0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MCF51AC128CCFUER

MCF51AC128CCFUER

  • 厂商:

    NXP(恩智浦)

  • 封装:

    QFP64

  • 描述:

    IC MCU 32BIT 128KB FLASH 64QFP

  • 数据手册
  • 价格&库存
MCF51AC128CCFUER 数据手册
Freescale Semiconductor Data Sheet: Technical Data Document Number: MCF51AC256 Rev.7, 9/2011 MCF51AC256 MCF51AC256 Series ColdFire Microcontroller 80 LQFP 14 mm  14 mm Covers:MCF51AC256A MCF51AC256B MCF51AC128A MCF51AC128C The MCF51AC256 series are members of the ColdFire® family of 32-bit variable-length reduced instruction set (RISC) microcontroller. This document provides an overview of the MCF51AC256 series, focusing on its highly integrated and diverse feature set. 44 LQFP 10 mm  10 mm • • • • 64 QFP 14 mm  14 mm Two serial communications interfaces (SCI) Up to two serial peripheral interfaces (SPI) Two flexible timer modules (FTM) Timer pulse-width modulator (TPM) The MCF51AC256 series are based on the V1 ColdFire core and operates at processor core speeds up to 50.33 MHz. As part of Freescale’s Controller Continuum®, it is an ideal upgrade for designs based on the MC9S08AC128 series of 8-bit microcontrollers. The MCF51AC256 features the following functional units: • V1 ColdFire core with background debug module • Up to 256 KB of flash memory • Up to 32 KB of static RAM (SRAM) • Up to two analog comparators (ACMP) • Analog-to-digital converter (ADC) with up to 24 channels • Controller-area network (CAN) • Cyclic redundancy check (CRC) • Inter-integrated circuit (IIC) • Keyboard interrupt (KBI) • Multipurpose clock generator (MCG) • Rapid general-purpose input/output (RGPIO) This document contains information on a product under development. Freescale reserves the right to change or discontinue this product without notice. © Freescale Semiconductor, Inc., 2008-2011. All rights reserved. 64 LQFP 10 mm  10 mm Table of Contents 1 2 3 4 MCF51AC256 Family Configurations . . . . . . . . . . . . . . . . . . . .3 1.1 Device Comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 1.2 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 1.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 1.3.1 Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 1.4 Part Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 1.5 Pinouts and Packaging . . . . . . . . . . . . . . . . . . . . . . . . .12 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 2.1 Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . .17 2.2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . .17 2.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .18 2.4 Electrostatic Discharge (ESD) Protection Characteristics 19 2.5 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 2.6 Supply Current Characteristics . . . . . . . . . . . . . . . . . . .25 2.7 Analog Comparator (ACMP) Electricals . . . . . . . . . . . .27 2.8 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .28 2.9 External Oscillator (XOSC) Characteristics . . . . . . . . .31 2.10 MCG Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . .32 2.11 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 2.11.1 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . .34 2.11.2 Timer (TPM/FTM) Module Timing . . . . . . . . . . .35 2.11.3 MSCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 2.12 SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 2.13 Flash Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . .38 2.14 EMC Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 2.14.1 Radiated Emissions . . . . . . . . . . . . . . . . . . . . . .39 Mechanical Outline Drawings . . . . . . . . . . . . . . . . . . . . . . . . .40 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 List of Figures Figure 1. MCF51AC256 Series Block Diagram . . . . . . . . . . . . . . 5 Figure 2. MCF51AC256 Series ColdFire Microcontroller 80-Pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 3. MCF51AC256 Series ColdFire Microcontroller 64-Pin QFP/LQFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 4. MCF51AC256 Series ColdFire Microcontroller 44-Pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 5. Typical IOH vs. VDD–VOH at VDD = 3 V (Low Drive, PTxDSn = 0) . . . . . . . . . . . . . . . . . . . . . . 22 Figure 6. Typical IOH vs. VDD–VOH at VDD = 3 V (High Drive, PTxDSn = 1) . . . . . . . . . . . . . . . . . . . . . . 23 Figure 7. Typical IOH vs. VDD–VOH at VDD = 5 V (Low Drive, PTxDSn = 0) . . . . . . . . . . . . . . . . . . . . . . 23 Figure 8. Typical IOH vs. VDD–VOH at VDD = 5 V (High Drive, PTxDSn = 1) . . . . . . . . . . . . . . . . . . . . . . Figure 9. Typical Run IDD vs. System Clock Freq. for FEI and FBE Modes . . . . . . . . . . . . . . . . . . . . . . . . Figure 10.ADC Input Impedance Equivalency Diagram. . . . . . . Figure 11.Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12.IRQ/KBIPx Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 13.Timer External Clock . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14.Timer Input Capture Pulse . . . . . . . . . . . . . . . . . . . . . Figure 15.SPI Master Timing (CPHA = 0) . . . . . . . . . . . . . . . . . Figure 16.SPI Master Timing (CPHA =1) . . . . . . . . . . . . . . . . . . Figure 17.SPI Slave Timing (CPHA = 0) . . . . . . . . . . . . . . . . . . Figure 18.SPI Slave Timing (CPHA = 1) . . . . . . . . . . . . . . . . . . 24 27 29 34 34 35 35 37 37 38 38 List of Tables Table 1. MCF51AC256 Series Device Comparison . . . . . . . . . . 3 Table 2. MCF51AC256 Series Functional Units . . . . . . . . . . . . . 6 Table 3. Orderable Part Number Summary. . . . . . . . . . . . . . . . 10 Table 4. Pin Availability by Package Pin-Count . . . . . . . . . . . . . 14 Table 5. Parameter Classifications . . . . . . . . . . . . . . . . . . . . . . 17 Table 6. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . 18 Table 7. Thermal Characteristics. . . . . . . . . . . . . . . . . . . . . . . . 18 Table 8. ESD and Latch-up Test Conditions . . . . . . . . . . . . . . . 20 Table 9. ESD and Latch-Up Protection Characteristics. . . . . . . 20 Table 10.DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Table 11. Supply Current Characteristics. . . . . . . . . . . . . . . . . . 25 Table 12.Analog Comparator Electrical Specifications. . . . . . . . 27 Table 13.5 Volt 12-bit ADC Operating Conditions . . . . . . . . . . . 28 Table 14.5 Volt 12-bit ADC Characteristics (VREFH = VDDA, VREFL = VSSA) . . . . . . . . . . . . . . . . . . 29 Table 15.Oscillator Electrical Specifications (Temperature Range = –40 to 105 C Ambient) . . . . . 31 Table 16.MCG Frequency Specifications (Temperature Range = –40 to 105 C Ambient) . . . . . 32 Table 17.Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 18.TPM/FTM Input Timing . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 19.MSCAN Wake-Up Pulse Characteristics . . . . . . . . . . . 35 Table 20.SPI Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Table 21.Flash Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Table 22.Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Table 23.Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 2 Freescale Semiconductor MCF51AC256 Family Configurations 1 MCF51AC256 Family Configurations 1.1 Device Comparison The MCF51AC256 series is summarized in Table 1. Table 1. MCF51AC256 Series Device Comparison MCF51AC256A MCF51AC256B MCF51AC128A 80-pin 64-pin 80-pin 64-pin 44-pin MCF51AC128C Feature 80-pin 64-pin 80-pin Flash memory size (Kbytes) 256 128 RAM size (Kbytes) 32 32 or 161 V1 ColdFire core with BDM (background debug module) Yes ACMP1 (analog comparator) Yes ACMP2 (analog comparator) Yes ADC (analog-to-digital converter) channels (12-bit) 24 CAN (controller area network) Yes 20 24 Yes No 20 9 24 No CRC (cyclic redundancy check) Yes RTI Yes DBG (debug) Yes IIC1 (inter-integrated circuit) Yes IRQ (interrupt request input) Yes INTC (interrupt controller) Yes KBI (keyboard interrupts) Yes LVD (low-voltage detector) Yes MCG (multipurpose clock generator) Yes OSC (crystal oscillator) Yes 69 54 RGPIO (rapid general-purpose I/O) 69 54 36 16 69 SPI1 (serial peripheral interface) Yes No FTM1 (flexible timer module) channels FTM2 channels Yes No 6 6 2 54 Yes 2 2 69 No 4 6 20 9 54 36 16 Yes Yes 24 No 12 SCI1, SCI2 (serial communications interfaces) SPI2 (serial peripheral interface) 20 No Yes Yes Port I/O 44-pin Yes COP (computer operating properly) 2 64-pin 12 Yes No 6 6 2 4 6 2 2 MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 Freescale Semiconductor 3 MCF51AC256 Family Configurations Table 1. MCF51AC256 Series Device Comparison (continued) MCF51AC256A MCF51AC256B 80-pin 64-pin 80-pin 64-pin 44-pin MCF51AC128A MCF51AC128C Feature TPM3 (timer pulse-width modulator) channels 2 64-pin 80-pin No Yes 64-pin 44-pin 2 VBUS (debug visibility bus) 1 80-pin Yes No Yes No Yes No The members of MCF51AC128A with CAN support have 32 KB RAM. The other members have 16 KB RAM. Up to 16 pins on Ports E and F are shared with the ColdFire Rapid GPIO module. 1.2 Block Diagram Figure 1 shows the connections between the MCF51AC256 series pins and modules. MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 4 Freescale Semiconductor TPMCLK ColdFire V1 core RESET FTM1 SIM IRQ/ TPMCLK TPMCLK COP LVD IRQ FTM2 FLASH MCF51AC256A/B = 256 KB MCF51AC128A/C = 128 KB TPMCLK TPM3 RAM VDD VSS VSS Port F: FTM1CH5 FTM1CH4 FTM1CH3 FTM1CH2 Port E: FTM1CH1 FTM1CH0 Port H: FTM2CH5 FTM2CH4 FTM2CH3 FTM2CH2 Port F: FTM2CH1 FTM2CH0 KBI MCG OSC Port G: KBI1P4 KBI1P3 KBI1P2 KBI1P1 KBI1P0 Port D: KBI1P7 KBI1P6 KBI1P5 Port G: EXTAL XTAL Port B Port C: SDA1 SCL1 LPO Port B: TPM3CH1 TPM3CH0 Port A: RxCAN TxCAN Port F Port F: RGPIO15 RGPIO14 RGPIO13 RGPIO12 RGPIO11 RGPIO10 RGPIO9 RGPIO8 Port E: RGPIO7 RGPIO6 RGPIO5 RGPIO4 RGPIO3 RGPIO2 RGPIO1 RGPIO0 IIC CAN MCF51AC256A/B = 32 KB MCF51AC128A = 32 KB MCF51AC128C = 16 KB RGPIO ACMP2+ Port C BKPT Port A: ACMP2O ACMP2 ACMP2– Port D BDM ADC CRC SCI1 Port E: RxD1 TxD1 SCI2 Port C: RxD2 TxD2 SPI1 Port E: SS1 SPSCK1 MOSI1 MISO1 RTI VREG SPI2 Port H: SPSCK2 MOSI2 MISO2 Port C: SS2 PTA7/AD1P17 PTA6/AD1P16 PTA5/ACMP2+ PTA4/ACMP2– PTA3/ACMP2O PTA2 PTA1/RxCAN PTA0/TxCAN PTB7/AD1P7 PTB6/AD1P6 PTB5/AD1P5 PTB4/AD1P4 PTB3/AD1P3 PTB2/AD1P2 PTB1/TPM3CH1/AD1P1 PTB0/TPM3CH0/AD1P0 PTC6/FTM2FLT PTC5/RxD2 PTC4/SS2 PTC3/TxD2 PTC2/MCLK PTC1/SDA1 PTC0/SCL1 PTD7/KBI1P7/AD1P15 PTD6/FTM1CLK/AD1P14 PTD5/AD1P13 PTD4/FTM2CLK/AD1P12 PTD3/KBI1P6/AD1P11 PTD2/KBI1P5/AD1P10/ACMP1O PTD1/AD1P9/ACMP1– PTD0/AD1P8/ACMP1+ PTE7/RGPIO7/SPSCK1 PTE6/RGPIO6/MOSI1 PTE5/RGPIO5/MISO1 PTE4/RGPIO4/SS1 PTE3/RGPIO3/FTM1CH1 PTE2/RGPIO2/FTM1CH0 PTE1/RGPIO1/RxD1 PTE0/RGPIO0/TxD1 PTF7/RGPIO15 PTF6/RGPIO14/FTM1FLT PTF5/RGPIO13/FTM2CH1 PTF4/RGPIO12/FTM2CH0 PTF3/RGPIO11/FTM1CH5 PTF2/RGPIO10/FTM1CH4 PTF1/RGPIO9/FTM1CH3 PTF0/RGPIO8/FTM1CH2 Port G BKGD/MS Port J: DDATA3DDATA0 PST3VBUS PST0 Port H: PSTCLK Port D: ACMP1O ACMP1 ACMP1– ACMP1+ PTG6/EXTAL PTG5/XTAL PTG4/KBI1P4/AD1P19 PTG3/KBI1P3/AD1P18 PTG2/KBI1P2 PTG1/KBI1P1 PTG0/KBI1P0 Port H DBG Port B: AD1P7– AD1P0 Port D: AD1P15– AD1P8 Port A: ADP17– ADP16 Port G: ADP19– ADP18 Port H: ADP23– ADP20 Port E VREFH VREFL VDDA VSSA PTH6/MISO2 PTH5/MOSI2 PTH4/SPSCK2 PTH3/FTM2CH5/BKPT/AD1P23 PTH2/FTM2CH4/PSTCLK1/AD1P22 PTH1/FTM2CH3/PSTCLK0/AD1P21 PTH0/FTM2CH2/AD1P20 Port J VREFH VREFL VDDA VSSA Port A MCF51AC256 Family Configurations PTJ7/DDATA3 PTJ6/DDATA2 PTJ5/DDATA1 PTJ4/DDATA0 PTJ3/PST3 PTJ2/PST2 PTJ1/PST1 PTJ0/PST0 Figure 1. MCF51AC256 Series Block Diagram MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 Freescale Semiconductor 5 MCF51AC256 Family Configurations 1.3 Features Table 2 describes the functional units of the MCF51AC256 series. Table 2. MCF51AC256 Series Functional Units Functional Unit Function CF1 Core (V1 ColdFire core) Executes programs and interrupt handlers BDM (background debug module) Provides single pin debugging interface (part of the V1 ColdFire core) DBG (debug) Provides debugging and emulation capabilities (part of the V1 ColdFire core) VBUS (debug visibility bus) Allows for real-time program traces (part of the V1 ColdFire core) SIM (system integration module) Controls resets and chip level interfaces between modules Flash (flash memory) Provides storage for program code, constants and variables RAM (random-access memory) Provides storage for program variables RGPIO (rapid general-purpose input/output) Allows for I/O port access at CPU clock speeds VREG (voltage regulator) Controls power management across the device COP (computer operating properly) Monitors a countdown timer and generates a reset if the timer is not regularly reset by the software LVD (low-voltage detect) Monitors internal and external supply voltage levels, and generates a reset or interrupt when the voltages are too low CF1_INTC (interrupt controller) Controls and prioritizes all device interrupts ADC (analog-to-digital converter) Measures analog voltages at up to 12 bits of resolution FTM1, FTM2 (flexible timer/pulse-width modulators) Provides a variety of timing-based features TPM3 (timer/pulse-width modulator) Provides a variety of timing-based features CRC (cyclic redundancy check) Accelerates computation of CRC values for ranges of memory ACMP1, ACMP2 (analog comparators) Compares two analog inputs IIC (inter-integrated circuit) Supports standard IIC communications protocol KBI (keyboard interrupt) Provides pin interrupt capabilities MCG (multipurpose clock generator) Provides clocking options for the device, including a phase-locked loop (PLL) and frequency-locked loop (FLL) for multiplying slower reference clock sources OSC (crystal oscillator) Allows a crystal or ceramic resonator to be used as the system clock source or reference clock for the PLL or FLL LPO (low-power oscillator) Provides a second clock source for COP and RTI. CAN (controller area network) Supports standard CAN communications protocol SCI1, SCI2 (serial communications interfaces) Serial communications UARTs capable of supporting RS-232 and LIN protocols SPI1 (8-bit serial peripheral interfaces) Provides 8-bit 4-pin synchronous serial interface SPI2 (16-bit serial peripheral interfaces) Provides 16-bit 4-pin synchronous serial interface with FIFO MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 6 Freescale Semiconductor MCF51AC256 Family Configurations 1.3.1 • • • • • • • Feature List 32-bit Version 1 ColdFire® central processor unit (CPU) — Up to 50.33 MHz at 2.7 V – 5.5 V — Provide 0.94 Dhrystone 2.1 DMIPS per MHz performance when running from internal RAM (0.76 DMIPS per MHz when running from flash) — Implements instruction set revision C (ISA_C) On-chip memory — Up to 256 KB flash memory read/program/erase over full operating voltage and temperature — Up to 32 KB static random access memory (SRAM) — Security circuitry to prevent unauthorized access to SRAM and flash contents Power-Saving Modes — Three low-power stop plus wait modes — Peripheral clock enable register can disable clocks to unused modules, reducing currents; allows clocks to remain enabled to specific peripherals in stop3 mode System protection features — Watchdog computer operating properly (COP) reset with options to run from independent LPO clock or bus clock — Low-voltage detection with reset or interrupt — Illegal opcode and illegal address detection with programmable reset or exception response — Flash block protection Debug support — Single-wire background debug interface — Real-time debug support, with 6 hardware breakpoints (4 PC, 1 address pair and 1 data) that can be configured into a 1- or 2-level trigger — On-chip trace buffer provides programmable start/stop recording conditions plus support for continuous or PC-profiling modes — Support for real-time program (and optional partial data) trace using the debug visibility bus V1 ColdFire interrupt controller (CF1_INTC) — Support of 40 peripheral I/O interrupt requests plus seven software (one per level) interrupt requests — Fixed association between interrupt request source and level plus priority, up to two requests can be remapped to the highest maskable level + priority — Unique vector number for each interrupt source — Support for service routine interrupt acknowledge (software IACK) read cycles for improved system performance Multipurpose clock generator (MCG) — Oscillator (XOSC); loop-control Pierce oscillator; crystal or ceramic resonator range of 31.25 kHz to 38.4 kHz or 1 MHz to 16 MHz — LPO clock as an optional independent clock source for COP and RTI — FLL/PLL controlled by internal or external reference MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 Freescale Semiconductor 7 MCF51AC256 Family Configurations • • • • • — Trimmable internal reference allows 0.2% resolution and 2% deviation Analog-to-digital converter (ADC) — 24 analog inputs with 12 bits resolution — Output formatted in 12-, 10- or 8-bit right-justified format — Single or continuous conversion (automatic return to idle after single conversion) — Operation in low-power modes for lower noise operation — Asynchronous clock source for lower noise operation — Automatic compare with interrupt for less-than, or greater-than or equal-to, programmable value — On-chip temperature sensor Flexible timer/pulse-width modulators (FTM) — 16-bit Free-running counter or a counter with initial and final value. The counting can be up and unsigned, up and signed, or up-down and unsigned — Up to 6 channels, and each channel can be configured for input capture, output compare or edge-aligned PWM mode, all channels can be configured for center-aligned PWM mode – Channels can operate as pairs with equal outputs, pairs with complimentary outputs or independent channels (with independent outputs) – Each pair of channels can be combined to generate a PWM signal (with independent control of both edges of PWM signal) – Deadtime insertion is available for each complementary pair — The load of the FTM registers which have write buffer can be synchronized; write protection for critical registers — Generation of the triggers to ADC (hardware trigger) — A fault input for global fault control — Backwards compatible with TPM Timer/pulse width modulator (TPM) — 16-bit free-running or modulo up/down count operation — Two channels, each channel may be input capture, output compare, or edge-aligned PWM — One interrupt per channel plus terminal count interrupt Cyclic redundancy check (CRC) generator — High speed hardware CRC generator circuit using 16-bit shift register — CRC16-CCITT compliancy with x16 + x12 + x5 + 1 polynomial — Error detection for all single, double, odd, and most multi-bit errors — Programmable initial seed value Analog comparators (ACMP) — Full rail to rail supply operation — Selectable interrupt on rising edge, falling edge, or either rising or falling edges of comparator output — Option to compare to fixed internal bandgap reference voltage — Option to allow comparator output to be visible on a pin, ACMPxO MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 8 Freescale Semiconductor MCF51AC256 Family Configurations • • • • Inter-integrated circuit (IIC) — Compatible with IIC bus standard — Multi-master operation — Software programmable for one of 64 different serial clock frequencies — Interrupt driven byte-by-byte data transfer — Arbitration lost interrupt with automatic mode switching from master to slave — Calling address identification interrupt — Bus busy detection — 10-bit address extension Controller area network (CAN) — Implementation of the CAN protocol — Version 2.0A/B – Standard and extended data frames – Zero to eight bytes data length – Programmable bit rate up to 1 Mbps – Support for remote frames — Five receive buffers with FIFO storage scheme — Three transmit buffers with internal prioritization using a “local priority” concept — Flexible maskable identifier filter supports two full-size (32-bit) extended identifier filters, four 16-bit filters, or eight 8-bit filters — Programmable wakeup functionality with integrated low-pass filter — Programmable loopback mode supports self-test operation — Programmable listen-only mode for monitoring of CAN bus — Programmable bus-off recovery functionality — Separate signalling and interrupt capabilities for all CAN receiver and transmitter error states (warning, error passive, bus-off) — Internal timer for time-stamping of received and transmitted messages Serial communications interfaces (SCI) — Full-duplex, standard non-return-to-zero (NRZ) format — Double-buffered transmitter and receiver with separate enables — Programmable baud rates (13-bit modulo divider) — Interrupt-driven or polled operation — Hardware parity generation and checking — Programmable 8-bit or 9-bit character length — Receiver wakeup by idle-line or address-mark — Optional 13-bit break character generation / 11-bit break character detection — Selectable transmitter output polarity Serial peripheral interfaces (SPI) — Master or slave mode operation — Full-duplex or single-wire bidirectional option — Programmable transmit bit rate MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 Freescale Semiconductor 9 MCF51AC256 Family Configurations • 1.4 — Double-buffered transmit and receive — Serial clock phase and polarity options — Slave select output — Selectable MSB-first or LSB-first shifting — 16-bit and FIFO operations in SPI2 Input/Output — 69 GPIOs — 8 keyboard interrupt pins with selectable polarity — Hysteresis and configurable pull-up device on all input pins; Configurable slew rate and drive strength on all output pins — 16-bits Rapid GPIO pins connected to the processor’s local 32-bit platform bus with set, clear, and faster toggle functionality Part Numbers MCF 51 AC 256 X V XX E Pb free indicator Package designator Temperature range (V = –40C to 105C, C= –40C to 85C ) CAN Feature (A: With CAN, B/C: Without CAN) Status (MCF = Fully Qualified ColdFire) (PCF = Product Engineering) Core Family Memory size designator Table 3. Orderable Part Number Summary Freescale Part Number Description Flash / SRAM (Kbytes) Package Temperature MCF51AC256AVFUE MCF51AC256 ColdFire Microcontroller with CAN 256 / 32 64 QFP –40°C to 105°C MCF51AC256BVFUE MCF51AC256 ColdFire Microcontroller without CAN 256 / 32 64 QFP –40°C to 105°C MCF51AC256AVLKE MCF51AC256 ColdFire Microcontroller with CAN 256 / 32 80 LQFP –40°C to 105°C MCF51AC256BVLKE MCF51AC256 ColdFire Microcontroller without CAN 256 / 32 80 LQFP –40°C to 105°C MCF51AC256AVPUE MCF51AC256 ColdFire Microcontroller with CAN 256 / 32 64 LQFP –40°C to 105°C MCF51AC256BVPUE MCF51AC256 ColdFire Microcontroller without CAN 256 / 32 64 LQFP –40°C to 105°C MCF51AC128AVFUE 128 / 32 64 QFP –40°C to 105°C MCF51AC128CVFUE MCF51AC128 ColdFire Microcontroller without CAN 128 / 16 64 QFP –40°C to 105°C MCF51AC128AVLKE MCF51AC128 ColdFire Microcontroller with CAN 128 / 32 80 LQFP –40°C to 105°C MCF51AC128CVLKE MCF51AC128 ColdFire Microcontroller without CAN 128 / 16 80 LQFP –40°C to 105°C MCF51AC128AVPUE MCF51AC128 ColdFire Microcontroller with CAN 128 / 32 64 LQFP –40°C to 105°C MCF51AC128CVPUE MCF51AC128 ColdFire Microcontroller without CAN 128 / 16 64 LQFP –40°C to 105°C MCF51AC256ACFUE MCF51AC256 ColdFire Microcontroller with CAN 256 / 32 64 QFP –40°C to 85°C MCF51AC256BCFUE MCF51AC256 ColdFire Microcontroller without CAN 256 / 32 64 QFP –40°C to 85°C MCF51AC256ACLKE MCF51AC256 ColdFire Microcontroller with CAN 256 / 32 80 LQFP –40°C to 85°C MCF51AC256BCLKE MCF51AC256 ColdFire Microcontroller without CAN 256 / 32 80 LQFP –40°C to 85°C MCF51AC128 ColdFire Microcontroller with CAN MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 10 Freescale Semiconductor MCF51AC256 Family Configurations Table 3. Orderable Part Number Summary MCF51AC256ACPUE MCF51AC256 ColdFire Microcontroller with CAN 256 / 32 64 LQFP –40°C to 85°C MCF51AC256BCPUE MCF51AC256 ColdFire Microcontroller without CAN 256 / 32 64 LQFP –40°C to 85°C MCF51AC256BCFGE MCF51AC256 ColdFire Microcontroller without CAN 256/32 44 LQFP –40°C to 85°C MCF51AC128ACFUE MCF51AC128 ColdFire Microcontroller with CAN 128 / 32 64 QFP –40°C to 85°C MCF51AC128CCFUE MCF51AC128 ColdFire Microcontroller without CAN 128 / 16 64 QFP –40°C to 85°C MCF51AC128ACLKE MCF51AC128 ColdFire Microcontroller with CAN 128 / 32 80 LQFP –40°C to 85°C MCF51AC128CCLKE MCF51AC128 ColdFire Microcontroller without CAN 128 / 16 80 LQFP –40°C to 85°CC MCF51AC128ACPUE MCF51AC128 ColdFire Microcontroller with CAN 128 / 32 64 LQFP –40°C to 85°C MCF51AC128CCPUE MCF51AC128 ColdFire Microcontroller without CAN 128 / 16 64 LQFP –40°C to 85°C MCF51AC128CCFGE MCF51AC128 ColdFire Microcontroller without CAN 128 / 16 44 LQFP –40°C to 85°C MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 Freescale Semiconductor 11 MCF51AC256 Family Configurations 1.5 Pinouts and Packaging 80-Pin LQFP 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 PTE4 / RGPIO4 / SS1 PTE5 / RGPIO5 / MISO1 PTE6 / RGPIO6 / MOSI1 PTE7 / RGPIO7 / SPSCK1 VSS VDD PTJ4 / DDATA0 PTJ5 / DDATA1 PTJ6 / DDATA2 PTJ7 / DDATA3 PTG0 / KBI1P0 PTG1 / KBI1P1 PTG2 / KBI1P2 •PTA0 / TxCAN •PTA1 / RxCAN PTA2 PTA3 / ACMP2O PTA4 / ACMP2– PTA5 / ACMP2+ PTA6 / AD1P16 PTC4 / SS2 IRQ / TPMCLK RESET PTF0 / RGPIO8 / FTM1CH2 PTF1 / RGPIO9 / FTM1CH3 PTF2 / RGPIO10 / FTM1CH4 PTF3 / RGPIO11 / FTM1CH5 PTF4 / RGPIO12 / FTM2CH0 PTC6 / FTM2FLT PTF7 / RGPIO15 PTF5 / RGPIO13 / FTM2CH1 PTF6 / RGPIO14 / FTM1FLT PTJ0 / PST0 PTJ1 / PST1 PTJ2 / PST2 PTJ3 / PST3 PTE0 / RGPIO0 / TxD1 PTE1 / RGPIO1 / RxD1 PTE2 / RGPIO2 / FTM1CH0 PTE3 / RGPIO3 / FTM1CH1 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 PTC5 / RxD2 PTC3 / TxD2 PTC2 / MCLK PTH6 / MISO2 PTH5 / MOSI2 PTH4 / SPSCK2 PTC1 / SDA1 PTC0 / SCL1 VDD VSS PTG6 / EXTAL PTG5 / XTAL BKGD / MS VREFL VREFH PTD7 / KBI1P7 / AD1P15 PTD6 / FTM1CLK / AD1P14 PTD5 / AD1P13 PTD4/FTM2CLK/AD1P12 PTG4 / KBI1P4 / AD1P19 Figure 2 shows the pinout of the 80-pin LQFP. PTG3 / KBI1P3 / AD1P18 PTD3 / KBI1P6 / AD1P11 PTD2 / KBI1P5 / AD1P10 / ACMP1O VSSA VDDA PTD1 / AD1P9 / ACMP1– PTD0 / AD1P8 / ACMP1+ PTB7 / AD1P7 PTB6 / AD1P6 PTB5 / AD1P5 PTB4 / AD1P4 PTB3 / AD1P3 PTB2 / AD1P2 PTB1 / TPM3CH1 / AD1P1 PTB0 / TPM3CH0 / AD1P0 PTH3 / FTM2CH5 / BKPT / AD1P23 PTH2 / FTM2CH4 / PSTCLK1 / AD1P22 PTH1 / FTM2CH3 / PSTCLK0 / AD1P21 PTH0 / FTM2CH2 / AD1P20 PTA7 / AD1P17 • TxCAN and RxCAN are not available in the members that do not support CAN Figure 2. MCF51AC256 Series ColdFire Microcontroller 80-Pin LQFP Figure 3 shows the pinout of the 64-pin LQFP and QFP. MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 12 Freescale Semiconductor 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 PTC5 / RxD2 PTC3 / TxD2 PTC2 / MCLK PTC1 / SDA1 PTC0 / SCL1 VSS PTG6 / EXTAL PTG5 / XTAL BKGD / MS VREFL VREFH PTD7 / KBI1P7 / AD1P15 PTD6 / FTM1CLK / AD1P14 PTD5 / AD1P13 PTD4 / FTM2CLK / AD1P12 PTG4 / KBI1P4 / AD1P19 MCF51AC256 Family Configurations 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 64-Pin QFP 64-Pin LQFP 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 PTG3 / KBI1P3 / AD1P18 PTD3 / KBI1P6 / AD1P11 PTD2 / KBI1P5 / AD1P10 /ACMP1O VSSA VDDA PTD1 / AD1P9 / ACMP1– PTD0 / AD1P8 / ACMP1+ PTB7 / AD1P7 PTB6 / AD1P6 PTB5 / AD1P5 PTB4 / AD1P4 PTB3 / AD1P3 PTB2 / AD1P2 PTB1 / TPM3CH1 / AD1P1 PTB0 / TPM3CH0 / AD1P0 PTA7 / AD1P17 PTE4 / RGPIO4 / SS1 PTE5 / RGPIO5 / MISO1 PTE6 / RGPIO6 / MOSI1 PTE7 / RGPIO7 / SPSCK1 VSS VDD PTG0 / KBI1P0 PTG1 / KBI1P1 PTG2 / KBI1P2 •PTA0 / TxCAN •PTA1 / RxCAN PTA2 PTA3 / ACMP2O PTA4 / ACMP2– PTA5 / ACMP2+ PTA6 / AD1P16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 PTC4 IRQ / TPMCLK RESET PTF0 / RGPIO8 / FTM1CH2 PTF1 / RGPIO9 / FTM1CH3 PTF2 / RGPIO10 / FTM1CH4 PTF3 / RGPIO11 / FTM1CH5 PTF4 / RGPIO12 / FTM2CH0 PTC6 / FTM2FLT PTF7 / RGPIO15 PTF5 / RGPIO13 / FTM2CH1 PTF6 / RGPIO14 / FTM1FLT PTE0 / RGPIO0 / TxD1 PTE1 / RGPIO1 / RxD1 PTE2 / RGPIO2 / FTM1CH0 PTE3 / RGPIO3 / FTM1CH1 • TxCAN and RxCAN are not available in the members that do not support CAN Figure 3. MCF51AC256 Series ColdFire Microcontroller 64-Pin QFP/LQFP Figure 4 shows the pinout of the 44-pin LQFP. MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 Freescale Semiconductor 13 PTC2/MCLK PTC1/SDA1 PTC0/SCL1 VSS PTG6/EXTAL PTG5/XTAL BKGD/MS VREFL 43 42 41 40 39 38 37 36 35 34 44 PTC4 1 VREFH PTC3/TxD2 PTC5/RxD2 MCF51AC256 Family Configurations 33 PTG3/KBI1P3/AD1P18 IRQ/TPMCLK 2 32 PTD3/KBI1P6/AD1P11 RESET 3 31 PTD2/KBI1P5/AD1P10/ACMP1O PTF0/RGPIO8/FTM1CH2 4 30 VSSA PTF1/RGPIO9/FTM1CH3 5 29 VDDA 28 PTD1/AD1P9/ACMP1- 44-Pin LQFP PTF4/RGPIO12/FTM2CH0 6 PTF5/RGPIO13/FTM2CH1 7 27 PTD0/AD1P8/ACMP1+ PTE0/RGPIO0/TxD1 8 26 PTB3/AD1P3 PTE1/RGPIO1/RxD1 9 25 PTB2/AD1P2 PTE2/RGPIO2/FTM1CH0 10 24 PTB1/TPM3CH1/AD1P1 PTE3/RGPIO3/FTM1CH1 11 13 14 15 16 17 18 19 20 •PTA0/TxCAN PTG2/KBI1P2 PTG1/KBI1P1 PTG0/KBI1P0 VDD VSS PTE7/RGPIO7/SPSCK1 PTE6/RGPIO6/MOSI1 PTE5/RGPIO5/MISO1 •PTA1/RxCAN 22 12 PTE4/RGPIO4/SS1 23 PTB0/TPM3CH0/AD1P0 21 • TxCAN and RxCAN are not available in the members that do not support CAN Figure 4. MCF51AC256 Series ColdFire Microcontroller 44-Pin LQFP Table 4 shows the package pin assignments. Table 4. Pin Availability by Package Pin-Count Pin Number Lowest Highest 80 64 44 Port Pin Alt 1 Alt 2 1 1 1 PTC4 SS2 2 2 2 IRQ TPMCLK1 3 3 3 RESET 4 4 4 PTF0 RGPIO8 FTM1CH2 5 5 5 PTF1 RGPIO9 FTM1CH3 6 6 — PTF2 RGPIO10 FTM1CH4 7 7 — PTF3 RGPIO11 FTM1CH5 Alt 3 MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 14 Freescale Semiconductor MCF51AC256 Family Configurations Table 4. Pin Availability by Package Pin-Count (continued) Pin Number Lowest Highest 80 64 44 Port Pin Alt 1 Alt 2 8 8 6 PTF4 RGPIO12 FTM2CH0 9 9 — PTC6 FTM2FLT 10 10 — PTF7 RGPIO15 11 11 7 PTF5 RGPIO13 FTM2CH1 12 12 — PTF6 RGPIO14 FTM1FLT 13 — — PTJ0 PST0 14 — — PTJ1 PST1 15 — — PTJ2 PST2 16 — — PTJ3 PST3 17 13 8 PTE0 RGPIO0 TxD1 18 14 9 PTE1 RGPIO1 RxD1 19 15 10 PTE2 RGPIO2 FTM1CH0 20 16 11 PTE3 RGPIO3 FTM1CH1 21 17 12 PTE4 RGPIO4 SS1 22 18 13 PTE5 RGPIO5 MISO1 23 19 14 PTE6 RGPIO6 MOSI1 24 20 15 PTE7 RGPIO7 SPSCK1 25 21 16 VSS 26 22 17 VDD 27 — — PTJ4 DDATA0 28 — — PTJ5 DDATA1 29 — — PTJ6 DDATA2 30 — — PTJ7 DDATA3 31 23 18 PTG0 KBI1P0 32 24 19 PTG1 KBI1P1 33 25 20 PTG2 KBI1P2 34 26 21 PTA0 TxCAN2 35 27 22 PTA1 RxCAN3 36 28 — PTA2 37 29 — PTA3 ACMP2O 38 30 — PTA4 ACMP2– Alt 3 39 31 — PTA5 ACMP2+ 40 32 — PTA6 AD1P16 41 33 — PTA7 AD1P17 42 — — PTH0 FTM2CH2 AD1P20 43 — — PTH1 FTM2CH3 PSTCLK0 AD1P21 44 — — PTH2 FTM2CH4 PSTCLK1 AD1P22 AD1P23 45 — — PTH3 FTM2CH5 BKPT 46 34 23 PTB0 TPM3CH0 AD1P0 AD1P1 47 35 24 PTB1 TPM3CH1 48 36 25 PTB2 AD1P2 MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 Freescale Semiconductor 15 MCF51AC256 Family Configurations Table 4. Pin Availability by Package Pin-Count (continued) Pin Number Lowest Highest 80 64 44 Port Pin Alt 1 Alt 2 49 37 26 PTB3 AD1P3 50 38 — PTB4 AD1P4 51 39 — PTB5 AD1P5 52 40 — PTB6 AD1P6 53 41 — PTB7 AD1P7 54 42 27 PTD0 AD1P8 ACMP1+ 55 43 28 PTD1 AD1P9 ACMP1– 56 44 29 VDDA 57 45 30 VSSA 58 46 31 PTD2 KBI1P5 AD1P10 59 47 32 PTD3 KBI1P6 AD1P11 60 48 33 PTG3 KBI1P3 AD1P18 61 49 — PTG4 KBI1P4 AD1P19 62 50 — PTD4 FTM2CLK AD1P12 63 51 — PTD5 AD1P13 64 52 — PTD6 FTM1CLK AD1P14 65 53 — PTD7 KBI1P7 AD1P15 66 54 34 VREFH 67 55 35 VREFL 68 56 36 BKGD MS 69 57 37 PTG5 XTAL EXTAL 70 58 38 PTG6 71 59 39 VSS 72 — — VDD 73 60 40 PTC0 74 61 41 PTC1 SDA1 75 — — PTH4 SPCK2 76 — — PTH5 MOSI2 77 — — PTH6 MISO2 Alt 3 ACMP1O SCL1 78 62 42 PTC2 MCLK 79 63 43 PTC3 TxD2 80 64 44 PTC5 RxD2 1 TPMCLK, FTM1CLK, and FTM2CLK options are configured via software; out of reset, FTM1CLK, FTM2CLK, and TPMCLK are available to FTM1, FTM2, and TPM3 respectively. 2 TxCAN is available in the member that supports CAN. 3 RxCAN is available in the member that supports CAN. MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 16 Freescale Semiconductor Electrical Characteristics 2 Electrical Characteristics This section contains electrical specification tables and reference timing diagrams for the MCF51AC256 microcontroller, including detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications. The electrical specifications are preliminary and are from previous designs or design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle. These specifications will, however, be met for production silicon. Finalized specifications will be published after complete characterization and device qualifications have been completed. NOTE The parameters specified in this data sheet supersede any values found in the module specifications. 2.1 Parameter Classification The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate: Table 5. Parameter Classifications P Those parameters are guaranteed during production testing on each individual device. C Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations. T Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category. D Those parameters are derived mainly from simulations. NOTE The classification is shown in the column labeled “C” in the parameter tables where appropriate. 2.2 Absolute Maximum Ratings Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 6 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section. This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either VSS or VDD). MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 Freescale Semiconductor 17 Electrical Characteristics Table 6. Absolute Maximum Ratings Rating Symbol Value Unit Supply voltage VDD –0.3 to 5.8 V Input voltage VIn –0.3 to VDD + 0.3 V Instantaneous maximum current Single pin limit (applies to all port pins)1, 2, 3 ID 25 mA Maximum current into VDD IDD 120 mA Storage temperature Tstg –55 to 150 C 1 Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (VDD) and negative (VSS) clamp voltages, then use the larger of the two resistance values. 2 All functional non-supply pins are internally clamped to VSS and VDD. 3 Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current conditions. If positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could result in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low which would reduce overall power consumption. 2.3 Thermal Characteristics This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and it is user-determined rather than being controlled by the MCU design. In order to take PI/O into account in power calculations, determine the difference between actual pin voltage and VSS or VDD and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and VSS or VDD will be very small. Table 7. Thermal Characteristics Rating Symbol Value Unit Operating temperature range (packaged) TA –40 to 105 C Maximum junction temperature TJ 150 C Thermal resistance 1,2,3,4 80-pin LQFP 51 38 1s 2s2p 64-pin LQFP 1s 2s2p JA 59 41 C/W 64-pin QFP 1s 2s2p 50 36 44-pin LQFP 1s 2s2p 67 45 MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 18 Freescale Semiconductor Electrical Characteristics 1 Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance 2 Junction to Ambient Natural Convection 3 1s — Single layer board, one signal layer 4 2s2p — Four layer board, 2 signal and 2 power layers The average chip-junction temperature (TJ) in C can be obtained from: TJ = TA + (PD  JA) Eqn. 1 where: TA = Ambient temperature, C JA = Package thermal resistance, junction-to-ambient, C/W PD = Pint PI/O Pint = IDD  VDD, Watts — chip internal power PI/O = Power dissipation on input and output pins — user determined For most applications, PI/O  Pint and can be neglected. An approximate relationship between PD and TJ (if PI/O is neglected) is: PD = K  (TJ + 273C) Eqn. 2 Solving Equation 1 and Equation 2 for K gives: K = PD  (TA + 273C) + JA  (PD)2 Eqn. 3 where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ can be obtained by solving Equation 1 and Equation 2 iteratively for any value of TA. 2.4 Electrostatic Discharge (ESD) Protection Characteristics Although damage from static discharge is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage. All ESD testing is in conformity with CDF-AEC-Q00 Stress Test Qualification for Automotive Grade Integrated Circuits. (http://www.aecouncil.com/) This device was qualified to AEC-Q100 Rev E. A device is considered to have failed if, after exposure to ESD pulses, the device no longer meets the device specification requirements. Complete dc parametric and functional testing is performed per the MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 Freescale Semiconductor 19 Electrical Characteristics applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification. Table 8. ESD and Latch-up Test Conditions Model Human body Charge device model Latch-up Description Symbol Value Unit Series resistance R1 1500  Storage capacitance C 100 pF Number of pulse per pin — 3 Series resistance R1 0  Storage capacitance C 0 pF Number of pulse per pin — 3 — Minimum input voltage limit — –2.5 V Maximum input voltage limit — 7.5 V Table 9. ESD and Latch-Up Protection Characteristics Num 2.5 Rating Symbol Min Max Unit 1 Human body model (HBM) VHBM ±2000 — V 2 Charge device model (CDM) VCDM ±500 — V 3 Latch-up current at TA = 85 C ILAT ±100 — mA DC Characteristics This section includes information about power supply requirements, I/O pin characteristics, and power supply current in various operating modes. Table 10. DC Characteristics Num C 1 2 Parameter Symbol — Operating voltage P Output high voltage — Low drive (PTxDSn = 0) 5 V, ILoad = –4 mA 3 V, ILoad = –2 mA 5 V, ILoad = –2 mA 3 V, ILoad = –1 mA Output high voltage — High drive (PTxDSn = 1) 5 V, ILoad = –15 mA 3 V, ILoad = –8 mA 5 V, ILoad = –8 mA 3 V, ILoad = –4 mA VOH Min Typical1 Max Unit 2.7 — 5.5 V VDD – 1.5 VDD – 1.5 VDD – 0.8 VDD – 0.8 — — — — — — — — VDD – 1.5 VDD – 1.5 VDD – 0.8 VDD – 0.8 — — — — — — — — V MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 20 Freescale Semiconductor Electrical Characteristics Table 10. DC Characteristics (continued) Num C 3 P Parameter Symbol Output low voltage — Low Drive (PTxDSn = 0) 5 V, ILoad = 4 mA 3 V, ILoad = 2 mA 5 V, ILoad = 2 mA 3 V, ILoad = 1 mA Output low voltage — High Drive (PTxDSn = 1) 5 V, ILoad = 15 mA 3 V, ILoad = 8 mA 5 V, ILoad = 8 mA 3 V, ILoad = 4 mA Min — Typical1 Max — 1.5 1.5 0.8 0.8 VOL — — 1.5 1.5 0.8 0.8 Unit V Output high current — Max total IOH for all ports 5V 3V IOHT — — 100 60 mA 5V 3V IOLT — — 100 60 mA P Input high voltage; all digital inputs VIH 0.65  VDD — — V 7 P Input low voltage; all digital inputs VIL — — 0.35  VDD V 8 D Input hysteresis; all digital inputs Vhys 0.06  VDD — — mV 9 P Input leakage current; input only pins2 |IIn| — 0.1 1 A |IOZ| — 0.1 1 A RPU 20 45 65 k 4 C 5 C 6 Output low current — Max total IOL for all ports 10 11 P High impedance (off-state) leakage current P Internal pullup resistors 2 3 4 12 P Internal pulldown resistors RPD 20 45 65 k 13 C Input capacitance; all non-supply pins CIn — — 8 pF 14 P POR rearm voltage VPOR 0.9 1.4 2.0 V 15 D POR rearm time tPOR 10 — — s 4.2 4.27 4.35 4.4 4.5 4.6 2.48 2.5 2.68 2.7 2.7 2.72 4.2 4.27 4.4 4.45 4.5 4.6 2.48 2.5 2.68 2.7 2.7 2.72 Vhys — 100 60 — VRAM — 0.6 1.0 16 17 18 P P P Low-voltage detection threshold — high range VDD falling VDD rising Low-voltage detection threshold — low range VDD falling VDD rising Low-voltage warning threshold — high range VDD falling VDD rising Low-voltage warning threshold low range 19 P 20 T 21 D RAM retention voltage VDD falling VDD rising VLVDH VLVDL VLVWH VLVWL V V V V Low-voltage inhibit reset/recover hysteresis 5V 3V mV V MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 Freescale Semiconductor 21 Electrical Characteristics Table 10. DC Characteristics (continued) Num C Parameter DC injection current5 6 7 8 Symbol 2 3 4 5 6 7 8 Max Unit 0 0 — 2 –0.2 mA D DC injection current (Total MCU limit, includes sum of all stressed pins) VIN >VDD VIN VDD) is greater than IDD, the injection current may flow out of VDD and could result in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption). All functional non-supply pins are internally clamped to VSS and VDD. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values. The RESET pin does not have a clamp diode to VDD. Do not drive this pin above VDD. –6.0E-3 VDD–VOH (V) Average of IOH –5.0E-3 -40C 25C –4.0E-3 105C IOH (A) 1 Typical1 (single pin limit) VIN >VDD VIN 4MHz fADCK < 4MHz C 8 C Analog source resistance 9 D RAS 8-bit mode (all valid fADCK) C D 10-bit mode fADCK > 4MHz fADCK < 4MHz ADC conversion clock frequency High speed (ADLPC = 0) Low power (ADLPC = 1) fADCK k Comment External to MCU MHz 0.4 — 4.0 Typical values assume VDDA = 5.0 V, Temp = 25 C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 2 DC potential difference. 1 MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 28 Freescale Semiconductor Electrical Characteristics SIMPLIFIED INPUT PIN EQUIVALENT CIRCUIT RAS CAS + – SIMPLIFIED CHANNEL SELECT CIRCUIT Pad leakage due to input protection ZAS VAS ZADIN RADIN ADC SAR ENGINE + VADIN – RADIN INPUT PIN RADIN INPUT PIN RADIN INPUT PIN CADIN Figure 10. ADC Input Impedance Equivalency Diagram Table 14. 5 Volt 12-bit ADC Characteristics (VREFH = VDDA, VREFL = VSSA) Symb Min Typical1 Max Unit T Supply current ADLPC = 1 ADLSMP = 1 ADCO = 1 IDDA — 133 — A T Supply current ADLPC = 1 ADLSM = 0 ADCO = 1 IDDA — 218 — A T Supply current ADLPC = 0 ADLSMP = 1 ADCO = 1 IDDA — 327 — A 4 D Supply current ADLPC = 0 ADLSMP = 0 ADCO = 1 IDDA — 0.582 1 mA 5 T Supply current Stop, reset, module off IDDA — 0.011 1 A 2 3.3 5 P ADC asynchronous clock source High speed (ADLPC = 0) 6 Num 1 2 3 C Characteristic Conditions Low power (ADLPC = 1) fADACK MHz 1.25 2 3.3 Comment tADACK = 1/fADACK MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 Freescale Semiconductor 29 Electrical Characteristics Table 14. 5 Volt 12-bit ADC Characteristics (VREFH = VDDA, VREFL = VSSA) (continued) Min Typical1 Max — 20 — — 40 — — 3.5 — — 23.5 — — 3.0 — — 1 2.5 8-bit mode — 0.5 1.0 12-bit mode — 1.75 — — 0.5 1.0 Num C Characteristic Conditions P Conversion time (including sample time) Short sample (ADLSMP = 0) 7 Long sample (ADLSMP = 1) Symb tADC Short sample (ADLSMP = 0) 8 T Sample time Long sample (ADLSMP = 1) T 9 P T Total unadjusted error T 10 11 12 13 P Differential non-linearity 15 12-bit mode 10-bit mode 10-bit mode3 ETUE DNL 8-bit mode3 — 0.3 0.5 T 12-bit mode — 1.5 — — 0.5 1.0 T Integral non-linearity 10-bit mode INL T 8-bit mode — 0.3 0.5 T 12-bit mode — 1.5 — — 0.5 1.5 P Zero-scale error 10-bit mode EZS T 8-bit mode — 0.5 0.5 T 12-bit mode — 1 — — 0.5 1 8-bit mode — 0.5 0.5 12-bit mode — –1 to 0 — — — 0.5 8-bit mode — — 0.5 12-bit mode — 1 — — 0.2 2.5 — 0.1 1 — 1.396 — — 3.266 — — 3.638 — P Full-scale error D D Quantization error Input leakage error 10-bit mode 10-bit mode 10-bit mode EFS EQ EIL 8-bit mode 16 D Temp sensor voltage 17 D Temp sensor slope 25C VTEMP25 –40 C–25 C 25 C–85 C m Comment ADCK cycles See Table 10 for conversion time variances ADCK cycles T T 14 tADS Unit LSB2 Includes quantizatio n LSB2 LSB2 LSB2 VADIN = VSSA LSB2 VADIN = VDDA LSB2 LSB2 Pad leakage4 * RAS V mV/C Typical values assume VDDA = 5.0 V, Temp = 25 C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 2 1 LSB = (V N REFH – VREFL)/2 . 1 MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 30 Freescale Semiconductor Electrical Characteristics 3 4 Monotonicity and No-Missing-Codes guaranteed in 10-bit and 8-bit modes Based on input pad leakage current. Refer to pad electricals. 2.9 External Oscillator (XOSC) Characteristics Table 15. Oscillator Electrical Specifications (Temperature Range = –40 to 105 C Ambient) C Rating Symbol Min Typical1 Max Unit 1 C Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) High range (RANGE = 1) FEE or FBE mode2 High range (RANGE = 1) PEE or PBE mode3 High range (RANGE = 1, HGO = 1) BLPE mode High range (RANGE = 1, HGO = 0) BLPE mode flo fhi-fll fhi-pll fhi-hgo fhi-lp 32 1 1 1 1 — — — — — 38.4 5 16 16 8 kHz MHz MHz MHz MHz 2 — Load capacitors 3 — Num C1 C2 See crystal or resonator manufacturer’s recommendation. Feedback resistor Low range (32 kHz to 38.4 kHz) High range (1 MHz to 16 MHz) RF 10 1 M Series resistor 4 5 6 Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0) High range, high gain (RANGE = 1, HGO = 1)  8 MHz  MHz  MHz — T T Crystal start-up time 4 Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0)5 High range, high gain (RANGE = 1, HGO = 1)5 Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) FEE or FBE mode 2 PEE or PBE mode 3 BLPE mode RS t t t CSTL-LP CSTL-HGO t CSTH-LP CSTH-HGO fextal — — — 0 100 0 — — — — — — 0 0 0 0 10 20 — — — — 200 400 5 15 — — — — 0.03125 1 0 — — — 5 16 40 k ms MHz Data in Typical column was characterized at 5.0 V, 25 C or is typical recommended value. When MCG is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz. 3 When MCG is configured for PEE or PBE mode, input clock source must be divisible using RDIV to within the range of 1 MHz to 2 MHz. 4 This parameter is characterized and not tested on each device. Proper PC board layout procedures must be followed to achieve specifications. 5 4 MHz crystal 1 2 MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 Freescale Semiconductor 31 Electrical Characteristics MCU EXTAL XTAL RS RF C1 2.10 Crystal or Resonator C2 MCG Specifications Table 16. MCG Frequency Specifications (Temperature Range = –40 to 105 C Ambient) Num C Rating Internal reference frequency — factory trimmed at VDD = 5 V and temperature = 25 C Symbol Min Typical1 Max Unit fint_ft — 32.768 — kHz 31.25 — 39.0625 kHz — 60 100 s 16 — 20 1 C 2 C Average internal reference frequency — untrimmed fint_ut T Internal reference startup time tirefst 3 Low range (DRS=00) C C DCO output frequency range — untrimmed 2 32 — 40 48 — 60 — 16.82 — — 33.69 — — 50.48 — fdco_res_t — 0.1 0.2 %fdco Resolution of trimmed DCO output frequency at fixed voltage and temperature (not using FTRIM) fdco_res_t — 0.2 0.4 %fdco D Total deviation of trimmed DCO output frequency over voltage and temperature fdco_t — 0.5 –1.0 2 %fdco 9 D Total deviation of trimmed DCO output frequency over fixed voltage and temperature range of 0–70 C fdco_t — 0.5 1 %fdco 10 D FLL acquisition time3 tfll_acquire — — 1 ms 11 D PLL acquisition time4 tpll_acquire — — 1 ms 12 Long term jitter of DCO output clock (averaged over D 2ms interval) 5 CJitter — 0.02 0.2 %fdco 13 D VCO operating frequency fvco 7.0 — 55.0 MHz 4 Mid range (DRS=01) C High range (DRS=10) Low range (DRS=00) 5 P DCO output frequency2 P reference =32768Hz P and DMX32 = 1 6 Resolution of trimmed DCO output frequency at fixed D voltage and temperature (using FTRIM) 7 D 8 Mid range (DRS=01) fdco_ut fdco_DMX32 High range (DRS=10) 16 D Jitter of PLL output clock measured over 625 17 D Lock entry frequency tolerance 7 ns6 6 MHz MHz fpll_jitter_625ns — 0.566 — %fpll Dlock 1.49 — 2.98 % MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 32 Freescale Semiconductor Electrical Characteristics Table 16. MCG Frequency Specifications (continued)(Temperature Range = –40 to 105 C Ambient) Num C 18 1 2 3 4 5 6 7 8 Rating D Lock exit frequency tolerance 8 Symbol Min Typical1 Dunl 4.47 Max Unit — 5.97 % tfll_acquire+ 1075(1/fint_t) s 19 D Lock time — FLL tfll_lock — — 20 D Lock time — PLL tpll_lock — — 21 Loss of external clock minimum frequency — D RANGE = 0 floc_low (3/5)  fint — tpll_acquire+ 1075(1/fpll_ref) — s kHz Data in Typical column was characterized at 5.0 V, 25 C or is typical recommended value. The resulting bus clock frequency must not exceed the maximum specified bus clock frequency of the device. This specification applies when the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running. This specification applies when the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fBUS. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via VDD and VSS and variation in crystal oscillator frequency increase the CJitter percentage for a given interval. 625 ns represents 5 time quanta for CAN applications, under worst case conditions of 8 MHz CAN bus clock, 1 Mbps CAN bus speed, and 8 time quanta per bit for bit time settings. 5 time quanta is the minimum time between a synchronization edge and the sample point of a bit using 8 time quanta per bit. Below Dlock minimum, the MCG enters lock. Above Dlock maximum, the MCG will not enter lock. But if the MCG is already in lock, then the MCG may stay in lock. Below Dunl minimum, the MCG will not exit lock if already in lock. Above Dunl maximum, the MCG is guaranteed to exit lock. o 2.11 AC Characteristics This section describes ac timing characteristics for each peripheral system. MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 Freescale Semiconductor 33 Electrical Characteristics 2.11.1 Control Timing Table 17. Control Timing Num C 1 D 2 D Symbol Min Typical1 Max Unit Bus frequency (tcyc = 1/fBus) fBus dc — 24 MHz Internal low-power oscillator period tLPO 800 — 1500 s Parameter 2 3 D External reset pulse width (tcyc = 1/fSelf_reset) textrst 100 — — ns 4 D Reset low drive trstdrv 66  tcyc — — ns 5 D Active background debug mode latch setup time tMSSU 500 — — ns 6 D Active background debug mode latch hold time tMSH 100 — — ns 7 D Asynchronous path2 Synchronous path3 tILIH, tIHIL 100 1.5  tcyc — — ns 8 D Asynchronous path2 Synchronous path3 tILIH, tIHIL 100 1.5  tcyc — — ns D Port rise and fall time (load = 50 pF)4 Slew rate control disabled (PTxSE = 0), Low Drive Slew rate control enabled (PTxSE = 1), Low Drive Slew rate control disabled (PTxSE = 0), Low Drive Slew rate control enabled (PTxSE = 1), Low Drive tRise, tFall — — — — 11 35 40 75 — ns IRQ pulse width KBIPx pulse width 9 Typical values are based on characterization data at VDD = 5.0 V, 25 C unless otherwise stated. This is the shortest pulse that is guaranteed to be recognized as a reset pin request. Shorter pulses are not guaranteed to override reset requests from internal sources. 3 This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case. 4 Timing is shown with respect to 20% V DD and 80% VDD levels. Temperature range –40 C to 105 C. 1 2 textrst RESET PIN Figure 11. Reset Timing tIHIL IRQ/KBIPx IRQ/KBIPx tILIH Figure 12. IRQ/KBIPx Timing MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 34 Freescale Semiconductor Electrical Characteristics 2.11.2 Timer (TPM/FTM) Module Timing Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock. Table 18. TPM/FTM Input Timing NUM C 1 — 2 Function Symbol Min Max Unit External clock frequency fTPMext DC fBus/4 MHz — External clock period tTPMext 4 — tcyc 3 D External clock high time tclkh 1.5 — tcyc 4 D External clock low time tclkl 1.5 — tcyc 5 D Input capture pulse width tICPW 1.5 — tcyc tTPMext tclkh TPMxCLK tclkl Figure 13. Timer External Clock tICPW TPMxCHn TPMxCHn tICPW Figure 14. Timer Input Capture Pulse 2.11.3 MSCAN Table 19. MSCAN Wake-Up Pulse Characteristics 1 Num C 1 D 2 D Symbol Min Typical1 Max Unit MSCAN wake-up dominant pulse filtered tWUP — — 2 s MSCAN wake-up dominant pulse pass tWUP 5 — 5 s Parameter Typical values are based on characterization data at VDD = 5.0 V, 25 C unless otherwise stated. MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 Freescale Semiconductor 35 Electrical Characteristics 2.12 SPI Characteristics Table 20 and Figure 15 through Figure 18 describe the timing requirements for the SPI system. Table 20. SPI Timing No. C Function Symbol Min Max Unit — D Operating frequency Master Slave fop fBus/2048 0 fBus/2 fBus/4 Hz 1 D SPSCK period Master Slave tSPSCK 2 4 2048 — tcyc tcyc 2 D Enable lead time Master Slave tLead 12 1 — — tSPSCK tcyc 3 D Enable lag time Master Slave tLag 12 1 — — tSPSCK tcyc 4 D Clock (SPSCK) high or low time Master Slave tWSPSCK tcyc –30 tcyc – 30 1024 tcyc — ns ns 5 D Data setup time (inputs) Master Slave tSU 15 15 — — ns ns 6 D Data hold time (inputs) Master Slave tHI 0 25 — — ns ns 7 D Slave access time ta — 1 tcyc 8 D Slave MISO disable time tdis — 1 tcyc 9 D Data valid (after SPSCK edge) Master Slave tv — — 25 25 ns ns 10 D Data hold time (outputs) Master Slave tHO 0 0 — — ns ns 11 D Rise time Input Output tRI tRO — — tcyc – 25 25 ns ns 12 D Fall time Input Output tFI tFO — — tcyc – 25 25 ns ns MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 36 Freescale Semiconductor Electrical Characteristics SS1 (OUTPUT) 11 1 2 SPSCK (CPOL = 0) (OUTPUT) 3 4 4 12 SPSCK (CPOL = 1) (OUTPUT) 5 MISO (INPUT) 6 MSB IN2 BIT 6 . . . 1 9 MOSI (OUTPUT) LSB IN 10 9 MSB OUT2 BIT 6 . . . 1 LSB OUT NOTES: 1. SS output mode (DDS7 = 1, SSOE = 1). 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 15. SPI Master Timing (CPHA = 0) SS(1) (OUTPUT) 1 2 12 11 11 12 3 SPSCK (CPOL = 0) (OUTPUT) 4 4 SPSCK (CPOL = 1) (OUTPUT) 5 MISO (INPUT) 6 MSB IN(2) LSB IN 10 9 MOSI (OUTPUT) PORT DATA BIT 6 . . . 1 MASTER MSB OUT(2) BIT 6 . . . 1 MASTER LSB OUT PORT DATA NOTES: 1. SS output mode (DDS7 = 1, SSOE = 1). 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 16. SPI Master Timing (CPHA =1) MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 Freescale Semiconductor 37 Electrical Characteristics SS (INPUT) 1 12 11 11 12 3 SPSCK (CPOL = 0) (INPUT) 2 4 4 SPSCK (CPOL = 1) (INPUT) 8 7 MISO (OUTPUT) SLAVE LSB OUT SEE NOTE 6 5 MOSI (INPUT) BIT 6 . . . 1 MSB OUT SLAVE 10 10 9 BIT 6 . . . 1 MSB IN LSB IN NOTE: 1. Not defined but normally MSB of character just received Figure 17. SPI Slave Timing (CPHA = 0) SS (INPUT) 1 3 2 SPSCK (CPOL = 0) (INPUT) 4 SPSCK (CPOL = 1) (INPUT) 4 SEE NOTE 7 MOSI (INPUT) SLAVE 11 11 12 10 9 MISO (OUTPUT) 12 MSB OUT 5 8 BIT 6 . . . 1 SLAVE LSB OUT 6 MSB IN BIT 6 . . . 1 LSB IN NOTE: 1. Not defined but normally LSB of character just received Figure 18. SPI Slave Timing (CPHA = 1) 2.13 Flash Specifications This section provides details about program/erase times and program-erase endurance for the Flash memory. Program and erase operations do not require any special power sources other than the normal VDD supply. For more detailed information about program/erase operations, see Chapter 4, “Memory.” MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 38 Freescale Semiconductor Electrical Characteristics Table 21. Flash Characteristics Symbol Min Typical1 Max Unit Supply voltage for program/erase Vprog/erase 2.7 — 5.5 V — Supply voltage for read operation VRead 2.7 — 5.5 V 3 — Internal FCLK frequency2 fFCLK 150 — 200 kHz 4 — Internal FCLK period (1/FCLK) tFcyc 5 — 6.67 s 5 — Byte program time (random location)2 tprog 9 tFcyc 6 — Byte program time (burst mode)2 tBurst 4 tFcyc 7 — Page erase time3 tPage 4000 tFcyc 8 — Mass erase time2 tMass 20,000 tFcyc 9 C Program/erase endurance4 TL to TH = –40 C to 105 C T = 25 C 10 C Data retention5 Num C 1 — 2 Characteristic — 10,000 — — 100,000 — — cycles tD_ret 15 100 — years Typical values are based on characterization data at VDD = 5.0 V, 25 C unless otherwise stated. The frequency of this clock is controlled by a software setting. 3 These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase. 4 Typical endurance for flash was evaluated for this product family on the 9S12Dx64. For additional information on how Freescale Semiconductor defines typical endurance, please refer to Engineering Bulletin EB619/D, Typical Endurance for Nonvolatile Memory. 5 Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25C using the Arrhenius equation. For additional information on how Freescale Semiconductor defines typical data retention, please refer to Engineering Bulletin EB618/D, Typical Data Retention for Nonvolatile Memory. 1 2 2.14 EMC Performance Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance. 2.14.1 Radiated Emissions Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM Cell method in accordance with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller are measured in a TEM cell in two package orientations (North and East). For more detailed information concerning the evaluation results, conditions and setup, please refer to the EMC Evaluation Report for this device. MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 Freescale Semiconductor 39 Mechanical Outline Drawings 3 Mechanical Outline Drawings Table 22 provides the available package types and their document numbers. The latest package outline/mechanical drawings are available on the MCF51AC256 Series Product Summary pages at http://www.freescale.com. To view the latest drawing, either: • Click on the appropriate link in Table 22, or • Open a browser to the FreescaleÆ website (http://www.freescale.com), and enter the appropriate document number (from Table 22) in the “Enter Keyword” search box at the top of the page. Table 22. Package Information Pin Count Type Document No. 80 LQFP 98ARL10530D 64 LQFP 98ASS23234W 64 QFP 98ASB42844B 44 LQFP 98ASS23225W MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 40 Freescale Semiconductor Revision History 4 Revision History Table 23. Revision History Revision Description 1 Initial published 2 Updated ADC channels, Item 1, 4-5 on Table 2.10 3 Completed all theTBDs. Changed RTC to RTI in Figure 1. Corrected the block diagram. Changed VDDAD to VDDA, VSSAD to VSSA. Added charge device model data and removed machine data in Table 8. Updated the specifications of VLVDH, VLVDL, VLVWH and VLVWL in Table 10. Updated S2IDD, S3IDD in Table 11. Added C column in Table 14. Updated fdco_DMX32 in Table 16. 4 Corrected the expansion of SPI to serial peripheral interface. 5 Updated VLVDL in the Table 10. Updated RIDD in the Table 11. 6 Updated VLVDH, VLVDL, VLVWH and VLVWL in the Table 10. Added LPO on the Figure 1 and LPO features in the Section 1.3, “Features.” 7 Added 44-pin LQFP package information for AC256 and AC128. MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 Freescale Semiconductor 41 How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008-2010. All rights reserved. MCF51AC256 Rev.7 9/2011
MCF51AC128CCFUER 价格&库存

很抱歉,暂时无法提供与“MCF51AC128CCFUER”相匹配的价格&库存,您可以联系我们找货

免费人工找货