0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MRF6V14300HSR5

MRF6V14300HSR5

  • 厂商:

    NXP(恩智浦)

  • 封装:

    NI-780S

  • 描述:

    FET RF 100V 1.4GHZ NI780S

  • 详情介绍
  • 数据手册
  • 价格&库存
MRF6V14300HSR5 数据手册
Freescale Semiconductor Technical Data Document Number: MRF6V14300H Rev. 3, 4/2010 RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs MRF6V14300HR3 MRF6V14300HSR3 RF Power transistors designed for applications operating at frequencies between 1200 and 1400 MHz, 1% to 12% duty cycle. These devices are suitable for use in pulsed applications. • Typical Pulsed Performance: VDD = 50 Volts, IDQ = 150 mA, Pout = 330 Watts Peak (39.6 W Avg.), f = 1400 MHz, Pulse Width = 300 μsec, Duty Cycle = 12% Power Gain — 18 dB Drain Efficiency — 60.5% • Capable of Handling 5:1 VSWR, @ 50 Vdc, 1400 MHz, 330 Watts Peak Power 1400 MHz, 330 W, 50 V PULSED LATERAL N--CHANNEL RF POWER MOSFETs Features • Characterized with Series Equivalent Large--Signal Impedance Parameters • Internally Matched for Ease of Use • Qualified Up to a Maximum of 50 VDD Operation • Integrated ESD Protection • Greater Negative Gate--Source Voltage Range for Improved Class C Operation • RoHS Compliant • In Tape and Reel. R3 Suffix = 250 Units per 56 mm, 13 inch Reel. CASE 465--06, STYLE 1 NI--780 MRF6V14300HR3 CASE 465A--06, STYLE 1 NI--780S MRF6V14300HSR3 Table 1. Maximum Ratings Rating Symbol Value Unit Drain--Source Voltage VDSS --0.5, +100 Vdc Gate--Source Voltage VGS --6.0, +10 Vdc Storage Temperature Range Tstg -- 65 to +150 °C Case Operating Temperature TC 150 °C Operating Junction Temperature (1,2) TJ 225 °C Symbol Value (2,3) Unit ZθJC 0.13 °C/W Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 65°C, 330 W Pulsed, 300 μsec Pulse Width, 12% Duty Cycle 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes -- AN1955. © Freescale Semiconductor, Inc., 2008, 2010. All rights reserved. RF Device Data Freescale Semiconductor MRF6V14300HR3 MRF6V14300HSR3 1 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 1C (Minimum) Machine Model (per EIA/JESD22--A115) A (Minimum) Charge Device Model (per JESD22--C101) IV (Minimum) Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit IGSS — — 10 μAdc 100 — — Vdc Off Characteristics Gate--Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) Drain--Source Breakdown Voltage (VGS = 0 Vdc, ID = 100 mA) V(BR)DSS Zero Gate Voltage Drain Leakage Current (VDS = 50 Vdc, VGS = 0 Vdc) IDSS — — 50 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 90 Vdc, VGS = 0 Vdc) IDSS — — 2.5 mA Gate Threshold Voltage (VDS = 10 Vdc, ID = 662 μAdc) VGS(th) 0.9 1.6 2.4 Vdc Gate Quiescent Voltage (VDD = 50 Vdc, ID = 150 mAdc, Measured in Functional Test) VGS(Q) 1.5 2.4 3 Vdc Drain--Source On--Voltage (VGS = 10 Vdc, ID = 1.63 Adc) VDS(on) — 0.26 — Vdc Reverse Transfer Capacitance (VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss — 0.6 — pF Output Capacitance (VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Coss — 350 — pF Input Capacitance (VDS = 50 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz) Ciss — 330 — pF On Characteristics Dynamic Characteristics (1) Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 150 mA, Pout = 330 W Peak (39.6 W Avg.), f = 1400 MHz, Pulsed, 300 μsec Pulse Width, 12% Duty Cycle Power Gain Gps 16.5 18 19.5 dB Drain Efficiency ηD 59(2) 60.5(2) — % Input Return Loss IRL — --12 --9 dB Pulsed RF Performance (In Freescale Application Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 150 mA, Pout = 330 W Peak (39.6 W Avg.), f1 = 1200 MHz, f2 = 1300 MHz and f3 = 1400 MHz, Pulsed, 300 μsec Pulse Width, 12% Duty Cycle, tr = 50 ns Relative Insertion Phase |∆Φ| — 10 — ° Gain Flatness GF — 0.5 — dB Pulse Amplitude Droop Drp — 0.3 — dB Harmonic 2nd and 3rd H2 & H3 — --20 — dBc — --65 — dBc Spurious Response Load Mismatch Stability (VSWR = 3:1 at all Phase Angles) VSWR--S All Spurs Below --60 dBc Load Mismatch Tolerance (VSWR = 5:1 at all Phase Angles) VSWR--T No Degradation in Output Power 1. Part internally matched both on input and output. 2. Drain efficiency is calculated by: η = 100 × P out where: Ipeak = (IAVG -- IDQ) / Duty Cycle (%) + IDQ. D V DD × I peak MRF6V14300HR3 MRF6V14300HSR3 2 RF Device Data Freescale Semiconductor C3 VBIAS R1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 C6 C7 Z23 C8 Z22 Z13 Z1 + C4 + C9 RF INPUT C5 VSUPPLY + Z9 Z10 Z11 C1 Z14 Z15 Z16 Z17 Z18 Z19 Z20 Z21 RF OUTPUT C2 Z12 DUT Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 Z12 0.205″ x 0.080″ Microstrip 0.721″ x 0.022″ Microstrip 0.080″ x 0.104″ Microstrip 0.128″ x 0.022″ Microstrip 0.062″ x 0.134″ Microstrip 0.440″ x 0.022″ Microstrip 0.262″ x 0.496″ Microstrip 0.030″ x 0.138″ Microstrip 0.256″ x 0.028″ Microstrip 0.058″ x 0.254″ Microstrip 0.344″ x 0.087″ Microstrip 0.110″ x 0.087″ Microstrip Z13 Z14 Z15 Z16 Z17 Z18 Z19 Z20 Z21 Z22 Z23 PCB 0.110″ x 0.866″ Microstrip 0.630″ x 0.866″ Microstrip 0.307″ x 0.470″ Microstrip 0.045″ x 0.221″ Microstrip 0.171″ x 0.136″ Microstrip 0.120″ x 0.430″ Microstrip 0.964″ x 0.136″ Microstrip 0.177″ x 0.078″ Microstrip 0.215″ x 0.078″ Microstrip 1.577″ x 0.070″ Microstrip 1.459″ x 0.070″ Microstrip Arlon CuClad 250GX--0300--55--22, 0.030″, εr = 2.55 Figure 1. MRF6V14300HR3(HSR3) Test Circuit Schematic Table 5. MRF6V14300HR3(HSR3) Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1 43 pF Chip Capacitor ATC100B430JT500XT ATC C2 18 pF Chip Capacitor ATC100B180JT500XT ATC C3 33 pF Chip Capacitor ATC100B330JT500XT ATC C4 27 pF Chip Capacitor ATC100B270JT500XT ATC C5 2.2 μF, 100 V Chip Capacitor 2225X7R225KT3AB ATC C6 470 μF, 63 V Electrolytic Capacitor EMVY630GTR471MMH0S Multicomp C7 330 pF, 63 V Electrolytic Capacitor EMVY630GTR331MMH0S Multicomp C8 0.1 μF, 35 V Chip Capacitor CDR33BX104AKYS Kemet C9 10 μF, 35 V Tantalum Capacitor T491D106K035AT Kemet R1 10 Ω, 1/4 W Chip Resistor CRCW120610R0FKEA Vishay MRF6V14300HR3 MRF6V14300HSR3 RF Device Data Freescale Semiconductor 3 C9 C3 C4 C8 C6 C5 R1 C7 C2 CUT OUT AREA C1 MRF6V14300 Rev. 1 Figure 2. MRF6V14300HR3(HSR3) Test Circuit Component Layout MRF6V14300HR3 MRF6V14300HSR3 4 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS 160 Coss Ciss 100 MAXIMUM OPERATING Tcase (°C) C, CAPACITANCE (pF) 1000 Measured with ±30 mV(rms)ac @ 1 MHz VGS = 0 Vdc 10 Crss 1 140 120 100 Pout = 300 W 80 40 VDD = 50 Vdc, IDQ = 150 mA f = 1200 MHz, Pulse Width = 300 μsec 20 0 0.1 0 10 20 30 40 0 50 6 8 10 12 14 16 DUTY CYCLE (%) Figure 3. Capacitance versus Drain--Source Voltage Figure 4. Safe Operating Area 24 65 22 55 59 58 20 45 ηD 35 18 VDD = 50 Vdc, IDQ = 150 mA, f = 1400 MHz Pulse Width = 300 μsec, Duty Cycle = 12% 16 50 Pout, OUTPUT POWER (dBm) Gps ηD, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) 4 2 VDS, DRAIN--SOURCE VOLTAGE (VOLTS) 57 25 100 56 55 400 P1dB = 54.77 dBm (300 W) Actual 51 50 49 VDD = 50 Vdc, IDQ = 150 mA, f = 1400 MHz Pulse Width = 300 μsec, Duty Cycle = 12% 29 31 33 35 37 Pout, OUTPUT POWER (WATTS) PULSED Pin, INPUT POWER (dBm) PULSED Figure 5. Pulsed Power Gain and Drain Efficiency versus Output Power Figure 6. Pulsed Output Power versus Input Power 22 21 21 Gps, POWER GAIN (dB) IDQ = 600 mA 20 300 mA 150 mA 450 mA 19 18 17 50 100 400 39 IDQ = 150 mA, f = 1400 MHz Pulse Width = 300 μsec Duty Cycle = 12% 20 19 18 17 35 V 16 VDD = 50 Vdc, f = 1400 MHz Pulse Width = 300 μsec, Duty Cycle = 12% 20 18 Ideal P3dB = 55.30 dBm (339 W) 54 53 52 48 47 27 22 Gps, POWER GAIN (dB) Pout = 270 W Pout = 330 W 60 15 50 40 V 45 V 50 V VDD = 30 V 100 Pout, OUTPUT POWER (WATTS) PULSED Pout, OUTPUT POWER (WATTS) PULSED Figure 7. Pulsed Power Gain versus Output Power Figure 8. Pulsed Power Gain versus Output Power 400 MRF6V14300HR3 MRF6V14300HSR3 RF Device Data Freescale Semiconductor 5 TYPICAL CHARACTERISTICS 25_C 55_C 25_C 300 Gps, POWER GAIN (dB) 85_C 200 100 22 20 25_C 85_C 1 2 3 4 5 6 ηD 55_C 34 VDD = 50 Vdc, IDQ = 150 mA, f = 1400 MHz Pulse Width = 300 μsec, Duty Cycle = 12% 16 50 100 Pin, INPUT POWER (WATTS) PULSED 22 400 Pout, OUTPUT POWER (WATTS) PULSED Figure 9. Pulsed Output Power versus Input Power Figure 10. Pulsed Power Gain and Drain Efficiency versus Output Power 63 19 18 Gps 62 17 Gps, POWER GAIN (dB) 58 61 16 60 ηD 15 59 14 0 13 --5 IRL --10 12 --15 11 10 9 1200 VDD = 50 Vdc, IDQ = 150 mA, Pout = 330 W Peak (39.6 W Avg.) Pulse Width = 300 μsec, Duty Cycle = 12% 1225 1250 1275 1300 1325 1350 1375 --20 --25 1400 ηD, DRAIN EFFICIENCY (%) 0 70 46 18 VDD = 50 Vdc, IDQ = 150 mA, f = 1400 MHz Pulse Width = 300 μsec, Duty Cycle = 12% 0 85_C Gps TC = --30_C --30_C IRL, INPUT RETURN LOSS (dB) Pout, OUTPUT POWER (WATTS) PULSED TC = --30_C ηD, DRAIN EFFICIENCY (%) 24 400 f, FREQUENCY (MHz) Figure 11. Broadband Performance @ Pout = 330 Watts Peak MTTF (HOURS) 108 107 106 105 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours when the device is operated at VDD = 50 Vdc, Pout = 330 W Peak, Pulse Width = 300 μsec, Duty Cycle = 12%, and ηD = 60.5%. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. Figure 12. MTTF versus Junction Temperature MRF6V14300HR3 MRF6V14300HSR3 6 RF Device Data Freescale Semiconductor Zo = 10 Ω f = 1400 MHz f = 1400 MHz Zload Zsource f = 1200 MHz f = 1200 MHz VDD = 50 Vdc, IDQ = 150 mA, Pout = 330 W Peak f MHz Zsource Ω Zload Ω 1200 2.70 -- j4.10 2.97 -- j2.66 1300 4.93 -- j2.66 2.85 -- j2.40 1400 7.01 -- j2.87 3.17 -- j1.78 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Input Matching Network Z source Z load Figure 13. Series Equivalent Source and Load Impedance MRF6V14300HR3 MRF6V14300HSR3 RF Device Data Freescale Semiconductor 7 PACKAGE DIMENSIONS B G Q bbb 2X 1 T A M M B M NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M--1994. 2. CONTROLLING DIMENSION: INCH. 3. DELETED 4. DIMENSION H IS MEASURED 0.030 (0.762) AWAY FROM PACKAGE BODY. 3 B K 2 (FLANGE) D bbb M T A M B M M R (INSULATOR) bbb N T A M M B M ccc M T A M S (LID) ccc H T A M M B M aaa M T A M (LID) B M (INSULATOR) B M C F E A SEATING PLANE T A CASE 465--06 ISSUE G NI--780 MRF6V14300HR3 (FLANGE) DIM A B C D E F G H K M N Q R S aaa bbb ccc INCHES MIN MAX 1.335 1.345 0.380 0.390 0.125 0.170 0.495 0.505 0.035 0.045 0.003 0.006 1.100 BSC 0.057 0.067 0.170 0.210 0.774 0.786 0.772 0.788 .118 .138 0.365 0.375 0.365 0.375 0.005 REF 0.010 REF 0.015 REF MILLIMETERS MIN MAX 33.91 34.16 9.65 9.91 3.18 4.32 12.57 12.83 0.89 1.14 0.08 0.15 27.94 BSC 1.45 1.70 4.32 5.33 19.66 19.96 19.60 20.00 3.00 3.51 9.27 9.53 9.27 9.52 0.127 REF 0.254 REF 0.381 REF STYLE 1: PIN 1. DRAIN 2. GATE 3. SOURCE 4X U (FLANGE) 4X Z (LID) B 1 K 2X 2 B (FLANGE) NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M--1994. 2. CONTROLLING DIMENSION: INCH. 3. DELETED 4. DIMENSION H IS MEASURED 0.030 (0.762) AWAY FROM PACKAGE BODY. D bbb M T A M B M N (LID) ccc M M T A M B R M ccc M T A S (INSULATOR) bbb M T A M M B M aaa M T A M (LID) B M (INSULATOR) B M H C 3 E A A F T SEATING PLANE (FLANGE) CASE 465A--06 ISSUE H NI--780S MRF6V14300HSR3 DIM A B C D E F H K M N R S U Z aaa bbb ccc INCHES MIN MAX 0.805 0.815 0.380 0.390 0.125 0.170 0.495 0.505 0.035 0.045 0.003 0.006 0.057 0.067 0.170 0.210 0.774 0.786 0.772 0.788 0.365 0.375 0.365 0.375 -----0.040 -----0.030 0.005 REF 0.010 REF 0.015 REF MILLIMETERS MIN MAX 20.45 20.70 9.65 9.91 3.18 4.32 12.57 12.83 0.89 1.14 0.08 0.15 1.45 1.70 4.32 5.33 19.61 20.02 19.61 20.02 9.27 9.53 9.27 9.52 -----1.02 -----0.76 0.127 REF 0.254 REF 0.381 REF STYLE 1: PIN 1. DRAIN 2. GATE 5. SOURCE MRF6V14300HR3 MRF6V14300HSR3 8 RF Device Data Freescale Semiconductor PRODUCT DOCUMENTATION AND SOFTWARE Refer to the following documents to aid your design process. Application Notes • AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices Software • Electromigration MTTF Calculator • RF High Power Model For Software, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software & Tools tab on the part’s Product Summary page to download the respective tool. REVISION HISTORY The following table summarizes revisions to this document. Revision Date Description 0 Sept. 2008 • Initial Release of Data Sheet 1 Oct. 2008 • Added footnote to describe the formula used to calculate values for Min and Typ Drain Efficiency in the Functional Test table, p. 2 • Updated Fig. 4, Safe Operating Area, to show additional curves for 270 W and 300 W output power, p. 5 • Added Fig. 12, MTTF versus Junction Temperature, p. 6 2 Nov. 2008 • Changed “multiply by” symbol to “divide by” symbol in the Functional Test Drain Efficiency formula footnote, p. 2 3 Apr. 2010 • Operating Junction Temperature increased from 200°C to 225°C in Maximum Ratings table and related “Continuous use at maximum temperature will affect MTTF” footnote added, p. 1 • Reporting of pulsed thermal data now shown using the ZθJC symbol, p. 1 • Added Electromigration MTTF Calculator and RF High Power Model availability to Product Software, p. 9 MRF6V14300HR3 MRF6V14300HSR3 RF Device Data Freescale Semiconductor 9 How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1--800--521--6274 or +1--480--768--2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1--8--1, Shimo--Meguro, Meguro--ku, Tokyo 153--0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1--800--441--2447 or +1--303--675--2140 Fax: +1--303--675--2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008, 2010. All rights reserved. MRF6V14300HR3 MRF6V14300HSR3 Document Number: MRF6V14300H Rev. 3, 4/2010 10 RF Device Data Freescale Semiconductor
MRF6V14300HSR5
物料型号:MRF6V14300HR3 和 MRF6V14300HSR3

器件简介:这些是NXP Freescale Semiconductor生产的射频功率场效应晶体管(RF Power Field Effect Transistors),专为1200至1400 MHz频率范围内、占空比在1%至12%的脉冲应用而设计。

引脚分配:文档中提到了两种封装样式,CASE 465-06和CASE 465A-06,但未明确列出每个引脚的功能。通常,这类晶体管会有漏极(Drain)、栅极(Gate)和源极(Source)。

参数特性: - 最大漏源电压(Vpss):-0.5至+100 Vdc - 最大栅源电压(VGS):-6.0至+10 Vdc - 存储温度范围(Tstg):-65至+150°C - 外壳工作温度(Tc):150°C - 工作结温(TJ):225°C

功能详解:这些晶体管具有以下特性: - 与串联等效大信号阻抗参数一起表征 - 内部匹配,便于使用 - 可承受高达50 V的电源电压 - 集成了ESD保护 - 更大的负栅源电压范围,改善了Class C操作 - 符合RoHS标准

应用信息:适用于脉冲应用,例如在指定频率和占空比下能够处理高达330瓦的峰值功率输出。

封装信息:提供两种封装样式,CASE 465-06和CASE 465A-06,分别以NI-780和NI-780S的胶带和卷轴形式提供。
MRF6V14300HSR5 价格&库存

很抱歉,暂时无法提供与“MRF6V14300HSR5”相匹配的价格&库存,您可以联系我们找货

免费人工找货