0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MRF8VP13350GNR3

MRF8VP13350GNR3

  • 厂商:

    NXP(恩智浦)

  • 封装:

    OM-780G-4L

  • 描述:

    TRANSRFLDMOS350W50V

  • 数据手册
  • 价格&库存
MRF8VP13350GNR3 数据手册
Document Number: MRF8VP13350N Rev. 2, 02/2017 NXP Semiconductors Technical Data RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs These 350 W CW transistors are designed for industrial, scientific and medical (ISM) applications in the 700 to 1300 MHz frequency range. The transistors are capable of 350 W CW or pulse power in narrowband operation. MRF8VP13350N MRF8VP13350GN Typical Performance: VDD = 50 Vdc Frequency (MHz) 1300 (1) Signal Type Pulse (100 µsec, 20% Duty Cycle) Gps (dB) ηD (%) Pout (W) 19.2 58.0 350 Peak 700–1300 MHz, 350 W CW, 50 V RF POWER LDMOS TRANSISTORS Typical Performance: In 915 MHz reference circuit, VDD = 48 Vdc Frequency (MHz) Signal Type Gps (dB) ηD (%) Pout (W) 915 CW 20.7 67.5 355 Load Mismatch/Ruggedness Frequency (MHz) 1300 (1) Signal Type VSWR Pin (W) Test Voltage Pulse (100 µsec, 20% Duty Cycle) > 20:1 at all Phase Angles 9.6 Peak (3 dB Overdrive) 50 OM--780--4L PLASTIC MRF8VP13350N Result No Device Degradation 1. Measured in 1300 MHz pulse narrowband test circuit. OM--780G--4L PLASTIC MRF8VP13350GN Features • Internally input matched for ease of use • Device can be used single--ended or in a push--pull configuration • Qualified up to a maximum of 50 VDD operation • Suitable for linear applications with appropriate biasing Gate A 3 1 Drain A Gate B 4 2 Drain B • Integrated ESD protection Typical Applications • 915 MHz industrial heating/welding systems • 1300 MHz particle accelerators • 900 MHz TETRA base stations (Top View) Note: Exposed backside of the package is the source terminal for the transistor. Figure 1. Pin Connections  2015–2017 NXP B.V. RF Device Data NXP Semiconductors MRF8VP13350N MRF8VP13350GN 1 Table 1. Maximum Ratings Symbol Value Unit Drain--Source Voltage Rating VDSS –0.5, +100 Vdc Gate--Source Voltage VGS –6.0, +10 Vdc Storage Temperature Range Tstg –65 to +150 °C Case Operating Temperature Range TC –40 to +150 °C Operating Junction Temperature Range (1,2) TJ –40 to +225 °C Symbol Value (2,3) Unit Thermal Resistance, Junction to Case CW: Case Temperature 93°C, 350 W CW, 50 Vdc, IDQ(A+B) = 100 mA, 915 MHz RθJC 0.24 °C/W Thermal Impedance, Junction to Case Pulse: Case Temperature 76°C, 350 W Peak, 100 µsec Pulse Width, 20% Duty Cycle, 50 Vdc, IDQ(A+B) = 100 mA, 1300 MHz ZθJC 0.04 °C/W Table 2. Thermal Characteristics Characteristic Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 1C, passes 1500 V Machine Model (per EIA/JESD22--A115) A, passes 100 V Charge Device Model (per JESD22--C101) IV, passes 2000 V Table 4. Moisture Sensitivity Level Test Methodology Per JESD22--A113, IPC/JEDEC J--STD--020 Rating Package Peak Temperature Unit 3 260 °C Table 5. Electrical Characteristics (TA = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 100 Vdc, VGS = 0 Vdc) IDSS — — 10 µAdc Zero Gate Voltage Drain Leakage Current (VDS = 48 Vdc, VGS = 0 Vdc) IDSS — — 1 µAdc Gate--Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) IGSS — — 1 µAdc Gate Threshold Voltage (4) (VDS = 10 Vdc, ID = 460 µAdc) VGS(th) 1.3 1.9 2.3 Vdc Gate Quiescent Voltage (VDD = 50 Vdc, IDQ(A+B) = 100 mAdc, Measured in Functional Test) VGS(Q) 1.7 2.2 2.7 Vdc Drain--Source On--Voltage (4) (VGS = 10 Vdc, ID = 1.3 Adc) VDS(on) 0.1 0.21 0.3 Vdc Off Characteristics (4) On Characteristics 1. 2. 3. 4. Continuous use at maximum temperature will affect MTTF. MTTF calculator available at http://www.nxp.com/RF/calculators. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955. Each side of device measured separately. (continued) MRF8VP13350N MRF8VP13350GN 2 RF Device Data NXP Semiconductors Table 5. Electrical Characteristics (TA = 25°C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit (1,2) Functional Tests (In NXP Narrowband Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ(A+B) = 100 mA, Pout = 350 W Peak (70 W Avg.), f = 1300 MHz, 100 µsec Pulse Width, 20% Duty Cycle Power Gain Gps 17.5 19.2 20.5 dB Drain Efficiency ηD 55.0 58.0 — % Table 6. Load Mismatch/Ruggedness (In NXP Test Fixture, 50 ohm system) IDQ(A+B) = 100 mA Frequency (MHz) 1300 Signal Type VSWR Pin (W) Pulse (100 µsec, 20% Duty Cycle) > 20:1 at all Phase Angles 9.6 Peak (3 dB Overdrive) Test Voltage, VDD Result 50 No Device Degradation Table 7. Ordering Information Device Tape and Reel Information MRF8VP13350NR3 MRF8VP13350GNR3 Package OM--780--4L R3 Suffix = 250 Units, 32 mm Tape Width, 13--inch Reel OM--780G--4L 1. Part internally input matched. 2. Measurement made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GN) parts. MRF8VP13350N MRF8VP13350GN RF Device Data NXP Semiconductors 3 TYPICAL CHARACTERISTICS 1000 NORMALIZED VGS(Q) C, CAPACITANCE (pF) Measured with ±30 mV(rms)ac @ 1 MHz VGS = 0 Vdc 100 Coss 10 Crss 1 0 10 20 30 40 50 VDS, DRAIN--SOURCE VOLTAGE (VOLTS) 1.06 1.05 1.04 1.03 IDQ(A+B) = 100 mA VDD = 50 Vdc 500 mA 1.02 1500 mA 1.01 1 0.99 2500 mA 0.98 0.97 0.96 0.95 0.94 --50 --25 0 25 50 75 100 TC, CASE TEMPERATURE (°C) Note: Each side of device measured separately. IDQ (mA) Figure 2. Capacitance versus Drain--Source Voltage 100 --2.216 500 --1.894 1500 --1.648 2500 --1.420 Slope (mV/°°C) Figure 3. Normalized VGS versus Quiescent Current and Case Temperature MRF8VP13350N MRF8VP13350GN 4 RF Device Data NXP Semiconductors 915 MHz REFERENCE CIRCUIT — 5″″ × 4″″ (12.7 cm × 10.2 cm) Table 8. 915 MHz Performance (In NXP Reference Circuit, 50 ohm system) VDD = 48 Vdc, IDQ(A+B) = 100 mA, TC = 25°C Frequency (MHz) Pin (W) Gps (dB) ηD (%) Pout (W) 902 3.5 20.1 64.7 359 915 3.0 20.7 67.5 355 928 3.5 20.1 68.7 361 Table 9. Load Mismatch/Ruggedness (In NXP Reference Circuit) Frequency (MHz) Signal Type 915 CW VSWR Pin (W) > 10:1 at all Phase Angles 9.0 (3 dB Overdrive) Test Voltage, VDD Result 48 No Device Degradation MRF8VP13350N MRF8VP13350GN RF Device Data NXP Semiconductors 5 915 MHz REFERENCE CIRCUIT — 5″″ × 4″″ (12.7 cm × 10.2 cm) VDD VGG + C27 – C14 C15 C3 C4 C17 R1 C2 C10 C8 C16 C12* C20 C25* Q1 C5 C11 C9 R2 C1 C13* C21 C24 C22 C26* C6 C18 C7 C23 C19 MRF8VP13350N Rev. 0 *C12, C13, C25 and C26 are mounted vertically. Figure 4. MRF8VP13350N Reference Circuit Component Layout — 915 MHz Table 10. MRF8VP13350N Reference Circuit Component Designations and Values — 915 MHz Part Description Part Number Manufacturer C1 62 pF Chip Capacitor ATC100B620JT500XT ATC C2, C5 4.7 pF Chip Capacitors ATC600F4R7BT250XT ATC C3, C7, C14, C15, C22, C23 10 µF Chip Capacitors GRM32ER61H106KA12L Murata C4, C6, C16, C17, C18, C19 47 pF Chip Capacitors ATC600F470JT250XT ATC C8, C9 3.9 pF Chip Capacitors ATC600F3R9BT250XT ATC C10, C11 12 pF Chip Capacitors ATC800B120JT500XT ATC C12, C13 5.6 pF Chip Capacitors ATC800B5R6CT500XT ATC C20, C21 2.4 pF Chip Capacitors ATC800B2R4BT500XT ATC C24 2.7 pF Chip Capacitor ATC800B2R7BT500XT ATC C25, C26 39 pF Chip Capacitors ATC600S390JT250XT ATC C27 470 µF Electrolytic Capacitor MCGPR63V477M13X26-RH Multicomp Q1 RF Power LDMOS Transistor MRF8VP13350N NXP R1, R2 6.2 Ω, 1/4 W Chip Resistors CRCW12066R20FKEA Vishay PCB Rogers RO4350B, 0.020″, εr = 3.66 — MTL MRF8VP13350N MRF8VP13350GN 6 RF Device Data NXP Semiconductors Z31 VSUPPLY Z30 C27 C14 VBIAS C15 C3 Z20 Z29 Z28 Z19 Z27 C4 C16 Z18 C17 R1 RF INPUT Z1 Z2 Z8 C2 Z9 Z10 C5 Z3 C8 Z17 Z11 C9 Z12 Z21 Z22 Z13 C10 Z23 C11 C12 C20 C13 C21 C25 Z24 Z25 C24 RF Z26 OUTPUT C26 R2 Z4 Z5 Z15 Z6 Z14 Z32 C18 C19 C22 Z7 Z16 C1 C6 Z33 Z34 C23 C7 Figure 5. MRF8VP13350N Reference Circuit Schematic — 915 MHz Table 11. MRF8VP13350N Reference Circuit Microstrips — 915 MHz Microstrip Description Microstrip Description Z1 Z2 1.218″ × 0.044″ Microstrip 0.114″ × 0.044″ 45° Taper Microstrip Z18 Z19 0.098″ × 0.044″ 45° Taper Microstrip 0.489″ × 0.044″ 45° Taper Microstrip Z3 Z4 0.794″ × 0.044″ 45° Taper Microstrip 0.101″ × 0.044″ 45° Taper Microstrip Z20 Z21 0.077″ × 0.044″ 45° Taper Microstrip 0.077″ × 0.587″ Microstrip Z5 Z6 0.794″ × 0.044″ 45° Taper Microstrip 0.101″ × 0.044″ 45° Taper Microstrip Z22 Z23 0.241″ × 0.587″ Microstrip 0.460″ × 0.119″ Microstrip Z7 Z8 0.794″ × 0.044″ Microstrip 0.080″ × 0.044″ Microstrip Z24 Z25 0.414″ × 0.044″ Microstrip 0.223″ × 0.044″ Microstrip Z9 Z10 Z11 0.500″ × 0.094″ Microstrip 0.010″ × 0.642″ Microstrip 0.247″ × 0.642″ Microstrip Z26 Z27 Z28 0.998″ × 0.044″ Microstrip 0.279″ × 0.075″ 45° Taper Microstrip 0.643″ × 0.075″ 45° Taper Microstrip Z12 Z13 0.170″ × 0.642″ Microstrip 0.044″ × 0.050″ Microstrip Z29 Z30 0.118″ × 0.075″ Microstrip 1.118″ × 0.075″ Microstrip Z14 Z15 0.098″ × 0.044″ 45° Taper Microstrip 0.489″ × 0.044″ 45° Taper Microstrip Z31 Z32 0.769″ × 0.153″ Microstrip 0.279″ × 0.075″ 45° Taper Microstrip Z16 Z17 0.331″ × 0.044″ Microstrip 0.044″ × 0.050″ Microstrip Z33 Z34 0.643″ × 0.075″ Microstrip 0.094″ × 0.075″ Microstrip MRF8VP13350N MRF8VP13350GN RF Device Data NXP Semiconductors 7 TYPICAL CHARACTERISTICS — 915 MHz REFERENCE CIRCUIT 22 PAE, POWER ADDED EFFICIENCY (%) 68 21.5 66 21 64 20.5 Gps 62 360 20 19.5 Pout, OUTPUT POWER (WATTS) Gps, POWER GAIN (dB) PAE 350 VDD = 48 Vdc Pin = 3.0 W IDQ(A+B) = 100 mA 19 18.5 895 900 905 910 915 340 Pout 920 925 330 935 930 f, FREQUENCY (MHz) Figure 6. Power Gain, Power Added Efficiency and Output Power versus Frequency at a Constant Input Power 500 400 Pout, OUTPUT POWER (WATTS) Pout, OUTPUT POWER (WATTS) 100 VDD = 48 Vdc, Pin = 3.0 W 300 VDD = 48 Vdc, Pin = 1.5 W 200 100 Detail A VDD = 48 Vdc Pin = 3.0 W 80 60 VDD = 48 Vdc Pin = 1.5 W 40 20 f = 915 MHz 0 f = 915 MHz 0 0.5 0 0 0.5 1 2 1.5 2.5 3 1.5 2 VGS, GATE--SOURCE VOLTAGE (VOLTS) 4 3.5 1 Detail A VGS, GATE--SOURCE VOLTAGE (VOLTS) Gps, POWER GAIN (dB) V = 48 Vdc 28 DD IDQ(A+B) = 100 mA 26 PAE f = 928 MHz 70 902 MHz 915 MHz 24 Gps 22 20 18 14 928 MHz 902 MHz 30 10 7.5 5 915 MHz 2.5 Pin 12 10 50 10 928 MHz 915 MHz 902 MHz 16 90 100 Pin, INPUT POWER (WATTS) 30 PAE, POWER ADDED EFFICIENCY (%) Figure 7. Output Power versus Gate--Source Voltage 0 1000 Pout, OUTPUT POWER (WATTS) Figure 8. Power Gain, Power Added Efficiency and Input Power versus Output Power and Frequency MRF8VP13350N MRF8VP13350GN 8 RF Device Data NXP Semiconductors Gps, POWER GAIN (dB) VDD = 48 Vdc 26 IDQ(A+B) = 100 mA 24 f = 915 MHz TA = 25_C 70 85_C PAE 125_C 22 25_C 16 10 85_C 125_C Gps 14 12 10 10 30 10 20 18 50 125_C Pin 100 7.5 5 25_C 85_C 2.5 Pin, INPUT POWER (WATTS) 90 28 PAE, POWER ADDED EFFICIENCY (%) TYPICAL CHARACTERISTICS — 915 MHz REFERENCE CIRCUIT 0 1000 Pout, OUTPUT POWER (WATTS) Figure 9. Power Gain, Power Added Efficiency and Input Power versus Output Power and Temperature MRF8VP13350N MRF8VP13350GN RF Device Data NXP Semiconductors 9 1300 MHz NARROWBAND PRODUCTION TEST FIXTURE — 4″″ × 6″″ (10.2 cm × 15.2 cm) Table 12. 1300 MHz Narrowband Performance (1,2) (In NXP Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ(A+B) = 100 mA, Pout = 350 W Peak (70 W Avg.), f = 1300 MHz, 100 µsec Pulse Width, 20% Duty Cycle Characteristic Symbol Min Typ Max Unit Power Gain Gps 17.5 19.2 20.5 dB Drain Efficiency ηD 55.0 58.0 — % 1. Part internally input matched. 2. Measurement made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GN) parts. MRF8VP13350N MRF8VP13350GN 10 RF Device Data NXP Semiconductors 1300 MHz NARROWBAND PRODUCTION TEST FIXTURE — 4″″ × 6″″ (10.2 cm × 15.2 cm) C6 C16 C15 C17 C20 C19 C10 MRF8VP13350N Rev. 2 C2 C18 C8 C4 C13 C5 R1 C3 C1 D59659 CUT OUT AREA R2 R3 C9 C11 C21 C24 C25 C23 C22 C14 C12 C26 C7 Figure 10. MRF8VP13350N Narrowband Test Circuit Component Layout — 1300 MHz Table 13. MRF8VP13350N Narrowband Test Circuit Component Designations and Values — 1300 MHz Part Description Part Number Manufacturer C1, C13 10 pF Chip Capacitors ATC800B100JT500XT ATC C2, C3 6.2 pF Chip Capacitors ATC800B6R2BT500XT ATC C4, C5 8.2 pF Chip Capacitors ATC800B8R2CT500XT ATC C6, C7, C10, C11 180 pF Chip Capacitors ATC800B181JT300XT ATC C8, C9 4.7 pF Chip Capacitors ATC800B4R7CT500XT ATC C12 1.0 pF Chip Capacitor ATC800B1R0BT500XT ATC C14 1.7 pF Chip Capacitor ATC800B1R7BT500XT ATC C15, C21 47 µF Tantalum Capacitors 593D476X9016D2TE3 Vishay/Sprague C16, C22 0.1 µF Chip Capacitors C1206C104K1RACTU Kemet C17, C23 0.22 µF Chip Capacitors C1210C224K1RACTU Kemet C18, C24 0.1 µF Chip Capacitors C1206C104K1RACTU Kemet C19, C25 2.2 µF Chip Capacitors 2225X7R225KT3AB ATC C20, C26 330 µF, 63 V Electrolytic Capacitors MCRH63V337M13X21-RH Multicomp R1 100 Ω, 1/4 W Chip Resistor CRCW1206100RFKEA Vishay R2, R3 200 Ω, 1/4 W Chip Resistors CRCW1206200RFKEA Vishay PCB Arlon AD255A, 0.030″, εr = 2.55 D59659 MTL MRF8VP13350N MRF8VP13350GN RF Device Data NXP Semiconductors 11 MRF8VP13350N MRF8VP13350GN 12 Z27 Z21 VGG C16 C17 VDD + Z19 C18 C10 + C15 Z29 C19 C20 C6 Z25 Z17 Z3 Z4 Z7 Z9 Z11 Z13 Z23 Z31 Z33 Z35 Z37 Z39 Z15 C8 RF INPUT Z1 Z2 C2 R1 R2 DUT C1 Z10 Z8 Z5 Z41 C4 Z12 Z14 C3 C12 Z24 C5 Z43 Z32 Z34 Z36 Z38 Z40 Z18 C9 Z26 Z22 VGG Z20 + C21 C22 C23 Z28 C7 Z30 VDD + C11 C24 C25 C26 Figure 11. MRF8VP13350N Narrowband Test Circuit Schematic — 1300 MHz Table 14. MRF8VP13350N Narrowband Test Circuit Microstrips — 1300 MHz Microstrip Description Microstrip Description Microstrip Z33, Z34 Description RF Device Data NXP Semiconductors Z1 0.410″ × 0.083″ Microstrip Z17, Z18 0.768″ × 0.065″ Microstrip Z2 0.233″ × 0.083″ Microstrip Z19, Z20 0.993″ × 0.065″ Microstrip Z35, Z36 0.030″ × 0.485″ Microstrip Z3, Z5 1.096″ × 0.065″ Microstrip* Z21, Z22 0.534″ × 0.065″ Microstrip Z37, Z38 0.025″ × 0.485″ Microstrip Z4, Z6 1.061″ × 0.065″ Microstrip* Z23, Z24 0.075″ × 0.485″ Microstrip Z39, Z40 1.283″ × 0.084″ Microstrip* Z7, Z8 0.409″ × 0.065″ Microstrip Z25, Z26 0.768″ × 0.065″ Microstrip Z41 0.313″ × 0.083″ Microstrip Z9, Z10 0.519″ × 0.065″ Microstrip Z27, Z28 1.088″ × 0.065″ Microstrip Z42 0.075″ × 0.083″ Microstrip Z11, Z12 0.125″ × 0.065″ Microstrip Z29, Z30 0.429″ × 0.065″ Microstrip Z43 0.619″ × 0.083″ Microstrip Z13, Z14 0.543″ × 0.485″ Microstrip Z31, Z32 0.468″ × 0.485″ Microstrip Z44 0.065″ × 0.083″ Microstrip Z15, Z16 0.075″ × 0.485″ Microstrip * Line length include microstrip bends Z44 C13 Z16 Z6 Z42 R3 0.020″ × 0.485″ Microstrip C14 RF OUTPUT TYPICAL CHARACTERISTICS — 1300 MHz Pout, OUTPUT POWER (WATTS) PEAK 400 VDD = 50 Vdc, f = 1300 MHz Pulse Width = 100 µsec, 20% Duty Cycle 350 300 250 Pin = 5 W 200 150 Pin = 2.5 W 100 50 0 0 0.5 1 1.5 2 2.5 VGS, GATE--SOURCE VOLTAGE (VOLTS) Figure 12. Output Power versus Gate--Source Voltage at a Constant Input Power 21 54 52 50 48 46 ηD 60 IDQ(A+B) = 900 mA 20 50 600 mA 19 40 18 300 mA 30 100 mA 17 20 44 Gps 900 mA VDD = 50 Vdc, IDQ(A+B) = 100 mA, f = 1300 MHz Pulse Width = 100 µsec, 20% Duty Cycle 42 40 24 70 VDD = 50 Vdc, IDQ(A+B) = 100 mA, f = 1300 MHz Pulse Width = 100 µsec, 20% Duty Cycle 56 Gps, POWER GAIN (dB) Pout, OUTPUT POWER (dBm) PEAK 58 26 28 30 32 34 36 38 40 42 16 300 mA 15 10 44 600 mA 10 100 mA 0 500 100 Pin, INPUT POWER (dBm) Pout, OUTPUT POWER (WATTS) PEAK f (MHz) P1dB (W) P3dB (W) 1300 338 390 Figure 14. Power Gain and Drain Efficiency versus Output Power and Quiescent Current Figure 13. Output Power versus Input Power 24 60 20 50 TC = 25_C --40_C 40 Gps 16 30 85_C 14 12 10 20 19 Gps, POWER GAIN (dB) 85_C 18 IDQ(A+B) = 100 mA, f = 1300 MHz, Pulse Width = 100 µsec 20% Duty Cycle 20 ηD, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) 22 21 70 VDD = 50 Vdc, IDQ(A+B) = 100 mA, f = 1300 MHz 25_C Pulse Width = 100 µsec, 20% Duty Cycle --40_C 18 17 50 V 16 15 45 V 14 40 V 13 35 V 12 ηD 100 10 500 VDD = 30 V 11 0 50 100 150 200 250 300 350 400 Pout, OUTPUT POWER (WATTS) PEAK Pout, OUTPUT POWER (WATTS) PEAK Figure 15. Power Gain and Drain Efficiency versus Output Power Figure 16. Power Gain versus Output Power and Drain--Source Voltage MRF8VP13350N MRF8VP13350GN RF Device Data NXP Semiconductors 13 ηD, DRAIN EFFICIENCY (%) 22 60 1300 MHz NARROWBAND PRODUCTION TEST FIXTURE f MHz Zsource Ω Zload Ω 1300 5.1 + j3.6 2.1 + j3.9 Zsource = Test circuit impedance as measured from gate to gate, balanced configuration. Zload 50 Ω Input Matching Network = Test circuit impedance as measured from drain to drain, balanced configuration. + -Zsource Device Under Test -- Output Matching Network 50 Ω + Zload Figure 17. Narrowband Series Equivalent Source and Load Impedance — 1300 MHz MRF8VP13350N MRF8VP13350GN 14 RF Device Data NXP Semiconductors 4X 0.185 (4.70) 0.800 (20.32) 4X Solder Pads 0.389(1) (9.88) 0.409(1) (10.39) 0.350 (8.89) Inches (mm) 0.815(1) (20.70) 1. Slot dimensions are minimum dimensions and exclude milling tolerances. Figure 18. PCB Pad Layout for OM--780--4L 0.740 (18.80) 0.350 (8.89) 0.325 (8.26) Solder pad with thermal via structure. 0.410 0.510 (10.41) (12.95) 4X 0.185 (4.70) Inches (mm) Figure 19. PCB Pad Layout for OM--780G--4L MRF8VP13350N MRF8VP13350GN RF Device Data NXP Semiconductors 15 PACKAGE DIMENSIONS MRF8VP13350N MRF8VP13350GN 16 RF Device Data NXP Semiconductors MRF8VP13350N MRF8VP13350GN RF Device Data NXP Semiconductors 17 MRF8VP13350N MRF8VP13350GN 18 RF Device Data NXP Semiconductors MRF8VP13350N MRF8VP13350GN RF Device Data NXP Semiconductors 19 MRF8VP13350N MRF8VP13350GN 20 RF Device Data NXP Semiconductors MRF8VP13350N MRF8VP13350GN RF Device Data NXP Semiconductors 21 PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS Refer to the following resources to aid your design process. Application Notes • AN1907: Solder Reflow Attach Method for High Power RF Devices in Over--Molded Plastic Packages • AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices Software • Electromigration MTTF Calculator • RF High Power Model • .s2p File Development Tools • Printed Circuit Boards To Download Resources Specific to a Given Part Number: 1. Go to http://www.nxp.com/RF 2. Search by part number 3. Click part number link 4. Choose the desired resource from the drop down menu REVISION HISTORY The following table summarizes revisions to this document. Revision Date Description 0 May 2015 • Initial Release of Data Sheet 1 Oct. 2015 • Table 2, Thermal Characteristics: added thermal resistance data for the 915 MHz reference circuit, p. 2 2 Feb. 2017 • Table 10, MRF8VP13350N Reference Circuit Component Designations and Values — 915 MHz: updated Q1 to correct part number, p. 6 • Fig. 11, Narrowband Test Circuit Schematic — 1300 MHz: corrected C6, C7, C10 and C11 bias line chip capacitor connection, p. 12 MRF8VP13350N MRF8VP13350GN 22 RF Device Data NXP Semiconductors How to Reach Us: Home Page: nxp.com Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein. NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions. NXP, the NXP logo, Freescale, and the Freescale logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. E 2015–2017 NXP B.V. MRF8VP13350N MRF8VP13350GN Document Number: RF Device DataMRF8VP13350N Rev. 2,Semiconductors 02/2017 NXP 23
MRF8VP13350GNR3 价格&库存

很抱歉,暂时无法提供与“MRF8VP13350GNR3”相匹配的价格&库存,您可以联系我们找货

免费人工找货