB 13.389 dB VAGC = 3.0 V 1 MARKER 1 1.9 GHz V = 2.0 V AGC Gain Control Voltage VAGC (V) S12 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S12 log MAG 5.0 dB/ REF –25.0 dB –37.828 dB MARKER 1 1.9 GHz –10 0 10 0 VAGC = 1.7 V VAGC = 1.4 V –20 –10 VAGC = 1.0 V –20 VAGC = 0 V –40 –30 START 0.100000000 GHz STOP 3.100000000 GHz –50 START 0.100000000 GHz VAGC = 3.0 V STOP 3.100000000 GHz –30 VAGC = 0 V S11 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S11 log MAG 5.0 dB/ REF –10.0 dB –5.75 dB 10 MARKER 1 1.9 GHz VAGC = 0 V VAGC = 1.4 V 10 S22 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S22 log MAG 5.0 dB/ REF –10.0 dB –21.073 dB MARKER 1 1.9 GHz 0 1 0 VAGC = 1.6 V 1 VAGC = 3.0 V VAGC = 0 V –10 VAGC = 1.6 V VAGC = 3.0 V –10 –20 –20 –30 START 0.100000000 GHz STOP 3.100000000 GHz –30 VAGC = 1.25 V START 0.100000000 GHz STOP 3.100000000 GHz 43 µPC8119T, µPC8120T µPC8120T Output port matching at f = 1900 MHz OUTPUT POWER vs. INPUT POWER +10 +5 0 –5 –10 –15 –20 –30 –25 VCC = 3.0 V VCC = 2.7 V f = 1900 MHz VAGC = 3.0 V VCC = 3.3 V +10 OUTPUT POWER vs. INPUT POWER f = 1900 MHz +5 VCC = 3.0 V 0 Output Power Pout (dBm) VAGC = 3.0 V VAGC = 1.65 V Output Power Pout (dBm) –5 –10 –15 –20 –25 –30 –35 VAGC = 1.5 V VAGC = 1.4 V VAGC = 1.3 V VAGC = 0 V –20 –15 –10 –5 0 +5 +10 –40 –45 –30 –25 –20 –15 –10 –5 0 +5 +10 Input Power Pin (dBm) Input Power Pin (dBm) OUTPUT POWER vs. INPUT POWER +10 f = 1900 MHz +5 VCC = 3.3 V 0 Output Power Pout (dBm) Output Power Pout (dBm) OUTPUT POWER vs. INPUT POWER +10 f = 1900 MHz +5 VCC = 2.7 V 0 VAGC = 2.7 V VAGC = 1.5 V VAGC = 1.3 V VAGC = 3.3 V VAGC = 1.9 V VAGC = 1.65 V –5 –10 –15 –20 –25 –30 –5 –10 –15 –20 –25 –30 –35 –40 VAGC = 1.55 V VAGC = 1.48 V VAGC = 0 V VAGC = 1.2 V VAGC = 1.13 V VAGC = 0 V –35 –40 –45 –30 –25 –20 –15 –10 –5 0 +5 +10 –45 –30 –25 –20 –15 –10 –5 0 +5 +10 Input Power Pin (dBm) Input Power Pin (dBm) 44 µPC8119T, µPC8120T µPC8120T Output port matching at f = 1900 MHz OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER +10 VCC = 3.0 V VAGC = 1.4 V 0 (GP ~ –5 dB) ~ f1 = 1900 MHz f2 = 1900.3 MHz –10 –20 –30 IM3 –40 –50 –60 –70 –30 –25 –20 –15 –10 –5 0 2f1 – 2f2 (1899.7 MHz) 2f2 – 2f1 (1900.6 MHz) Pout +10 0 –10 –20 –30 –40 –50 –60 –70 –30 –25 –20 –15 2f2 – f1 (1900.6 MHz) IM3 Pout 2f1 – f2 (1899.7 MHz) VCC = 3.0 V VAGC = 3.0 V (GPMAX) f1 = 1900 MHz f2 = 1900.3 MHz –10 –5 0 Input Power Pin (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Input Power Pin (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER +10 VCC = 3.0 V VAGC = 0 V 0 (GPMIN) f1 = 1900 MHz f2 = 1900.3 MHz –10 –20 Pout –30 –40 –50 –60 –70 –30 –25 –20 2f1 – f2 (1899.7 MHz) IM3 +10 VCC = 3.0 V VAGC = 1.3 V 0 (GP ~ –10 dB) ~ f1 = 1900 MHz f2 = 1900.3 MHz –10 –20 –30 –40 –50 –60 –70 –30 –25 –20 –15 –10 –5 0 2f1 – f2 (1899.7 MHz) 2f2 – f1 (1900.6 MHz) Pout IM3 2f2 – f1 (1900.6 MHz) –15 –10 –5 0 Input Power Pin (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Input Power Pin (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) +10 Pout 0 –10 –20 –30 –40 –50 –60 –70 –30 2f2 – f1 (1900.6 MHz) 2f1 – f2 (1899.7 MHz) VCC = 3.3 V VAGC = 3.3 V (GPMAX) f1 = 1900 MHz f2 = 1900.3 MHz –10 –5 0 +10 0 –10 IM3 –20 2f2 – f1 (1900.6 MHz) –30 –40 –50 –60 –70 –30 2f1 – f2 (1899.7 MHz) Pout IM3 –25 –20 –15 –25 –20 –15 VCC = 2.7 V VAGC = 2.7 V (GPMAX) f1 = 1900 MHz f2 = 1900.3 MHz –10 –5 0 Input Power Pin (dBm) Input Power Pin (dBm) 45 µPC8119T, µPC8120T µPC8120T Output port matching at f = 1900 MHz ADJACENT CHANNEL INTERFERENCE vs. INPUT POWER Adjacent Channel Interference Padj (dBc) ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE Adjacent Channel Interference Padj (dBc) –20 –30 –40 –50 f = 1900 MHz VAGC = VCC (GPMAX) –45 –50 –55 –60 f = 1900 MHz VCC = 3.0 V VCC = 2.7 V ∆ ±600 kHz VCC = 3.0 V ∆ ±600 kHz Pin = –10 dBm ∆ ±600 kHz –65 –70 –75 0.0 Pin = –15 dBm ∆ ±600 kHz 1.0 1.5 2.0 Pin = –12 dBm ∆ ±600 kHz –60 –70 –80 –30 VCC = 3.3 V ∆ ±600 kHz –15 –10 –5 0 –25 –20 0.5 2.5 3.0 Input Power Pin (dBm) Gain Control Voltage VAGC (V) 46 µPC8119T, µPC8120T PACKAGE DIMENSIONS 6 PIN MINIMOLD PACKAGE (UNITS: mm) 0.3 –0.0 +0.1 0.13±0.1 1 2.8 –0.3 1.5 –0.1 +0.2 +0.2 2 3 0 – 0.1 6 5 0.95 4 0.95 0.8 1.1–0.1 +0.2 1.9 2.9±0.2 0.2 MIN. 47 µPC8119T, µPC8120T NOTES ON CORRECT USE (1) Observe precautions for handling because of electro-static sensitive devices. (2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesired oscillation). (3) Keep the track length of the ground pins as short as possible. (4) A low pass filter must be attached to VCC line. (5) A matching circuit must be externally attached to output port. RECOMMENDED SOLDERING CONDITIONS This product should be soldered under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your NEC sales representative. µPC8119T, µPC8120T Recommended Condition Symbol IR35-00-3 Soldering Method Infrared Reflow Soldering Conditions Package peak temperature: 235°C or below Time: 30 seconds or less (at 210°C) Count: 3, Exposure limitNote: None Package peak temperature: 215°C or below Time: 40 seconds or less (at 200°C) Count: 3, Exposure limitNote: None Soldering bath temperature: 260°C or below Time: 10 seconds or less Count: 1, Exposure limitNote: None Pin temperature: 300°C Time: 3 seconds or less (per side of device) Exposure limitNote: None VPS VP15-00-3 Wave Soldering WS60-00-1 Partial Heating – Note After opening the dry pack, keep it in a place below 25°C and 65% RH for the allowable storage period. Caution Do not use different soldering methods together (except for partial heating). For details of the recommended soldering conditions for surface mounting, refer to information document SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E). 48 µPC8119T, µPC8120T [MEMO] 49 µPC8119T, µPC8120T [MEMO] 50 µPC8119T, µPC8120T [MEMO] 51 µPC8119T, µPC8120T The application circuits and their parameters are for reference only and are not intended for use in actual design-ins. NESAT (NEC Silicon Advanced Technology) is a trademark of NEC Corporation. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc. The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance. Anti-radioactive design is not implemented in this product. M4 96. 5
UPC8131TA 价格&库存

很抱歉,暂时无法提供与“UPC8131TA”相匹配的价格&库存,您可以联系我们找货

免费人工找货