0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MSC8157SAG1000A

MSC8157SAG1000A

  • 厂商:

    NXP(恩智浦)

  • 封装:

    783-BBGA,FCBGA

  • 描述:

    IC DSP 6X 1GHZ SC3850 783FCBGA

  • 数据手册
  • 价格&库存
MSC8157SAG1000A 数据手册
Freescale Semiconductor Data Sheet: Technical Data Document Number: MSC8157 Rev. 3, 12/2013 MSC8157 MSC8157 Six-Core Digital Signal Processor • Six StarCore SC3850 DSP subsystems, each with an SC3850 DSP core, 32 KB L1 instruction cache, 32 KB L1 data cache, unified 512 KB L2 cache configurable as M2 memory in 64 KB increments, memory management unit (MMU), extended programmable interrupt controller (EPIC), two general-purpose 32-bit timers, debug and profiling support, low-power Wait, Stop, and power-down processing modes, and ECC/EDC support. • Chip-level arbitration and switching system (CLASS) that provides full fabric non-blocking arbitration between the cores and other initiators and the M2 memory, shared M3 memory, DDR SRAM controller, device configuration control and status registers, MAPLE-B, and other targets. • 3072 KB 128-bit wide M3 memory, 2048 KBs of which can be turned off to save power. • 96 KB boot ROM. • Three input clocks (one global and two differential). • Six PLLs (three global, two Serial RapidIO, one DDR PLLs). • Second generation Multi-Accelerator Platform Engine for Baseband (MAPLE-B2) with a second generation programmable system interface (PSIF2); Turbo encoding and decoding; Viterbi decoding; FFT/iFFT and DFT/iDFT processing; downlink chip rate processing; CRC processing and insertion; equalization processing and matrix inversion; uplink batch and fast processing. Some MAPLE-B2 processors can be disabled when not required to reduce overall power consumption. • One DDR controllers with up to a 667 MHz clock (1333 MHz data rate), 64/32 bit data bus, supporting up to a total 2 Gbyte in up to four banks (two per controller) and support for DDR3. • DMA controller with 32 unidirectional channels supporting 16 memory-to-memory channels with up to 1024 buffer descriptors per channel, and programmable priority, buffer, and multiplexing configuration. It is optimized for DDR SDRAM. Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products. © 2010–2013 Freescale Semiconductor, Inc. All rights reserved. FC-PBGA–783 29 mm x 29 mm • High-speed serial interface with a 10-lane SerDes PHY that supports two Serial RapidIO interfaces, one PCI Express interface, six CPRI lanes, and two SGMII interfaces (multiplexed). The Serial RapidIO interfaces support x1/x2/x4 operation up to 5 Gbaud with an enhanced messaging unit (eMSG) and two DMA units. The PCI Express controller supports 32- and 64-bit addressing, x1/x2/x4 link. The six CPRI controllers can support six lanes up to 6.144 Gbaud. • QUICC Engine technology subsystem with dual RISC processors, 48 KB multi-master RAM, 48 KB instruction RAM, supporting two communication controllers for two Gigabit Ethernet interfaces (RGMII or SGMII), to offload scheduling tasks from the DSP cores, and an SPI. • I/O Interrupt Concentrator consolidates all chip maskable interrupt and non-maskable interrupt sources and routes then to INT_OUT/CP_TX_INT, NMI_OUT/CP_RX_INT, and the cores. • UART that permits full-duplex operation with a bit rate of up to 6.25 Mbps. • Two general-purpose 32-bit timers for RTOS support per SC3850 core, four timer modules with four 16-bit fully programmable timers, two timer modules with four 32-bit fully programmable timers; and eight software watchdog timers (SWT). • Eight programmable hardware semaphores. • Up to 32 virtual interrupts and a virtual NMI asserted by simple write access. • I2C interface. • Up to 32 GPIO ports, sixteen of which can be configured as external interrupts. • Boot interface options include Ethernet, Serial RapidIO interface, I2C, and SPI. • Supports IEEE Std. 1149.6 JTAG interface • Low power CMOS design, with low-power standby and power-down modes, and optimized power-management circuitry. • 45 nm SOI CMOS technology. Table of Contents 1 2 3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 Pin Assignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 2.1 FC-PBGA Ball Layout Diagram . . . . . . . . . . . . . . . . . . . .4 2.2 Signal Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 3.1 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 3.2 Recommended Operating Conditions . . . . . . . . . . . . . .53 3.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .54 3.4 CLKIN/MCLKIN Requirements . . . . . . . . . . . . . . . . . . .54 4 5 6 7 8 3.5 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . 3.6 AC Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . Hardware Design Considerations . . . . . . . . . . . . . . . . . . . . . Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Product Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 69 92 92 93 94 95 MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 2 Freescale Semiconductor Block Diagram 1 Block Diagram DDR Interface 64/32-bit 1333 MHz data rate JTAG IEEE 1149.6 I/O-Interrupt Concentrator M3 Memory 3072 KB DDR Controller UART Clocks Timers CLASS Reset Semaphores 32 KB L1 ICache 32 KB L1 DCache CLASS1 QUICC Engine™ Subsystem Two SGMII High-Speed Serial Interface CPRI data WR MAPLE-B2 512 KB DMA 32 ch SC3850 DSP Core L2 Cache / M2 Memory Six DSP Cores at 1 GHz Two RGMII SPI Note: The arrow direction indicates master or slave. Virtual Interrupts Boot ROM I2 C Other Modules Two Serial RapidIO x1/x2/x4 up to 5 Gbaud Six lanes CPRI v4.1 up to 6.144 Gbaud PCI-Express x1/x2/x4 up to 5 Gbaud Two SGMII Figure 1. MSC8157 Block Diagram MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 3 Pin Assignment 2 Pin Assignment This section includes a MSC8157 package ball grid array layout and table listing the signal allocation by ball location. 2.1 FC-PBGA Ball Layout Diagram The top view of the FC-PBGA package is shown in Figure 2 with the ball location index numbers. Only the first multiplexed signal is shown. See Table 1 for a complete signal list by ball location. 1 C D E F G 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 GVDD NC NC NC NC NC CLKOUT EE0 MCLKIN VSS VSS (optional) MDQ60 MDQ59 MDQS7 MDQS7 MDQ62 MDQ58 MDQ56 NC VSS NC VSS NC VSS TDO TMS A B 2 VSS VSS GVDD MDQ57 MDQ61 GVDD VSS VSS GVDD MDQ63 MDM7 VSS MDQ49 MDQ48 MDQS6 MDQS6 MDQ50 MDQ51 MDQ52 MDQ53 VSS MDQ55 GVDD VSS MDQ54 GVDD MDQ40 MDQ41 MDQS5 MDQS5 MDQ43 MDQ47 MDM6 VSS GVDD MDM5 VSS GVDD MDQ46 NC NC NC NC NC NC EE1 NC NC VSS NC VSS NC VSS NC NMI NC INT_ OUT NC NMI_ OUT VSS VDD VDD VSS NC VSS NC VDD VDD VSS NC NC NC NC NC NC NC VSS NC NC VSS VSS 18 VSS HRESET_ IN VSS HRESET TCK VSS TDI C GPIO13 NVDD GE2_TD3 VSS VSS NC QVDD VSS VDD VSS VDD VSS NVDD VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VSS F NVDD GPIO27 NVDD GPIO16 VSS GE1_RX_ GE1_RX_ GPIO28 GE1_RD3 GE1_RD2 VSS NVDD GPIO19 CLK CTL VSS VSS GPIO5 GE_MDC E VSS VSS VSS GPIO0 GPIO17 GPIO1 VDD VDD GPIO25 GE2_RX_ GE2_RX_ VSS GE2_RD2 GE2_RD0 GE2_RD1 GPIO26 GPIO6 GPIO22 GPIO23 GPIO8 CTL CLK NVDD GE2_RD3 VSS VSS VSS VSS D VDD MDQ39 MDQ32 MDQ34 VSS GPIO10 VSS VSS VSS MCS1 28 B VDD MCS0 27 GPIO18 VSS MCAS 26 GE2_GTX GE2_TX_ GPIO15 GE2_TD2 GE2_TD1 GE2_TD0 GPIO30 GPIO20 GE_MDIO GPIO21 _CLK CTL VDD K 25 GE2_TX_ VSS CLK MDQ37 MDQ33 MDQ36 24 VSS MDQ38 MDQS4 MDQS4 MDQ44 MDQ45 MDQ42 GVDD 23 VSS J MDQ35 22 VSS H VSS 21 CLKIN VSS QVDD STOP_BS TRST 20 GE1_TX_ GE1_GTX GE1_TX_ GPIO29 GPIO31 GE1_TD0 GE1_TD2 GE1_TD1 GE1_TD3 A CTL _CLK CLK DFT_TEST PORESET VSS 19 VDD VSS VSS GE1_RD0 NVDD GE1_RD1 VSS VSS VSS GPIO11 G GPIO14 NVDD GPIO12 H NVDD GPIO24 GPIO9 RCW_ LSEL0 RCW_ LSEL3 RCW_ LSEL2 RC21 GPIO3 J VDD VSS VSS RCW_ LSEL1 NVDD GPIO7 VSS GPIO2 K NC VSS VSS VSS GPIO4 L VSS GVDD NC VSS GVDD MDM4 VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS NVDD NC SXCVSS SXCVDD L M MCK0 MCK0 MA13 MWE NC NC VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD NC NC SD_A_ SD_A_ SD_A_ SD_A_ SXPVDD SXPVSS RX TX TX RX M N MRAS VSS NC GVDD VSS MODT1 CRPEVDD VSS CRPEVDD VSS CRPEVDD VSS VDD VSS VDD VSS VDD VSS VDD VSS NC NC SXPVDD SXPVSS SD_B_ SD_B_ SXCVSS SXCVDD TX TX N P MCK2 MA10 NC MA4 NC MODT0 CRPEVDD VSS CRPEVDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD NC SD_IMP_ CAL_RX R T MCK2 VSS GVDD VSS MA0 MCK1 VSS GVDD MA1 MAPAR_ MA3 OUT MBA0 VSS GVDD VSS VSS GVDD VDD VSS VSS VDD CRPEVDD VSS VSS VDD VDD VSS VSS VDD VDD VSS VSS VDD VDD VSS VSS VDD VDD VSS VSS VDD NC NC NC NC NC NC NC NC SXPVDD SXPVSS SD_B_ SD_B_ RX RX P NC SD_C_ SD_C_ SXCVSS SXCVDD TX TX R NC SD_C_ SD_C_ SXPVDD SXPVSS RX RX T SD_D_ SD_D_ SXCVSS SXCVDD TX TX U SD_D_ SD_D_ RX RX V U MAVDD VSS MCK1 GVDD VSS MBA1 GVDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS NC NC NC NC V MVREF VSS MA8 MA2 MA6 MCKE1 VSS GVDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD NC NC NC NC W Y VSS MA11 VSS MA9 MA5 MA12 VSS MA7 GVDD MMDIC1 GVDD NC MMDIC0 VSS VSS GVDD VDD VSS VSS VDD M3VDD VSS VSS M3VDD M3VDD VSS VSS M3VDD M3VDD VSS VSS CPRIVDD CPRIVDD VSS VSS CPRIVDD VDD VSS VSS NC NC NC NC SD_PLL1 SD_PLL1 _AVDD _AGND NC NC NC NC NC NC SXCVSS SXCVDD W NC SD_REF_ SD_REF_ Y CLK1 CLK1 VDD NC NC NC NC SD_E_ SD_E_ SXCVSS SXCVDD AA TX TX VSS GVDD VSS M3VDD VSS M3VDD VSS CPRIVDD VSS CPRIVDD VSS CPRIVDD NC SD_IMP_ CAL_TX MAPAR_ MBA2 IN MDQ2 MDQ1 MDQ0 VSS M3VDD VSS M3VDD VSS CPRIVDD VSS CPRIVDD NC NC NC NC NC NC SXPVDD SXPVSS MDQ25 GVDD MDQ3 VSS GVDD VSS M3VDD VSS CPRIVDD VSS NC NC NC NC NC NC NC NC SD_F_ SD_F_ SXCVSS SXCVDD AC TX TX MDQ6 VSS VSS VSS VSS VSS NC SD_PLL2 _AVDD NC NC NC NC NC NC SXPVDD SXPVSS VSS MDQ9 VSS VSS VSS VSS NC SD_PLL2 _AGND NC SD_J_TX SXPVDD SD_I_ TX SXPVDD NC SD_G_ SD_G_ SXCVSS SXCVDD AE TX TX AF MDQS2 MDQ17 MDQ21 MDQ16 MDQ30 MDQ27 MDQ28 MDQ7 MDQ14 MDQ11 MDQ8 MDQ10 VSS VSS VSS VSS NC NC NC SD_J_TX SXPVSS SD_I_ SXPVSS TX NC SXPVDD SXPVSS AG MDQ12 VSS VSS VSS VSS NC SXCVSS SD_REF_ SD_J_ SD_I_ SD_H_ SD_H_ SXCVSS SXCVSS SXCVSS SXCVSS SXCVDD AG TX CLK2 RX RX TX AH MDQ20 MDQ19 MDQ23 MDM2 MDQS3 MDQS3 MDM3 MDQ31 MDQS1 MDQS1 MDQ15 MDM1 VSS PLL2_ AVDD NC SXCVDD SD_REF_ SD_J_ SD_H_ SD_H_ SXCVDD SXCVDD SD_I_RX SXCVDD SXPVDD SXPVSS AH RX RX CLK2 RX 16 17 18 AA MDQS8 GVDD VSS AB MDQS8 MDM8 MECC2 MECC1 NC AC MECC4 VSS VSS GVDD MA14 VSS GVDD MA15 MCKE0 VSS AD MECC7 MECC6 MECC0 MECC5 MECC3 MDQ24 MDM0 MDQS0 MDQS0 MDQ4 AE MDQS2 VSS 1 VSS GVDD 2 MDQ18 MDQ22 3 GVDD VSS 4 VSS GVDD 5 MDQ29 MDQ26 6 GVDD VSS 7 VSS GVDD 8 MDQ5 MDQ13 9 GVDD VSS 10 GVDD 11 12 13 PLL0_ PLL1_ AVDD AVDD 14 15 19 20 21 22 23 24 25 26 SD_E_ SD_E_ AB RX RX SD_F_ SD_F_ AD RX RX SD_G_ SD_G_ AF RX RX 27 28 Figure 2. MSC8157 FC-PBGA Package, Top View MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 4 Freescale Semiconductor Pin Assignment NOTE See Figure 31 as a reference for correct ball grid layout. 2.2 Signal Lists Table 1 presents the signal list sorted by ball number. Table 2 presents the signal list by signal name. When designing a board, make sure that the power rail for each signal is appropriately considered. The specified power rail must be tied to the voltage level specified in this document if any of the related signal functions are used (active) NOTE The information in Table 1 distinguishes among three concepts. First, the power pins are the balls of the device package used to supply specific power levels for different device subsystems (as opposed to signals). Second, the power rails are the electrical lines on the board that transfer power from the voltage regulators to the device. They are indicated here as the reference power rails for signal lines; therefore, the actual power inputs are listed as N/A with regard to the power rails. Third, symbols used in these tables are the names for the voltage levels (absolute, recommended, and so on) and not the power supplies themselves. Table 1. Signal List by Ball Number Signal Name1,2 Ball Number Pin Type3 Power Rail Name Ground N/A A2 VSS A3 MDQ57 I/O GVDD A4 GVDD Power N/A A5 VSS Ground N/A A6 MDQ63 I/O GVDD A7 GVDD Power N/A A8 NC Non-user N/A A9 NC Non-user N/A A10 NC Non-user N/A A11 NC Non-user N/A A12 NC Non-user N/A A13 CLKOUT O QVDD A14 EE0 I QVDD A15 VSS Ground N/A A16 MCLKIN (optional) I QVDD A17 VSS Ground N/A A18 CLKIN I QVDD A19 VSS Ground N/A A20 GPIO29/UART_TXD/CP_LOS2 I/O NVDD A21 GPIO31/I2C_SDA I/O NVDD A22 GE1_TX_CTL O NVDD MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 5 Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name A23 GE1_GTX_CLK O NVDD A24 GE1_TD0 O NVDD A25 GE1_TX_CLK I NVDD A26 GE1_TD2 O NVDD A27 GE1_TD1 O NVDD A28 GE1_TD3 O NVDD B1 MDQ60 I/O GVDD B2 MDQ59 I/O GVDD B3 MDQS7 I/O GVDD B4 MDQS7 I/O GVDD B5 MDQ62 I/O GVDD B6 MDQ58 I/O GVDD B7 MDQ56 I/O GVDD B8 NC Non-user N/A B9 VSS Ground N/A B10 NC Non-user N/A B11 VSS Ground N/A B12 NC Non-user N/A B13 VSS Ground N/A B14 TDO O QVDD B15 TMS I QVDD B16 VSS Ground N/A B17 VSS Ground N/A B18 VSS Ground N/A B19 VSS Ground N/A B20 GE2_TX_CLK I NVDD B21 VSS Ground N/A B22 VSS Non-user N/A B23 VSS Ground N/A B24 GPIO25/TMR2/RCW_SRC1 I/O NVDD B25 VSS Ground N/A B26 GE_MDC O NVDD B27 VSS Ground N/A B28 GPIO18/SPI_MOSI/CP_LOS4 I/O NVDD MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 6 Freescale Semiconductor Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name C1 VSS Ground N/A C2 GVDD Power N/A C3 MDQ61 I/O GVDD C4 VSS Ground N/A C5 GVDD Power N/A C6 MDM7 O GVDD C7 VSS Ground N/A C8 NC Non-user N/A C9 NC Non-user N/A C10 NC Non-user N/A C11 NC Non-user N/A C12 NC Non-user N/A C13 NC Non-user N/A C14 EE1 O QVDD C15 NC Non-user N/A C16 DFT_TEST I QVDD C17 PORESET I QVDD C18 VSS Ground N/A C19 GPIO15/DDN0/IRQ15/RC15 I/O NVDD C20 GE2_TD2/CP_LOS3 I/O NVDD C21 GE2_GTX_CLK/CP_LOS4 I/O NVDD C22 GE2_TX_CTL O NVDD C23 GE2_TD1 O NVDD C24 GE2_TD0 O NVDD C25 GPIO30/I2C_SCL I/O NVDD C26 GPIO20/SPI_SL/CP_LOS6 I/O NVDD C27 GE_MDIO I/O NVDD C28 GPIO21/TMR6 I/O NVDD D1 MDQ49 I/O GVDD D2 MDQ48 I/O GVDD D3 MDQS6 I/O GVDD D4 MDQS6 I/O GVDD D5 MDQ50 I/O GVDD D6 MDQ51 I/O GVDD MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 7 Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name I/O GVDD D7 MDQ52 D8 NC Non-user N/A D9 VSS Ground N/A D10 NC Non-user N/A D11 VSS Ground N/A D12 NC Non-user N/A D13 VSS Ground N/A D14 NC Non-user N/A D15 NMI I QVDD D16 VSS Ground N/A D17 HRESET_IN I QVDD D18 VSS Ground N/A D19 VSS Non-user N/A D20 GPIO13/IRQ13/RC13 I/O NVDD D21 NVDD Power N/A D22 GE2_TD3/CP_LOS5 I/O NVDD D23 VSS Ground N/A D24 GPIO5/IRQ5/RC5/CP_SYNC4 I/O NVDD D25 NVDD Power N/A D26 GPIO16/TMR5/RC16 I/O NVDD D27 VSS‘ Ground N/A D28 GPIO10/IRQ10/RC10 I/O NVDD E1 MDQ53 I/O GVDD E2 VSS Ground N/A E3 MDQ55 I/O GVDD E4 GVDD Power N/A E5 VSS Ground N/A E6 MDQ54 I/O GVDD E7 GVDD Power N/A E8 VSS Ground N/A E9 NC Non-user N/A E10 NC Non-user N/A E11 NC Non-user N/A E12 NC Non-user N/A MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 8 Freescale Semiconductor Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name E13 NC Non-user N/A E14 NC Non-user N/A E15 INT_OUT/CP_TX_INT O QVDD E16 HRESET I/O QVDD E17 TCK I QVDD E18 VSS Ground N/A E19 NVDD Power N/A E20 GE2_RD3/CP_LOS2 I NVDD E21 VSS Ground N/A E22 VSS Non-user N/A E23 NVDD Power N/A E24 GPIO27/TMR4/RCW_SRC0 I/O NVDD E25 VSS Ground N/A E26 GPIO0/IRQ0/RC0/CP_SYNC1 I/O NVDD E27 GPIO17/SPI_SCK/CP_LOS3 I/O NVDD E28 GPIO1/IRQ1/RC1/CP_SYNC2 I/O NVDD F1 MDQ40 I/O GVDD F2 MDQ41 I/O GVDD F3 MDQS5 I/O GVDD F4 MDQS5 I/O GVDD F5 MDQ43 I/O GVDD F6 MDQ47 I/O GVDD F7 MDM6 O GVDD F8 VDD Power N/A F9 VSS Ground N/A F10 VDD Power N/A F11 NC Non-user N/A F12 NC Non-user N/A F13 VSS Ground N/A F14 NC Non-user N/A F15 NMI_OUT/CP_RX_INT O QVDD F16 VSS Ground N/A F17 TDI I QVDD F18 VSS Ground N/A MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 9 Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name F19 GE2_RD2/CP_LOS1 I NVDD F20 GE2_RX_CTL I NVDD F21 GE2_RD0/CP_LOS6 I NVDD F22 GE2_RX_CLK I NVDD F23 GE2_RD1 I NVDD F24 GPIO26/TMR3 I/O NVDD F25 GPIO6/IRQ6/RC6/CP_SYNC5 I/O NVDD F26 GPIO22 I/O NVDD F27 GPIO23/TMR0/BOOT_SPI_SL I/O NVDD F28 GPIO8/IRQ8/RC8 I/O NVDD G1 VSS Ground N/A G2 GVDD Power N/A G3 MDM5 O GVDD G4 VSS Ground N/A G5 GVDD Power N/A G6 MDQ46 I/O GVDD G7 VDD Power N/A G8 VSS Ground N/A G9 VDD Power N/A G10 VSS Ground N/A G11 NC Non-user N/A G12 NC Non-user N/A G13 NC Non-user N/A G14 NC Non-user N/A G15 QVDD Power N/A G16 STOP_BS I QVDD G17 TRST I QVDD G18 VSS Ground N/A G19 GPIO28/UART_RXD/CP_LOS1 I/O NVDD G20 GE1_RD3 I NVDD G21 GE1_RD2 I NVDD G22 GE1_RX_CLK I NVDD G23 VSS Ground N/A G24 GE1_RX_CTL I NVDD MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 10 Freescale Semiconductor Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name Power N/A I/O NVDD Ground N/A G25 NVDD G26 GPIO19/SPI_MISO/CP_LOS5 G27 VSS G28 GPIO11/IRQ11/RC11 I/O NVDD H1 MDQ38 I/O GVDD H2 MDQS4 I/O GVDD H3 MDQS4 I/O GVDD H4 MDQ44 I/O GVDD H5 MDQ45 I/O GVDD H6 MDQ42 I/O GVDD H7 VSS Ground N/A H8 VDD Power N/A H9 VSS Ground N/A H10 VDD Power N/A H11 VSS Ground N/A H12 VSS Non-user N/A H13 NC Non-user N/A H14 QVDD Power N/A H15 VSS Ground N/A H16 VDD Power N/A H17 VSS Ground N/A H18 VDD Power N/A H19 VSS Ground N/A H20 NVDD Power N/A H21 VSS Ground N/A H22 GE1_RD0 I NVDD H23 NVDD Power N/A H24 GE1_RD1 I NVDD H25 VSS Ground N/A H26 GPIO14/DRQ0/IRQ14/RC14 I/O NVDD H27 NVDD Power N/A H28 GPIO12/IRQ12/RC12 I/O NVDD J1 MDQ37 I/O GVDD J2 VSS Ground N/A MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 11 Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name J3 MDQ35 I/O GVDD J4 GVDD Power N/A J5 MDQ33 I/O GVDD J6 MDQ36 I/O GVDD J7 VDD Power N/A J8 VSS Ground N/A J9 VDD Power N/A J10 VSS Ground N/A J11 VDD Power N/A J12 VSS Ground N/A J13 VDD Power N/A J14 VSS Ground N/A J15 VDD Power N/A J16 VSS Ground N/A J17 VDD Power N/A J18 VSS Ground N/A J19 VDD Power N/A J20 VSS Ground N/A J21 NVDD Power N/A J22 GPIO24/TMR1/RCW_SRC2 I/O NVDD J23 GPIO9/IRQ9/RC9 I/O NVDD J24 RCW_LSEL0/RC17 I/O NVDD J25 RCW_LSEL3/RC20 I/O NVDD J26 RCW_LSEL2/RC19 I/O NVDD J27 RC21 I NVDD J28 GPIO3/DRQ1/IRQ3/RC3 I/O NVDD K1 MCAS O GVDD K2 MCS0 O GVDD K3 MCS1 O GVDD K4 MDQ39 I/O GVDD K5 MDQ32 I/O GVDD K6 MDQ34 I/O GVDD K7 VSS Ground N/A K8 VDD Power N/A MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 12 Freescale Semiconductor Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name K9 VSS Ground N/A K10 VDD Power N/A K11 VSS Ground N/A K12 VDD Power N/A K13 VSS Ground N/A K14 VDD Power N/A K15 VSS Ground N/A K16 VDD Power N/A K17 VSS Ground N/A K18 VDD Power N/A K19 VSS Ground N/A K20 VDD Power N/A K21 VSS Ground N/A K22 GPIO4/DDN1/IRQ4/RC4 I/O NVDD K23 VSS Ground N/A K24 RCW_LSEL1/RC18 I/O NVDD K25 NVDD Power N/A K26 GPIO7/IRQ7/RC7/CP_SYNC6 I/O NVDD K27 VSS Ground N/A K28 GPIO2/IRQ2/RC2/CP_SYNC3 I/O NVDD L1 VSS Ground N/A L2 GVDD Power N/A L3 NC Non-user N/A L4 VSS Ground N/A L5 GVDD Power N/A L6 MDM4 O GVDD L7 VDD Power N/A L8 VSS Ground N/A L9 VDD Power N/A L10 VSS Ground N/A L11 VDD Power N/A L12 VSS Ground N/A L13 VDD Power N/A L14 VSS Ground N/A MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 13 Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name L15 VDD Power N/A L16 VSS Ground N/A L17 VDD Power N/A L18 VSS Ground N/A L19 VDD Power N/A L20 VSS Ground N/A L21 NVDD Power N/A L22 NC NC N/A L23 NC NC N/A L24 VSS Non-user N/A L25 VSS Non-user N/A L26 VSS Non-user N/A L27 SXCVSS Ground N/A L28 SXCVDD Power N/A M1 MCK0 O GVDD M2 MCK0 O GVDD M3 MA13 O GVDD M4 MWE O GVDD M5 NC Non-user N/A M6 NC Non-user N/A M7 VSS Ground N/A M8 VDD Power N/A M9 VSS Ground N/A M10 VDD Power N/A M11 VSS Ground N/A M12 VDD Power N/A M13 VSS Ground N/A M14 VDD Power N/A M15 VSS Ground N/A M16 VDD Power N/A M17 VSS Ground N/A M18 VDD Power N/A M19 VSS Ground N/A M20 VDD Power N/A MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 14 Freescale Semiconductor Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name M21 NC NC N/A M22 NC NC N/A M23 SD_A_TX O SXPVDD M24 SD_A_TX O SXPVDD M25 SXPVDD Power N/A M26 SXPVSS Ground N/A M27 SD_A_RX I SXCVDD M28 SD_A_RX I SXCVDD N1 MRAS O GVDD N2 VSS Ground N/A N3 NC Non-user N/A N4 GVDD Power N/A N5 VSS Ground N/A N6 MODT1 O GVDD N7 CRPEVDD Power N/A N8 VSS Ground N/A N9 CRPEVDD Power N/A N10 VSS Ground N/A N11 CRPEVDD Power N/A N12 VSS Ground N/A N13 VDD Power N/A N14 VSS Ground N/A N15 VDD Power N/A N16 VSS Ground N/A N17 VDD Power N/A N18 VSS Ground N/A N19 VDD Power N/A N20 VSS Ground N/A N21 NC NC N/A N22 NC NC N/A N23 SXPVDD Power N/A N24 SXPVSS Ground N/A N25 SD_B_TX O SXPVDD N26 SD_B_TX O SXPVDD MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 15 Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name N27 SXCVSS Ground N/A N28 SXCVDD Power N/A P1 MCK2 O GVDD P2 MA10 O GVDD P3 NC Non-user N/A P4 MA4 O GVDD P5 NC Non-user N/A P6 MODT0 O GVDD P7 VSS Ground N/A P8 CRPEVDD Power N/A P9 VSS Ground N/A P10 CRPEVDD Power N/A P11 VSS Ground N/A P12 VDD Power N/A P13 VSS Ground N/A P14 VDD Power N/A P15 VSS Ground N/A P16 VDD Power N/A P17 VSS Ground N/A P18 VDD Power N/A P19 VSS Ground N/A P20 VDD Power N/A P21 NC NC N/A P22 SD_IMP_CAL_RX I SXCVDD P23 NC NC N/A P24 NC NC N/A P25 SXPVDD Power N/A P26 SXPVSS Ground N/A P27 SD_B_RX I SXCVDD P28 SD_B_RX I SXCVDD R1 MCK2 O GVDD R2 GVDD Power N/A R3 MA0 O GVDD R4 VSS Ground N/A MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 16 Freescale Semiconductor Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name R5 GVDD Power N/A R6 MBA0 O GVDD R7 GVDD Power N/A R8 VSS Ground N/A R9 VDD Power N/A R10 VSS Ground N/A R11 CRPEVDD Power N/A R12 VSS Ground N/A R13 VDD Power N/A R14 VSS Ground N/A R15 VDD Power N/A R16 VSS Ground N/A R17 VDD Power N/A R18 VSS Ground N/A R19 VDD Power N/A R20 VSS Ground N/A R21 NC NC N/A R22 NC NC N/A R23 NC NC N/A R24 NC NC N/A R25 SD_C_TX O SXPVDD R26 SD_C_TX O SXPVDD R27 SXCVSS Ground N/A R28 SXCVDD Power N/A T1 VSS Ground N/A T2 VSS Ground N/A T3 MCK1 O GVDD T4 MA1 O GVDD T5 MA3 O GVDD T6 MAPAR_OUT O GVDD T7 VSS Ground N/A T8 GVDD Power N/A T9 VSS Ground N/A T10 VDD Power N/A MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 17 Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name T11 VSS Ground N/A T12 VDD Power N/A T13 VSS Ground N/A T14 VDD Power N/A T15 VSS Ground N/A T16 VDD Power N/A T17 VSS Ground N/A T18 VDD Power N/A T19 VSS Ground N/A T20 VDD Power N/A T21 NC NC N/A T22 NC Non-user N/A T23 NC Non-user N/A T24 NC NC N/A T25 SXPVDD Power N/A T26 SXPVSS Ground N/A T27 SD_C_RX I SXCVDD T28 SD_C_RX I SXCVDD U1 MAVDD Power N/A U2 VSS Ground N/A U3 MCK1 O GVDD U4 GVDD Power N/A U5 VSS Ground N/A U6 MBA1 O GVDD U7 GVDD Power N/A U8 VSS Ground N/A U9 VDD Power N/A U10 VSS Ground N/A U11 VDD Power N/A U12 VSS Ground N/A U13 VDD Power N/A U14 VSS Ground N/A U15 VDD Power N/A U16 VSS Ground N/A MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 18 Freescale Semiconductor Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name U17 VDD Power N/A U18 VSS Ground N/A U19 VDD Power N/A U20 VSS Ground N/A U21 NC NC N/A U22 NC NC N/A U23 NC NC N/A U24 NC NC N/A U25 SD_D_TX O SXPVDD U26 SD_D_TX O SXPVDD U27 SXCVSS Ground N/A U28 SXCVDD Power N/A V1 MVREF Power N/A V2 VSS Ground N/A V3 MA8 O GVDD V4 MA2 O GVDD V5 MA6 O GVDD V6 MCKE1 O GVDD V7 VSS Ground N/A V8 GVDD Power N/A V9 VSS Ground N/A V10 VDD Power N/A V11 VSS Ground N/A V12 VDD Power N/A V13 VSS Ground N/A V14 VDD Power N/A V15 VSS Ground N/A V16 VDD Power N/A V17 VSS Ground N/A V18 VDD Power N/A V19 VSS Ground N/A V20 VDD Power N/A V21 NC NC N/A V22 NC NC N/A MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 19 Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name V23 NC NC N/A V24 NC NC N/A V25 NC NC N/A V26 NC NC N/A V27 SD_D_RX I SXCVDD V28 SD_D_RX I SXCVDD W1 VSS Ground N/A W2 VSS Ground N/A W3 MA5 O GVDD W4 VSS Ground N/A W5 GVDD Power N/A W6 MMDIC1 I/O GVDD W7 GVDD Power N/A W8 VSS Ground N/A W9 VDD Power N/A W10 VSS Ground N/A W11 M3VDD Power N/A W12 VSS Ground N/A W13 M3VDD Power N/A W14 VSS Ground N/A W15 M3VDD Power N/A W16 VSS Ground N/A W17 CPRIVDD Power N/A W18 VSS Ground N/A W19 VDD Power N/A W20 VSS Ground N/A W21 NC NC N/A W22 NC NC N/A W23 NC NC N/A W24 SD_PLL1_AVDD Power N/A W25 SD_PLL1_AGND Ground N/A W26 NC NC N/A W27 SXCVSS Ground N/A W28 SXCVDD Power N/A MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 20 Freescale Semiconductor Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name Y1 MA11 O GVDD Y2 MA9 O GVDD Y3 MA12 O GVDD Y4 MA7 O GVDD Y5 NC Non-user N/A Y6 MMDIC0 I/O GVDD Y7 VSS Ground N/A Y8 GVDD Power N/A Y9 VSS Ground N/A Y10 VDD Power N/A Y11 VSS Ground N/A Y12 M3VDD Power N/A Y13 VSS Ground N/A Y14 M3VDD Power N/A Y15 VSS Ground N/A Y16 CPRIVDD Power N/A Y17 VSS Ground N/A Y18 CPRIVDD Power N/A Y19 VSS Ground N/A Y20 VDD Power N/A Y21 NC NC N/A Y22 NC NC N/A Y23 NC NC N/A Y24 NC NC N/A Y25 NC NC N/A Y26 NC NC N/A Y27 SD_REF_CLK1 I SXCVDD Y28 SD_REF_CLK1 I SXCVDD AA1 MDQS8 I/O GVDD AA2 VSS Ground N/A AA3 MA14 O GVDD AA4 GVDD Power N/A AA5 VSS Ground N/A AA6 MA15 O GVDD MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 21 Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name O GVDD AA7 MCKE0 AA8 VSS Ground N/A AA9 GVDD Power N/A AA10 VSS Ground N/A AA11 M3VDD Power N/A AA12 VSS Ground N/A AA13 M3VDD Power N/A AA14 VSS Ground N/A AA15 CPRIVDD Power N/A AA16 VSS Ground N/A AA17 CPRIVDD Power N/A AA18 VSS Ground N/A AA19 CPRIVDD Power N/A AA20 NC NC N/A AA21 SD_IMP_CAL_TX I SXPVDD AA22 NC NC N/A AA23 NC NC N/A AA24 NC NC N/A AA25 SD_E_TX O SXPVDD AA26 SD_E_TX O SXPVDD AA27 SXCVSS Ground N/A AA28 SXCVDD Power N/A AB1 MDQS8 I/O GVDD AB2 MDM8 O GVDD AB3 MECC2 I/O GVDD AB4 MECC1 I/O GVDD AB5 NC Non-user N/A AB6 MAPAR_IN I GVDD AB7 MBA2 O GVDD AB8 MDQ2 I/O GVDD AB9 MDQ1 I/O GVDD AB10 MDQ0 I/O GVDD AB11 VSS Ground N/A AB12 M3VDD Power N/A MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 22 Freescale Semiconductor Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name AB13 VSS Ground N/A AB14 M3VDD Power N/A AB15 VSS Ground N/A AB16 CPRIVDD Power N/A AB17 VSS Ground N/A AB18 CPRIVDD Power N/A AB19 NC NC N/A AB20 NC Non-user N/A AB21 NC NC N/A AB22 NC NC N/A AB23 NC NC N/A AB24 NC NC N/A AB25 SXPVDD Power N/A AB26 SXPVSS Ground N/A AB27 SD_E_RX I SXCVDD AB28 SD_E_RX I SXCVDD AC1 VSS Ground N/A AC2 GVDD Power N/A AC3 MECC4 I/O GVDD AC4 VSS Ground N/A AC5 GVDD Power N/A AC6 MDQ25 I/O GVDD AC7 VSS Ground N/A AC8 GVDD Power N/A AC9 MDQ3 I/O GVDD AC10 VSS Ground N/A AC11 GVDD Power N/A AC12 VSS Ground N/A AC13 M3VDD Power N/A AC14 VSS Ground N/A AC15 CPRIVDD Power N/A AC16 VSS Ground N/A AC17 NC NC N/A AC18 NC NC N/A MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 23 Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name AC19 NC NC N/A AC20 NC Non-user N/A AC21 NC NC N/A AC22 NC NC N/A AC23 NC NC N/A AC24 NC NC N/A AC25 SD_F_TX O SXPVDD AC26 SD_F_TX O SXPVDD AC27 SXCVSS Ground N/A AC28 SXCVDD Power N/A AD1 MECC7 I/O GVDD AD2 MECC6 I/O GVDD AD3 MECC0 I/O GVDD AD4 MECC5 I/O GVDD AD5 MECC3 I/O GVDD AD6 MDQ24 I/O GVDD AD7 MDM0 O GVDD AD8 MDQS0 I/O GVDD AD9 MDQS0 I/O GVDD AD10 MDQ4 I/O GVDD AD11 MDQ6 I/O GVDD AD12 VSS Non-user N/A AD13 VSS Non-user N/A AD14 VSS Non-user N/A AD15 VSS Ground N/A AD16 VSS Ground N/A AD17 NC NC N/A AD18 SD_PLL2_AVDD Power N/A AD19 NC NC N/A AD20 NC NC N/A AD21 NC NC N/A AD22 NC NC N/A AD23 NC NC N/A AD24 NC NC N/A MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 24 Freescale Semiconductor Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name AD25 SXPVDD Power N/A AD26 SXPVSS Ground N/A AD27 SD_F_RX I SXCVDD AD28 SD_F_RX I SXCVDD I/O GVDD Ground N/A AE1 MDQS2 AE2 VSS AE3 MDQ18 I/O GVDD AE4 GVDD Power N/A AE5 VSS Ground N/A AE6 MDQ29 I/O GVDD AE7 GVDD Power N/A AE8 VSS Ground N/A AE9 MDQ5 I/O GVDD AE10 GVDD Power N/A AE11 VSS Ground N/A AE12 MDQ9 I/O GVDD AE13 VSS Non-user N/A AE14 VSS Ground N/A AE15 VSS Ground N/A AE16 VSS Ground N/A AE17 NC NC N/A AE18 SD_PLL2_AGND Ground N/A AE19 NC NC N/A AE20 SD_J_TX O SXPVDD AE21 SXPVDD Power N/A AE22 SD_I_TX O SXPVDD AE23 SXPVDD Power N/A AE24 NC NC N/A AE25 SD_G_TX O SXPVDD AE26 SD_G_TX O SXPVDD AE27 SXCVSS Ground N/A AE28 SXCVDD Power N/A AF1 MDQS2 I/O GVDD AF2 MDQ17 I/O GVDD MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 25 Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name AF3 MDQ21 I/O GVDD AF4 MDQ16 I/O GVDD AF5 MDQ30 I/O GVDD AF6 MDQ27 I/O GVDD AF7 MDQ28 I/O GVDD AF8 MDQ7 I/O GVDD AF9 MDQ14 I/O GVDD AF10 MDQ11 I/O GVDD AF11 MDQ8 I/O GVDD AF12 MDQ10 I/O GVDD AF13 VSS Non-user N/A AF14 VSS Ground N/A AF15 VSS Ground N/A AF16 VSS Ground N/A AF17 NC NC N/A AF18 NC NC N/A AF19 NC NC N/A AF20 SD_J_TX O SXPVDD AF21 SXPVSS Ground N/A AF22 SD_I_TX O SXPVDD AF23 SXPVSS Ground N/A AF24 NC NC N/A AF25 SXPVDD Power N/A AF26 SXPVSS Ground N/A AF27 SD_G_RX I SXCVDD AF28 SD_G_RX I SXCVDD AG1 VSS Ground N/A AG2 GVDD Power N/A AG3 MDQ22 I/O GVDD AG4 VSS Ground N/A AG5 GVDD Power N/A AG6 MDQ26 I/O GVDD AG7 VSS Ground N/A AG8 GVDD Power N/A MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 26 Freescale Semiconductor Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name I/O GVDD AG9 MDQ13 AG10 VSS Ground N/A AG11 GVDD Power N/A AG12 MDQ12 I/O GVDD AG13 VSS Ground N/A AG14 VSS Ground N/A AG15 VSS Ground N/A AG16 VSS Ground N/A AG17 NC NC N/A AG18 SXCVSS Ground N/A AG19 SD_REF_CLK2 I SXCVDD AG20 SXCVSS Ground N/A AG21 SD_J_RX I SXCVDD AG22 SXCVSS Ground N/A AG23 SD_I_RX I SXCVDD AG24 SXCVSS Ground N/A AG25 SD_H_TX O SXPVDD AG26 SD_H_TX O SXPVDD AG27 SXCVSS Ground N/A AG28 SXCVDD Power N/A AH1 MDQ20 I/O GVDD AH2 MDQ19 I/O GVDD AH3 MDQ23 I/O GVDD AH4 MDM2 O GVDD AH5 MDQS3 I/O GVDD AH6 MDQS3 I/O GVDD AH7 MDM3 O GVDD AH8 MDQ31 I/O GVDD AH9 MDQS1 I/O GVDD AH10 MDQS1 I/O GVDD AH11 MDQ15 I/O GVDD AH12 MDM1 O GVDD AH13 VSS Ground N/A AH14 PLL0_AVDD Power N/A MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 27 Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name AH15 PLL1_AVDD Power N/A AH16 PLL2_AVDD Power N/A AH17 NC NC N/A AH18 SXCVDD Power N/A AH19 SD_REF_CLK2 I SXCVDD AH20 SXCVDD Power N/A AH21 SD_J_RX I SXCVDD AH22 SXCVDD Power N/A AH23 SD_I_RX I SXCVDD AH24 SXCVDD Power N/A AH25 SXPVDD Power N/A AH26 SXPVSS Ground N/A AH27 SD_H_RX I SXCVDD AH28 SD_H_RX I SXCVDD Notes: 1. 2. 3. 4. Signal function during power-on reset is determined by the RCW source type. Selection of RapidIO, SGMII, CPRI, and PCI Express functionality during normal operation is configured by the RCW bit values. Selection of the GPIO function and other functions is done by GPIO register setup. For signals with GPIO functionality, the open-drain and internal 20 KΩ pull-up resistor can be configured by GPIO register programming. For configuration details, see the GPIO chapter in the MSC8157 Reference Manual. NC signals should be disconnected for compatibility with future revisions of the device. Non-user signals are reserved for manufacturing and test purposes only. The assigned signal name is used to indicate whether the signal must be unconnected (Reserved), pulled down (VSS or SXCVSS), or pulled up (VDD). Pin types are: Ground = all VSS connections; Power = all VDD connections; I = Input; O = Output; I/O = Input/Output; NC = not connected; non-user = connect as specified under Signal Name. Connect power inputs to the power supplies via external filters. See the MSC8157 Design Checklist (AN4110) for details. Table 2. Signal List by Primary Signal Name Signal Name1,2 Ball Number Pin Type3 Power Rail Name A18 CLKIN I QVDD A13 CLKOUT O QVDD AA15 CPRIVDD Power N/A AA17 CPRIVDD Power N/A AA19 CPRIVDD Power N/A AB16 CPRIVDD Power N/A AB18 CPRIVDD Power N/A AC15 CPRIVDD Power N/A W17 CPRIVDD Power N/A Y16 CPRIVDD Power N/A MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 28 Freescale Semiconductor Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name Y18 CPRIVDD Power N/A N11 CRPEVDD Power N/A N7 CRPEVDD Power N/A N9 CRPEVDD Power N/A P10 CRPEVDD Power N/A P8 CRPEVDD Power N/A R11 CRPEVDD Power N/A C16 DFT_TEST I QVDD A14 EE0 I QVDD C14 EE1 O QVDD B26 GE_MDC O NVDD C27 GE_MDIO I/O NVDD A23 GE1_GTX_CLK O NVDD H22 GE1_RD0 I NVDD H24 GE1_RD1 I NVDD G21 GE1_RD2 I NVDD G20 GE1_RD3 I NVDD G22 GE1_RX_CLK I NVDD G24 GE1_RX_CTL I NVDD A24 GE1_TD0 O NVDD A27 GE1_TD1 O NVDD A26 GE1_TD2 O NVDD A28 GE1_TD3 O NVDD A25 GE1_TX_CLK I NVDD A22 GE1_TX_CTL O NVDD C21 GE2_GTX_CLK/CP_LOS4 I/O NVDD F21 GE2_RD0/CP_LOS6 I NVDD F23 GE2_RD1 I NVDD F19 GE2_RD2/CP_LOS1 I NVDD E20 GE2_RD3/CP_LOS2 I NVDD F22 GE2_RX_CLK I NVDD F20 GE2_RX_CTL I NVDD C24 GE2_TD0 O NVDD C23 GE2_TD1 O NVDD MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 29 Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name C20 GE2_TD2/CP_LOS3 I/O NVDD D22 GE2_TD3/CP_LOS5 I/O NVDD B20 GE2_TX_CLK I NVDD C22 GE2_TX_CTL O NVDD E26 GPIO0/IRQ0/RC0/CP_SYNC1 I/O NVDD E28 GPIO1/IRQ1/RC1/CP_SYNC2 I/O NVDD D28 GPIO10/IRQ10/RC10 I/O NVDD G28 GPIO11/IRQ11/RC11 I/O NVDD H28 GPIO12/IRQ12/RC12 I/O NVDD D20 GPIO13/IRQ13/RC13 I/O NVDD H26 GPIO14/DRQ0/IRQ14/RC14 I/O NVDD C19 GPIO15/DDN0/IRQ15/RC15 I/O NVDD D26 GPIO16/TMR5/RC16 I/O NVDD E27 GPIO17/SPI_SCK/CP_LOS3 I/O NVDD B28 GPIO18/SPI_MOSI/CP_LOS4 I/O NVDD G26 GPIO19/SPI_MISO/CP_LOS5 I/O NVDD K28 GPIO2/IRQ2/RC2/CP_SYNC3 I/O NVDD C26 GPIO20/SPI_SL/CP_LOS6 I/O NVDD C28 GPIO21/TMR6 I/O NVDD F26 GPIO22 I/O NVDD F27 GPIO23/TMR0/BOOT_SPI_SL I/O NVDD J22 GPIO24/TMR1/RCW_SRC2 I/O NVDD B24 GPIO25/TMR2/RCW_SRC1 I/O NVDD F24 GPIO26/TMR3 I/O NVDD E24 GPIO27/TMR4/RCW_SRC0 I/O NVDD G19 GPIO28/UART_RXD/CP_LOS1 I/O NVDD A20 GPIO29/UART_TXD/CP_LOS2 I/O NVDD J28 GPIO3/DRQ1/IRQ3/RC3 I/O NVDD C25 GPIO30/I2C_SCL I/O NVDD A21 GPIO31/I2C_SDA I/O NVDD K22 GPIO4/DDN1/IRQ4/RC4 I/O NVDD D24 GPIO5/IRQ5/RC5/CP_SYNC4 I/O NVDD F25 GPIO6/IRQ6/RC6/CP_SYNC5 I/O NVDD K26 GPIO7/IRQ7/RC7/CP_SYNC6 I/O NVDD MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 30 Freescale Semiconductor Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name F28 GPIO8/IRQ8/RC8 I/O NVDD J23 GPIO9/IRQ9/RC9 I/O NVDD A4 GVDD Power N/A A7 GVDD Power N/A AA4 GVDD Power N/A AA9 GVDD Power N/A AC11 GVDD Power N/A AC2 GVDD Power N/A AC5 GVDD Power N/A AC8 GVDD Power N/A AE10 GVDD Power N/A AE4 GVDD Power N/A AE7 GVDD Power N/A AG11 GVDD Power N/A AG2 GVDD Power N/A AG5 GVDD Power N/A AG8 GVDD Power N/A C2 GVDD Power N/A C5 GVDD Power N/A E4 GVDD Power N/A E7 GVDD Power N/A G2 GVDD Power N/A G5 GVDD Power N/A J4 GVDD Power N/A L2 GVDD Power N/A L5 GVDD Power N/A N4 GVDD Power N/A R2 GVDD Power N/A R5 GVDD Power N/A R7 GVDD Power N/A T8 GVDD Power N/A U4 GVDD Power N/A U7 GVDD Power N/A V8 GVDD Power N/A MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 31 Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name W5 GVDD Power N/A W7 GVDD Power N/A Y8 GVDD Power N/A E16 HRESET I/O QVDD D17 HRESET_IN I QVDD E15 INT_OUT/CP_TX_INT O QVDD AA11 M3VDD Power N/A AA13 M3VDD Power N/A AB12 M3VDD Power N/A AB14 M3VDD Power N/A AC13 M3VDD Power N/A W11 M3VDD Power N/A W13 M3VDD Power N/A W15 M3VDD Power N/A Y12 M3VDD Power N/A Y14 M3VDD Power N/A R3 MA0 O GVDD T4 MA1 O GVDD P2 MA10 O GVDD Y1 MA11 O GVDD Y3 MA12 O GVDD M3 MA13 O GVDD AA3 MA14 O GVDD AA6 MA15 O GVDD V4 MA2 O GVDD T5 MA3 O GVDD P4 MA4 O GVDD W3 MA5 O GVDD V5 MA6 O GVDD Y4 MA7 O GVDD V3 MA8 O GVDD Y2 MA9 O GVDD MAPAR_IN I GVDD MAPAR_OUT O GVDD AB6 T6 MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 32 Freescale Semiconductor Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name Power N/A U1 MAVDD R6 MBA0 O GVDD U6 MBA1 O GVDD AB7 MBA2 O GVDD K1 MCAS O GVDD M1 MCK0 O GVDD M2 MCK0 O GVDD T3 MCK1 O GVDD U3 MCK1 O GVDD P1 MCK2 O GVDD R1 MCK2 O GVDD AA7 MCKE0 O GVDD V6 MCKE1 O GVDD A16 MCLKIN (optional) I QVDD K2 MCS0 O GVDD K3 MCS1 O GVDD AD7 MDM0 O GVDD AH12 MDM1 O GVDD AH4 MDM2 O GVDD AH7 MDM3 O GVDD L6 MDM4 O GVDD G3 MDM5 O GVDD F7 MDM6 O GVDD C6 MDM7 O GVDD AB2 MDM8 O GVDD AB10 MDQ0 I/O GVDD AB9 MDQ1 I/O GVDD AF12 MDQ10 I/O GVDD AF10 MDQ11 I/O GVDD AG12 MDQ12 I/O GVDD AG9 MDQ13 I/O GVDD AF9 MDQ14 I/O GVDD AH11 MDQ15 I/O GVDD AF4 MDQ16 I/O GVDD MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 33 Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name AF2 MDQ17 I/O GVDD AE3 MDQ18 I/O GVDD AH2 MDQ19 I/O GVDD AB8 MDQ2 I/O GVDD AH1 MDQ20 I/O GVDD AF3 MDQ21 I/O GVDD AG3 MDQ22 I/O GVDD AH3 MDQ23 I/O GVDD AD6 MDQ24 I/O GVDD AC6 MDQ25 I/O GVDD AG6 MDQ26 I/O GVDD AF6 MDQ27 I/O GVDD AF7 MDQ28 I/O GVDD AE6 MDQ29 I/O GVDD AC9 MDQ3 I/O GVDD AF5 MDQ30 I/O GVDD AH8 MDQ31 I/O GVDD K5 MDQ32 I/O GVDD J5 MDQ33 I/O GVDD K6 MDQ34 I/O GVDD J3 MDQ35 I/O GVDD J6 MDQ36 I/O GVDD J1 MDQ37 I/O GVDD H1 MDQ38 I/O GVDD K4 MDQ39 I/O GVDD AD10 MDQ4 I/O GVDD F1 MDQ40 I/O GVDD F2 MDQ41 I/O GVDD H6 MDQ42 I/O GVDD F5 MDQ43 I/O GVDD H4 MDQ44 I/O GVDD H5 MDQ45 I/O GVDD G6 MDQ46 I/O GVDD F6 MDQ47 I/O GVDD MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 34 Freescale Semiconductor Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name D2 MDQ48 I/O GVDD D1 MDQ49 I/O GVDD AE9 MDQ5 I/O GVDD D5 MDQ50 I/O GVDD D6 MDQ51 I/O GVDD D7 MDQ52 I/O GVDD E1 MDQ53 I/O GVDD E6 MDQ54 I/O GVDD E3 MDQ55 I/O GVDD B7 MDQ56 I/O GVDD A3 MDQ57 I/O GVDD B6 MDQ58 I/O GVDD B2 MDQ59 I/O GVDD AD11 MDQ6 I/O GVDD B1 MDQ60 I/O GVDD C3 MDQ61 I/O GVDD B5 MDQ62 I/O GVDD A6 MDQ63 I/O GVDD AF8 MDQ7 I/O GVDD AF11 MDQ8 I/O GVDD AE12 MDQ9 I/O GVDD AD8 MDQS0 I/O GVDD AD9 MDQS0 I/O GVDD AH10 MDQS1 I/O GVDD AH9 MDQS1 I/O GVDD AE1 MDQS2 I/O GVDD AF1 MDQS2 I/O GVDD AH5 MDQS3 I/O GVDD AH6 MDQS3 I/O GVDD H2 MDQS4 I/O GVDD H3 MDQS4 I/O GVDD F3 MDQS5 I/O GVDD F4 MDQS5 I/O GVDD D3 MDQS6 I/O GVDD MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 35 Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name D4 MDQS6 I/O GVDD B3 MDQS7 I/O GVDD B4 MDQS7 I/O GVDD AA1 MDQS8 I/O GVDD AB1 MDQS8 I/O GVDD AD3 MECC0 I/O GVDD AB4 MECC1 I/O GVDD AB3 MECC2 I/O GVDD AD5 MECC3 I/O GVDD AC3 MECC4 I/O GVDD AD4 MECC5 I/O GVDD AD2 MECC6 I/O GVDD AD1 MECC7 I/O GVDD Y6 MMDIC0 I/O GVDD W6 MMDIC1 I/O GVDD P6 MODT0 O GVDD N6 MODT1 O GVDD N1 MRAS O GVDD V1 MVREF Power N/A M4 MWE O GVDD A10 NC Non-user N/A A11 NC Non-user N/A A12 NC Non-user N/A A8 NC Non-user N/A A9 NC Non-user N/A AA20 NC NC N/A AA22 NC NC N/A AA23 NC NC N/A AA24 NC NC N/A AB19 NC NC N/A AB20 NC Non-user N/A AB21 NC NC N/A AB22 NC NC N/A AB23 NC NC N/A MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 36 Freescale Semiconductor Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name AB24 NC NC N/A AB5 NC Non-user N/A AC17 NC NC N/A AC18 NC NC N/A AC19 NC NC N/A AC20 NC Non-user N/A AC21 NC NC N/A AC22 NC NC N/A AC23 NC NC N/A AC24 NC NC N/A AD17 NC NC N/A AD19 NC NC N/A AD20 NC NC N/A AD21 NC NC N/A AD22 NC NC N/A AD23 NC NC N/A AD24 NC NC N/A AE17 NC NC N/A AE19 NC NC N/A AE24 NC NC N/A AF17 NC NC N/A AF18 NC NC N/A AF19 NC NC N/A AF24 NC NC N/A AG17 NC NC N/A AH17 NC NC N/A B10 NC Non-user N/A B12 NC Non-user N/A B8 NC Non-user N/A C10 NC Non-user N/A C11 NC Non-user N/A C12 NC Non-user N/A C13 NC Non-user N/A C15 NC Non-user N/A MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 37 Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name C8 NC Non-user N/A C9 NC Non-user N/A D10 NC Non-user N/A D12 NC Non-user N/A D14 NC Non-user N/A D8 NC Non-user N/A E10 NC Non-user N/A E11 NC Non-user N/A E12 NC Non-user N/A E13 NC Non-user N/A E14 NC Non-user N/A E9 NC Non-user N/A F11 NC Non-user N/A F12 NC Non-user N/A F14 NC Non-user N/A G11 NC Non-user N/A G12 NC Non-user N/A G13 NC Non-user N/A G14 NC Non-user N/A H13 NC Non-user N/A L22 NC NC N/A L23 NC NC N/A L3 NC Non-user N/A M21 NC NC N/A M22 NC NC N/A M5 NC Non-user N/A M6 NC Non-user N/A N21 NC NC N/A N22 NC NC N/A N3 NC Non-user N/A P21 NC NC N/A P23 NC NC N/A P24 NC NC N/A P3 NC Non-user N/A MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 38 Freescale Semiconductor Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name P5 NC Non-user N/A R21 NC NC N/A R22 NC NC N/A R23 NC NC N/A R24 NC NC N/A T21 NC NC N/A T22 NC Non-user N/A T23 NC Non-user N/A T24 NC NC N/A U21 NC NC N/A U22 NC NC N/A U23 NC NC N/A U24 NC NC N/A V21 NC NC N/A V22 NC NC N/A V23 NC NC N/A V24 NC NC N/A V25 NC NC N/A V26 NC NC N/A W21 NC NC N/A W22 NC NC N/A W23 NC NC N/A W26 NC NC N/A Y21 NC NC N/A Y22 NC NC N/A Y23 NC NC N/A Y24 NC NC N/A Y25 NC NC N/A Y26 NC NC N/A Y5 NC Non-user N/A D15 NMI I QVDD F15 NMI_OUT/CP_RX_INT O QVDD D21 NVDD Power N/A D25 NVDD Power N/A MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 39 Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name E19 NVDD Power N/A E23 NVDD Power N/A G25 NVDD Power N/A H20 NVDD Power N/A H23 NVDD Power N/A H27 NVDD Power N/A J21 NVDD Power N/A K25 NVDD Power N/A L21 NVDD Power N/A AH14 PLL0_AVDD Power N/A AH15 PLL1_AVDD Power N/A AH16 PLL2_AVDD Power N/A I QVDD C17 PORESET G15 QVDD Power N/A H14 QVDD Power N/A J27 RC21 I NVDD J24 RCW_LSEL0/RC17 I/O NVDD K24 RCW_LSEL1/RC18 I/O NVDD J26 RCW_LSEL2/RC19 I/O NVDD J25 RCW_LSEL3/RC20 I/O NVDD M27 SD_A_RX I SXCVDD M28 SD_A_RX I SXCVDD M23 SD_A_TX O SXPVDD M24 SD_A_TX O SXPVDD P27 SD_B_RX I SXCVDD P28 SD_B_RX I SXCVDD N25 SD_B_TX O SXPVDD N26 SD_B_TX O SXPVDD T27 SD_C_RX I SXCVDD T28 SD_C_RX I SXCVDD R25 SD_C_TX O SXPVDD R26 SD_C_TX O SXPVDD V27 SD_D_RX I SXCVDD V28 SD_D_RX I SXCVDD MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 40 Freescale Semiconductor Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name U25 SD_D_TX O SXPVDD U26 SD_D_TX O SXPVDD AB27 SD_E_RX I SXCVDD AB28 SD_E_RX I SXCVDD AA25 SD_E_TX O SXPVDD AA26 SD_E_TX O SXPVDD AD27 SD_F_RX I SXCVDD AD28 SD_F_RX I SXCVDD AC25 SD_F_TX O SXPVDD AC26 SD_F_TX O SXPVDD AF27 SD_G_RX I SXCVDD AF28 SD_G_RX I SXCVDD AE25 SD_G_TX O SXPVDD AE26 SD_G_TX O SXPVDD AH27 SD_H_RX I SXCVDD AH28 SD_H_RX I SXCVDD AG25 SD_H_TX O SXPVDD AG26 SD_H_TX O SXPVDD AG23 SD_I_RX I SXCVDD AH23 SD_I_RX I SXCVDD AE22 SD_I_TX O SXPVDD AF22 SD_I_TX O SXPVDD P22 SD_IMP_CAL_RX I SXCVDD AA21 SD_IMP_CAL_TX I SXPVDD AG21 SD_J_RX I SXCVDD AH21 SD_J_RX I SXCVDD AE20 SD_J_TX O SXPVDD AF20 SD_J_TX O SXPVDD W25 SD_PLL1_AGND Ground N/A W24 SD_PLL1_AVDD Power N/A AE18 SD_PLL2_AGND Ground N/A AD18 SD_PLL2_AVDD Power N/A Y27 SD_REF_CLK1 I SXCVDD Y28 SD_REF_CLK1 I SXCVDD MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 41 Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name AG19 SD_REF_CLK2 I SXCVDD AH19 SD_REF_CLK2 I SXCVDD G16 STOP_BS I QVDD AA28 SXCVDD Power N/A AC28 SXCVDD Power N/A AE28 SXCVDD Power N/A AG28 SXCVDD Power N/A AH18 SXCVDD Power N/A AH20 SXCVDD Power N/A AH22 SXCVDD Power N/A AH24 SXCVDD Power N/A L28 SXCVDD Power N/A N28 SXCVDD Power N/A R28 SXCVDD Power N/A U28 SXCVDD Power N/A W28 SXCVDD Power N/A AA27 SXCVSS Ground N/A AC27 SXCVSS Ground N/A AE27 SXCVSS Ground N/A AG18 SXCVSS Ground N/A AG20 SXCVSS Ground N/A AG22 SXCVSS Ground N/A AG24 SXCVSS Ground N/A AG27 SXCVSS Ground N/A L27 SXCVSS Ground N/A N27 SXCVSS Ground N/A R27 SXCVSS Ground N/A U27 SXCVSS Ground N/A W27 SXCVSS Ground N/A AB25 SXPVDD Power N/A AD25 SXPVDD Power N/A AE21 SXPVDD Power N/A AE23 SXPVDD Power N/A AF25 SXPVDD Power N/A MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 42 Freescale Semiconductor Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name AH25 SXPVDD Power N/A M25 SXPVDD Power N/A N23 SXPVDD Power N/A P25 SXPVDD Power N/A T25 SXPVDD Power N/A AB26 SXPVSS Ground N/A AD26 SXPVSS Ground N/A AF21 SXPVSS Ground N/A AF23 SXPVSS Ground N/A AF26 SXPVSS Ground N/A AH26 SXPVSS Ground N/A M26 SXPVSS Ground N/A N24 SXPVSS Ground N/A P26 SXPVSS Ground N/A T26 SXPVSS Ground N/A E17 TCK I QVDD F17 TDI I QVDD B14 TDO O QVDD B15 TMS I QVDD G17 TRST I QVDD F10 VDD Power N/A F8 VDD Power N/A G7 VDD Power N/A G9 VDD Power N/A H10 VDD Power N/A H16 VDD Power N/A H18 VDD Power N/A H8 VDD Power N/A J11 VDD Power N/A J13 VDD Power N/A J15 VDD Power N/A J17 VDD Power N/A J19 VDD Power N/A J7 VDD Power N/A MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 43 Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name J9 VDD Power N/A K10 VDD Power N/A K12 VDD Power N/A K14 VDD Power N/A K16 VDD Power N/A K18 VDD Power N/A K20 VDD Power N/A K8 VDD Power N/A L11 VDD Power N/A L13 VDD Power N/A L15 VDD Power N/A L17 VDD Power N/A L19 VDD Power N/A L7 VDD Power N/A L9 VDD Power N/A M10 VDD Power N/A M12 VDD Power N/A M14 VDD Power N/A M16 VDD Power N/A M18 VDD Power N/A M20 VDD Power N/A M8 VDD Power N/A N13 VDD Power N/A N15 VDD Power N/A N17 VDD Power N/A N19 VDD Power N/A P12 VDD Power N/A P14 VDD Power N/A P16 VDD Power N/A P18 VDD Power N/A P20 VDD Power N/A R13 VDD Power N/A R15 VDD Power N/A R17 VDD Power N/A MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 44 Freescale Semiconductor Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name R19 VDD Power N/A R9 VDD Power N/A T10 VDD Power N/A T12 VDD Power N/A T14 VDD Power N/A T16 VDD Power N/A T18 VDD Power N/A T20 VDD Power N/A U11 VDD Power N/A U13 VDD Power N/A U15 VDD Power N/A U17 VDD Power N/A U19 VDD Power N/A U9 VDD Power N/A V10 VDD Power N/A V12 VDD Power N/A V14 VDD Power N/A V16 VDD Power N/A V18 VDD Power N/A V20 VDD Power N/A W19 VDD Power N/A W9 VDD Power N/A Y10 VDD Power N/A Y20 VDD Power N/A A15 VSS Ground N/A A17 VSS Ground N/A A19 VSS Ground N/A A2 VSS Ground N/A A5 VSS Ground N/A AA10 VSS Ground N/A AA12 VSS Ground N/A AA14 VSS Ground N/A AA16 VSS Ground N/A AA18 VSS Ground N/A MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 45 Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name AA2 VSS Ground N/A AA5 VSS Ground N/A AA8 VSS Ground N/A AB11 VSS Ground N/A AB13 VSS Ground N/A AB15 VSS Ground N/A AB17 VSS Ground N/A AC1 VSS Ground N/A AC10 VSS Ground N/A AC12 VSS Ground N/A AC14 VSS Ground N/A AC16 VSS Ground N/A AC4 VSS Ground N/A AC7 VSS Ground N/A AD12 VSS Non-user N/A AD13 VSS Non-user N/A AD14 VSS Non-user N/A AD15 VSS Ground N/A AD16 VSS Ground N/A AE11 VSS Ground N/A AE13 VSS Non-user N/A AE14 VSS Ground N/A AE15 VSS Ground N/A AE16 VSS Ground N/A AE2 VSS Ground N/A AE5 VSS Ground N/A AE8 VSS Ground N/A AF13 VSS Non-user N/A AF14 VSS Ground N/A AF15 VSS Ground N/A AF16 VSS Ground N/A AG1 VSS Ground N/A AG10 VSS Ground N/A AG13 VSS Ground N/A MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 46 Freescale Semiconductor Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name AG14 VSS Ground N/A AG15 VSS Ground N/A AG16 VSS Ground N/A AG4 VSS Ground N/A AG7 VSS Ground N/A AH13 VSS Ground N/A B11 VSS Ground N/A B13 VSS Ground N/A B16 VSS Ground N/A B17 VSS Ground N/A B18 VSS Ground N/A B19 VSS Ground N/A B21 VSS Ground N/A B22 VSS Non-user N/A B23 VSS Ground N/A B25 VSS Ground N/A B27 VSS Ground N/A B9 VSS Ground N/A C1 VSS Ground N/A C18 VSS Ground N/A C4 VSS Ground N/A C7 VSS Ground N/A D11 VSS Ground N/A D13 VSS Ground N/A D16 VSS Ground N/A D18 VSS Ground N/A D19 VSS Non-user N/A D23 VSS Ground N/A D9 VSS Ground N/A E18 VSS Ground N/A E2 VSS Ground N/A E21 VSS Ground N/A E22 VSS Non-user N/A E25 VSS Ground N/A MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 47 Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name E5 VSS Ground N/A E8 VSS Ground N/A F13 VSS Ground N/A F16 VSS Ground N/A F18 VSS Ground N/A F9 VSS Ground N/A G1 VSS Ground N/A G10 VSS Ground N/A G18 VSS Ground N/A G23 VSS Ground N/A G27 VSS Ground N/A G4 VSS Ground N/A G8 VSS Ground N/A H11 VSS Ground N/A H12 VSS Non-user N/A H15 VSS Ground N/A H17 VSS Ground N/A H19 VSS Ground N/A H21 VSS Ground N/A H25 VSS Ground N/A H7 VSS Ground N/A H9 VSS Ground N/A J10 VSS Ground N/A J12 VSS Ground N/A J14 VSS Ground N/A J16 VSS Ground N/A J18 VSS Ground N/A J2 VSS Ground N/A J20 VSS Ground N/A J8 VSS Ground N/A K11 VSS Ground N/A K13 VSS Ground N/A K15 VSS Ground N/A K17 VSS Ground N/A MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 48 Freescale Semiconductor Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name K19 VSS Ground N/A K21 VSS Ground N/A K23 VSS Ground N/A K27 VSS Ground N/A K7 VSS Ground N/A K9 VSS Ground N/A L1 VSS Ground N/A L10 VSS Ground N/A L12 VSS Ground N/A L14 VSS Ground N/A L16 VSS Ground N/A L18 VSS Ground N/A L20 VSS Ground N/A L24 VSS Non-user N/A L25 VSS Non-user N/A L26 VSS Non-user N/A L4 VSS Ground N/A L8 VSS Ground N/A M11 VSS Ground N/A M13 VSS Ground N/A M15 VSS Ground N/A M17 VSS Ground N/A M19 VSS Ground N/A M7 VSS Ground N/A M9 VSS Ground N/A N10 VSS Ground N/A N12 VSS Ground N/A N14 VSS Ground N/A N16 VSS Ground N/A N18 VSS Ground N/A N2 VSS Ground N/A N20 VSS Ground N/A N5 VSS Ground N/A N8 VSS Ground N/A MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 49 Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name P11 VSS Ground N/A P13 VSS Ground N/A P15 VSS Ground N/A P17 VSS Ground N/A P19 VSS Ground N/A P7 VSS Ground N/A P9 VSS Ground N/A R10 VSS Ground N/A R12 VSS Ground N/A R14 VSS Ground N/A R16 VSS Ground N/A R18 VSS Ground N/A R20 VSS Ground N/A R4 VSS Ground N/A R8 VSS Ground N/A T1 VSS Ground N/A T11 VSS Ground N/A T13 VSS Ground N/A T15 VSS Ground N/A T17 VSS Ground N/A T19 VSS Ground N/A T2 VSS Ground N/A T7 VSS Ground N/A T9 VSS Ground N/A U10 VSS Ground N/A U12 VSS Ground N/A U14 VSS Ground N/A U16 VSS Ground N/A U18 VSS Ground N/A U2 VSS Ground N/A U20 VSS Ground N/A U5 VSS Ground N/A U8 VSS Ground N/A V11 VSS Ground N/A MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 50 Freescale Semiconductor Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name V13 VSS Ground N/A V15 VSS Ground N/A V17 VSS Ground N/A V19 VSS Ground N/A V2 VSS Ground N/A V7 VSS Ground N/A V9 VSS Ground N/A W1 VSS Ground N/A W10 VSS Ground N/A W12 VSS Ground N/A W14 VSS Ground N/A W16 VSS Ground N/A W18 VSS Ground N/A W2 VSS Ground N/A W20 VSS Ground N/A W4 VSS Ground N/A W8 VSS Ground N/A Y11 VSS Ground N/A Y13 VSS Ground N/A Y15 VSS Ground N/A Y17 VSS Ground N/A Y19 VSS Ground N/A Y7 VSS Ground N/A Y9 VSS Ground N/A D27 VSS‘ Ground N/A Signal function during power-on reset is determined by the RCW source type. Selection of RapidIO, SGMII, CPRI, and PCI Express functionality during normal operation is configured by the RCW bit values. Selection of the GPIO function and other functions is done by GPIO register setup. For signals with GPIO functionality, the open-drain and internal 20 KΩ pull-up resistor can be configured by GPIO register programming. For configuration details, see the GPIO chapter in the MSC8157 Reference Manual. NC signals should be disconnected for compatibility with future revisions of the device. Non-user signals are reserved for manufacturing and test purposes only. The assigned signal name is used to indicate whether the signal must be unconnected (Reserved), pulled down (VSS or SXCVSS), or pulled up (VDD). Pin types are: Ground = all VSS connections; Power = all VDD connections; I = Input; O = Output; I/O = Input/Output; NC = not connected; non-user = connect as specified under Signal Name. Connect power inputs to the power supplies via external filters. See the MSC8157 Design Checklist (AN4110) for details. MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 51 Electrical Characteristics 3 Electrical Characteristics This document contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications. For additional information, see the MSC8157 Reference Manual. 3.1 Maximum Ratings In calculating timing requirements, adding a maximum value of one specification to a minimum value of another specification does not yield a reasonable sum. A maximum specification is calculated using a worst case variation of process parameter values in one direction. The minimum specification is calculated using the worst case for the same parameters in the opposite direction. Therefore, a “maximum” value for a specification never occurs in the same device with a “minimum” value for another specification; adding a maximum to a minimum represents a condition that can never exist. Table 3 describes the maximum electrical ratings for the MSC8157. Table 3. Absolute Maximum Ratings Rating Power Rail Name Symbol Value Unit VDD VDD –0.3 to 1.1 V PLL supply voltage3 PLL0_AVDD PLL1_AVDD PLL2_AVDD MAVDD SD_PLL1_AVDD SD_PLL2_AVDD VDDPLL0 VDDPLL1 VDDPLL2 VDDPLLM VDDPLL VDDPLL –0.3 to 1.1 –0.3 to 1.1 –0.3 to 1.1 –0.3 to 1.1 –0.3 to 1.1 –0.3 to 1.1 V V V V V V CRPE supply voltage CPRI supply voltage CRPEVDD CPRIVDD VDDCRPE VDDCPRI –0.3 to 1.1 –0.3 to 1.1 V V M3VDD VDDM3 –0.3 to 1.1 V GVDD VDDDDR –0.3 to 1.65 V MVREF MVREF –0.3 to 0.51 × VDDDDR V VINDDR –0.3 to VDDDDR + 0.3 V VDDIO –0.3 to 2.625 V VINIO –0.3 to VDDIO + 0.3 V Core supply voltage • Cores 0–5 M3 memory supply voltage DDR memory supply voltage DDR reference voltage Input DDR voltage I/O voltage excluding DDR and RapidIO lines NVDD, QVDD Input I/O voltage SerDes pad voltage SXPVDD VDDSXP –0.3 to 1.65 V SerDes core voltage SXCVDD VDDSXC –0.3 to 1.21 V VDDRIOPLL –0.3 to 1.21 V VINRIO –0.3 to VDDSXC + 0.3 V TJ –40 to 105 °C TSTG –55 to +150 °C SerDes PLL voltage3 Input SerDes I/O voltage Operating temperature Storage temperature range Notes: 1. 2. 3. Functional operating conditions are given in Table 4. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond the listed limits may affect device reliability or cause permanent damage. PLL supply voltage is specified at input of the filter and not at pin of the MSC8157 (see the MSC8157 Design Checklist (AN4110)) MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 52 Freescale Semiconductor Electrical Characteristics 3.2 Recommended Operating Conditions Table 4 lists recommended operating conditions. Proper device operation outside of these conditions is not guaranteed. Table 4. Recommended Operating Conditions Rating Supply Min Nominal Max Unit VDD 0.97 1.0 1.05 V PLL0_AVDD PLL1_AVDD PLL2_AVDD MAVDD SD_PLL1_AVDD SD_PLL2_AVDD 0.97 1.0 1.05 V CRPEVDD 0.97 1.0 1.05 V CPRIVDD 0.97 1.0 1.05 V M3VDD 0.97 1.0 1.05 V GVDD 1.425 1.5 1.575 V MVREF 0.49 × GVDD (nom) 0.5 × GVDD (nom) 0.51 × GVDD (nom) V RGMII Ethernet and GPIO supply voltage2 NVDD 2.375 2.5 2.625 V Input/output clocks, reset signal, and JTAG supply voltage2 QVDD 2.375 2.5 2.625 V SerDes pad supply voltage SXPVDD 1.425 1.5 1.575 V SerDes core supply voltage1 SXCVDD 0.97 1.0 1.05 V TJ TA TJ 0 –40 — 105 — 105 °C °C °C Core supply voltage1 PLL supply voltage1,3 CRPE supply voltage1 1 CPRI supply voltage Switchable M3 memory supply voltage1 DDR memory supply voltage DDR reference voltage Operating temperature range: • Standard • Extended Notes: 1. 2. 3. Designates supplies that use the same 1.0 V nominal voltage level. Designates supplies that use the same 2.5 V nominal voltage level. PLL supply voltage is specified at the input of the filter and not at the MSC8157 pin for the supply. MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 53 Electrical Characteristics 3.3 Thermal Characteristics Table 5 describes thermal characteristics of the MSC8157 for the FC-PBGA packages. Table 5. Thermal Characteristics for the MSC8157 FC-PBGA 29 × 29 mm2 Characteristic Symbol Unit Natural Convection 200 ft/min (1 m/s) airflow Junction-to-ambient1, 2 RθJA 18 12 °C/W Junction-to-ambient, four-layer board1, 2 RθJA 13 9 °C/W RθJB 4 °C/W RθJC 0.4 °C/W Junction-to-board (bottom)3 4 Junction-to-case Notes: 1. 2. 3. 4. 3.4 Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESDC51-6. Thermal test board meets JEDEC specification for the specified package. Junction-to-board thermal resistance determined per JEDEC JESD 51-8. Thermal test board meets JEDEC specification for the specified package. Junction-to-case at the top of the package determined using MIL- STD-883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer CLKIN/MCLKIN Requirements Table 6 summarizes the required characteristics for the CLKIN/MCLKIN signal. Table 6. CLKIN/MCLKIN Requirements Parameter/Condition1 Symbol Min Typ Max Unit Notes CLKIN/MCLKIN duty cycle — 40 — 60 % 2 CLKIN/MCLKIN slew rate — 1 — 4 V/ns 3 CLKIN/MCLKIN peak period jitter — — — ±150 ps — CLKIN/MCLKIN jitter phase noise at –56 dBc — — — 500 KHz 4 ΔVAC 1.5 — — V — CIN — — 15 pf 5 AC input swing limits Input capacitance Notes: 3.5 1. 2. 3. 4. 5. For clock frequencies, see the Clock chapter in the MSC8157 Reference Manual. Measured at the rising edge and/or the falling edge at VDDIO/2. Slew rate as measured from ±20% to 80% of voltage swing at clock input. Phase noise is calculated as FFT of TIE jitter. The specified capacitance is not an external requirement. It represents the internal capacitance specification. DC Electrical Characteristics This section describes the DC electrical characteristics for the MSC8157. MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 54 Freescale Semiconductor Electrical Characteristics 3.5.1 DDR SDRAM Electrical Characteristics This section describes the DC electrical specifications for the DDR SDRAM interface of the MSC8157. Table 7 provides the recommended operating conditions for the DDR SDRAM controller when interfacing to DDR3 SDRAM. . Table 7. DDR3 SDRAM Interface DC Electrical Characteristics At recommended operating conditions (see Table 4) with GVDD = 1.5 V. Parameter/Condition Symbol Min Max Unit Notes MVREF 0.49 × VDDDDR 0.51 × VDDDDR V 2,3,4 Input high voltage VIH MVREF + 0.100 VDDDDR V 5 Input low voltage VIL GND MVREF – 0.100 V 5 Output high current (VOUT = 0.7125 V) IOH — –25.9 mA 6, 7 Output low current (VOUT = 0.7125 V) IOL 25.9 — mA 6, 7 I/O leakage current IOZ –50 50 μA 8 I/O reference voltage Notes: 1. 2. 3. 4. 5. 6. 7. 8. VDDDDR is expected to be within 50 mV of the DRAM VDD at all times. The DRAM and memory controller can use the same or different sources. MVREF is expected to be equal to 0.5 × VDDDDR and to track VDDDDR DC variations as measured at the receiver. Peak-to-peak noise on MVREF may not exceed 1% of the VDDDDR DC value (that is, 15 mV). VTT is not applied directly to the device. It is the supply to which the far end signal termination is made and is expected to be equal to MVREF with a minimum value of MVREF – 0.04 and a maximum value of MVREF + 0.04 V. VTT should track variations in the DC-level of MVREF. The voltage regulator for MVREF must meet the specifications stated in Table 9. Input capacitance load for DQ, DQS, and DQS signals are available in the IBIS models. IOH and IOL are measured at VDDDDR = 1.425 V. Refer to the IBIS model for the complete output IV curve characteristics. Output leakage is measured with all outputs are disabled, 0 V ≤ VOUT ≤ VDDDDR. Table 8 provides the DDR controller interface capacitance for DDR3 memory. Table 8. DDR3 SDRAM Capacitance At recommended operating conditions (see Table 4) with VDDDDR = 1.5 V. Parameter Symbol Min Max Unit I/O capacitance: DQ, DQS, DQS CIO 6 8 pF Delta I/O capacitance: DQ, DQS, DQS CDIO — 0.5 pF Note: Guaranteed by FAB process and micro-construction. Table 9 lists the current draw characteristics for MVREF. Table 9. Current Draw Characteristics for MVREF At recommended operating conditions (see Table 4). Parameter / Condition Current draw for MVREF 3.5.2 Symbol Min Max Unit IMVREFn — 1250 μA High-Speed Serial Interface (HSSI) DC Electrical Characteristics The MSC8157 features an HSSI that includes one 10-channel SerDes port (lanes A through J) used for high-speed serial interface applications (PCI Express, Serial RapidIO interfaces, CPRI, and SGMII). This section and its subsections describe the common portion of the SerDes DC, including the DC requirements for the SerDes reference clocks and the SerDes data lane MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 55 Electrical Characteristics transmitter (Tx) and receiver (Rx) reference circuits. The data lane circuit specifications are specific for each supported interface, and they have individual subsections by protocol. The selection of individual data channel functionality is done via the Reset Configuration Word High Register (RCWHR) SerDes Protocol selection fields (S1P and S2P). Specific AC electrical characteristics are defined in Section 3.6.2, “HSSI AC Timing Specifications.” 3.5.2.1 Signal Term Definitions The SerDes interface uses differential signaling to transfer data across the serial link. This section defines terms used in the description and specification of differential signals. Figure 2 shows how the signals are defined in addition to the waveform for either a transmitter output (SD_[A–J]_TX and SD_[A–J]_TX) or a receiver input (SD_[A–J]_RX and SD_[A–J]_RX). Each signal swings between X volts and Y volts where X > Y. SD_[A–J]_TX or SD_[A–J]_RX X Volts Vcm = (X + Y)/2 SD_[A–J]_TX or SD_[A–J]_RX Y Volts Differential Swing, VID or VOD = X – Y Differential Peak Voltage, VDIFFp = |X – Y| Differential Peak-Peak Voltage, VDIFFpp = 2 × VDIFFp (not shown) Figure 2. Differential Voltage Definitions for Transmitter/Receiver Using this waveform, the definitions are listed in Table 10. To simplify the illustration, the definitions assume that the SerDes transmitter and receiver operate in a fully symmetrical differential signaling environment. Table 10. Differential Signal Definitions Term Definition Single-Ended Swing The transmitter output signals and the receiver input signals SD[A–J]_TX, SD_[A–J]_TX, SD_[A–J]_RX and SD_[A–J]_RX each have a peak-to-peak swing of X – Y volts. This is also referred to as each signal wire’s single-ended swing. Differential Output Voltage, VOD (or The differential output voltage (or swing) of the transmitter, VOD, is defined as the difference of the two complimentary output voltages: VSD_[A–J]_TX – VSD[A–J]_TX. The VOD value can Differential Output Swing) be either positive or negative. Differential Input Voltage, VID (or Differential Input Swing) The differential input voltage (or swing) of the receiver, VID, is defined as the difference of the two complimentary input voltages: VSD_[A–J]_RX – VSD_[A–J]_RX. The VID value can be either positive or negative. MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 56 Freescale Semiconductor Electrical Characteristics Table 10. Differential Signal Definitions (continued) Term Definition Differential Peak Voltage, VDIFFp The peak value of the differential transmitter output signal or the differential receiver input signal is defined as the differential peak voltage, VDIFFp = |X– Y| volts. Differential Peak-to-Peak, VDIFFp-p Since the differential output signal of the transmitter and the differential input signal of the receiver each range from A – B to –(A – B) volts, the peak-to-peak value of the differential transmitter output signal or the differential receiver input signal is defined as differential peak-to-peak voltage, VDIFFp-p = 2 × VDIFFp = 2 × |(A – B)| volts, which is twice the differential swing in amplitude, or twice of the differential peak. For example, the output differential peak-peak voltage can also be calculated as VTX-DIFFp-p = 2 × |VOD|. Differential Waveform The differential waveform is constructed by subtracting the inverting signal (SD_[A–J]_TX, for example) from the non-inverting signal (SD_[A–J]_TX, for example) within a differential pair. There is only one signal trace curve in a differential waveform. The voltage represented in the differential waveform is not referenced to ground. Refer to Figure 2 as an example for differential waveform. Common Mode Voltage, Vcm The common mode voltage is equal to half of the sum of the voltages between each conductor of a balanced interchange circuit and ground. In this example, for SerDes output, Vcm_out = (VSD_[A–J]_TX + VSD_[A–J]_TX) ÷ 2 = (A + B) ÷ 2, which is the arithmetic mean of the two complimentary output voltages within a differential pair. In a system, the common mode voltage may often differ from one component’s output to the other’s input. It may be different between the receiver input and driver output circuits within the same component. It is also referred to as the DC offset on some occasions. To illustrate these definitions using real values, consider the example of a current mode logic (CML) transmitter that has a common mode voltage of 2.25 V and outputs, TD and TD. If these outputs have a swing from 2.0 V to 2.5 V, the peak-to-peak voltage swing of each signal (TD or TD) is 500 mV p-p, which is referred to as the single-ended swing for each signal. Because the differential signaling environment is fully symmetrical in this example, the transmitter output differential swing (VOD) has the same amplitude as each signal single-ended swing. The differential output signal ranges between 500 mV and –500 mV. In other words, VOD is 500 mV in one phase and –500 mV in the other phase. The peak differential voltage (VDIFFp) is 500 mV. The peak-to-peak differential voltage (VDIFFp-p) is 1000 mV p-p. 3.5.2.2 SerDes Reference Clock Receiver Characteristics The SerDes reference clock inputs are applied to an internal PLL whose output creates the clock used by the corresponding SerDes lanes. The SerDes reference clock inputs are SD_REF_CLK1/SD_REF_CLK1 or SD_REF_CLK2/SD_REF_CLK2. Figure 3 shows a receiver reference diagram of the SerDes reference clocks. 50 Ω SD_REF_CLK[1–2] Input Amp SD_REF_CLK[1–2] 50 Ω Figure 3. Receiver of SerDes Reference Clocks MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 57 Electrical Characteristics The characteristics of the clock signals are as follows: • • • • The supply voltage requirements for VDDSXC are as specified in Table 4. The SerDes reference clock receiver reference circuit structure is as follows: — The SD_REF_CLK[1–2] and SD_REF_CLK[1–2] are internally AC-coupled differential inputs as shown in Figure 3. Each differential clock input (SD_REF_CLK[1–2] or SD_REF_CLK[1–2] has on-chip 50-Ω termination to SXCVSS followed by on-chip AC-coupling. — The external reference clock driver must be able to drive this termination. — The SerDes reference clock input can be either differential or single-ended. Refer to the differential mode and single-ended mode descriptions below for detailed requirements. The maximum average current requirement also determines the common mode voltage range. — When the SerDes reference clock differential inputs are DC coupled externally with the clock driver chip, the maximum average current allowed for each input pin is 8 mA. In this case, the exact common mode input voltage is not critical as long as it is within the range allowed by the maximum average current of 8 mA because the input is AC-coupled on-chip. — This current limitation sets the maximum common mode input voltage to be less than 0.4 V (0.4 V / 50 = 8 mA) while the minimum common mode input level is 0.1 V above GNDSXC. For example, a clock with a 50/50 duty cycle can be produced by a clock driver with output driven by its current source from 0 mA to 16 mA (0–0.8 V), such that each phase of the differential input has a single-ended swing from 0 V to 800 mV with the common mode voltage at 400 mV. — If the device driving the SD_REF_CLK[1–2] and SD_REF_CLK[1–2] inputs cannot drive 50 Ω to GNDSXC DC or the drive strength of the clock driver chip exceeds the maximum input current limitations, it must be AC-coupled externally. The input amplitude requirement is described in detail in the following sections. 3.5.2.3 SerDes Transmitter and Receiver Reference Circuits Figure 4 shows the reference circuits for SerDes data lane transmitter and receiver. 50 Ω SD_[A–J]_TX SD_[A–J]_RX 50 Ω Transmitter Receiver 50 Ω SD_[A–J]_TX SD_[A–J]_RX 50 Ω Note: The [A–J] indicates the specific SerDes lane. Each lane can be assigned to a specific protocol by the RCW assignments at reset (see the MSC8157 Reference Manual for details). External AC coupling capacitors are required for all protocols for all lanes. Figure 4. SerDes Transmitter and Receiver Reference Circuits 3.5.2.4 Equalization With the use of high-speed serial links, the interconnect media causes degradation of the signal at the receiver and produces effects such as inter-symbol interference (ISI) or data-dependent jitter. This loss can be large enough to degrade the eye opening at the receiver beyond that allowed by the specification. To offset a portion of these effects, equalization can be used. The following is a list of the most commonly used equalization techniques: • Pre-emphasis on the transmitter MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 58 Freescale Semiconductor Electrical Characteristics • • A passive high-pass filter network placed at the receiver, often referred to as passive equalization The use of active circuits in the receiver, often referred to as adaptive equalization 3.5.3 DC-Level Requirements for SerDes Interfaces The following subsections define the DC-level requirements for the SerDes reference clocks, the PCI Express data lines, the Serial RapidIO data lines, the CPRI data lines, and the SGMII data lines. 3.5.3.1 DC-Level Requirements for SerDes Reference Clocks The DC-level requirement for the SerDes reference clock inputs is different depending on the signaling mode used to connect the clock driver chip and SerDes reference clock inputs, as described below: • Differential Mode — The input amplitude of the differential clock must be between 400 mV and 1600 mV differential peak-peak (or between 200 mV and 800 mV differential peak). In other words, each signal wire of the differential pair must have a single-ended swing of less than 800 mV and greater than 200 mV. This requirement is the same for both external DC-coupled or AC-coupled connection. — For an external DC-coupled connection, the maximum average current requirements sets the requirement for average voltage (common mode voltage) as between 100 mV and 400 mV. Figure 5 shows the SerDes reference clock input requirement for DC-coupled connection scheme. SD_REF_CLK[1–2] 200 mV < Input Amplitude or Differential Peak < 800 mV Vmax < 800 mV 100 mV < Vcm < 400 mV Vmin > 0 V SD_REF_CLK[1–2] Figure 5. Differential Reference Clock Input DC Requirements (External DC-Coupled) — For an external AC-coupled connection, there is no common mode voltage requirement for the clock driver. Because the external AC-coupling capacitor blocks the DC-level, the clock driver and the SerDes reference clock receiver operate in different command mode voltages. The SerDes reference clock receiver in this connection scheme has its common mode voltage set to GNDSXC. Each signal wire of the differential inputs is allowed to swing below and above the command mode voltage GNDSXC. Figure 6 shows the SerDes reference clock input requirement for AC-coupled connection scheme. MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 59 Electrical Characteristics 200 mV < Input Amplitude or Differential Peak < 800 mV SD_REF_CLK[1–2] Vmax < Vcm + 400 mV Vcm Vmin > Vcm – 400 mV SD_REF_CLK[1–2] Figure 6. Differential Reference Clock Input DC Requirements (External AC-Coupled) • Single-Ended Mode — The reference clock can also be single-ended. The SD_REF_CLK[1–2] input amplitude (single-ended swing) must be between 400 mV and 800 mV peak-peak (from VMIN to VMAX) with SD_REF_CLK[1–2] either left unconnected or tied to ground. — The SD_REF_CLK[1–2] input average voltage must be between 200 and 400 mV. Figure 7 shows the SerDes reference clock input requirement for single-ended signaling mode. — To meet the input amplitude requirement, the reference clock inputs may need to be DC- or AC-coupled externally. For the best noise performance, the reference of the clock could be DC- or AC-coupled into the unused phase (SD_REF_CLK[1–2]) through the same source impedance as the clock input (SD_REF_CLK[1–2]) in use. 400 mV < SD_REF_CLK[1–2] Input Amplitude < 800 mV SD_REF_CLK[1–2] 0V SD_REF_CLK[1–2] Figure 7. Single-Ended Reference Clock Input DC Requirements 3.5.3.2 DC-Level Requirements for PCI Express Configurations The DC-level requirements for PCI Express implementations have separate requirements for the Tx and Rx lines. The MSC8157 supports a 2.5 Gbps and a 5 Gbps PCI Express interface defined by the PCI Express Base Specification, Revision MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 60 Freescale Semiconductor Electrical Characteristics 2.0. The transmitter specifications for 2.5 Gbps are defined in Table 11 and the receiver specifications are defined in Table 12. For 5 Gbps, the transmitter specifications are defined in Table 13 and the receiver specifications are defined in Table 14. Table 11. PCI Express (2.5 Gbps) Differential Transmitter (Tx) Output DC Specifications At recommended operating conditions (see Table 4). Parameter Symbol Min Nom Max Units Condition Differential peak-to-peak output voltage swing VTX-DIFFp-p 800 1000 1200 mV VTX-DIFFp-p = 2 × |VTX-D+ – VTX-D–|, Measured at the package pins with a test load of 50 Ω to GND on each pin. De-emphasized differential output voltage (ratio) VTX-DE-RATI 3.0 3.5 4.0 dB Ratio of the VTX-DIFFp-p of the second and following bits after a transition divided by the VTX-DIFFp-p of the first bit after a transition. Measured at the package pins with a test load of 50 Ω to GND on each pin. DC differential Tx impedance ZTX-DIFF-DC 80 100 120 Ω Tx DC differential mode low Impedance ZTX-DC 40 50 60 Ω Required Tx D+ as well as D– DC Impedance during all states O DC single-ended TX impedance Table 12. PCI Express (2.5 Gbps) Differential Receiver (Rx) Input DC Specifications At recommended operating conditions (see Table 4). Parameter Symbol Min Nom Max Units Notes Differential input peak-to-peak voltage VRX-DIFFp-p 120 1000 1200 mV 1 DC differential Input Impedance ZRX-DIFF-DC 80 100 120 Ω 2 ZRX-DC 40 50 60 Ω 3 ZRX-HIGH-IMP-DC 50 — — ΚΩ 4 VRX-IDLE-DET-DIFFp-p 65 — 175 mV 5 DC input impedance Powered down DC input impedance Electrical idle detect threshold Notes: 1. 2. 3. 4. 5. VRX-DIFFp-p = 2 × |VRX-D+ – VRX-D-| Measured at the package pins with a test load of 50 Ω to GND on each pin. Rx DC differential mode impedance. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM), there is a 5 ms transition time before the receiver termination values must be met on all unconfigured lanes of a port. Required Rx D+ as well as D– DC Impedance (50 ±20% tolerance). Measured at the package pins with a test load of 50 Ω to GND on each pin. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM), there is a 5 ms transition time before the receiver termination values must be met on all unconfigured lanes of a port. Required Rx D+ as well as D– DC Impedance when the receiver terminations do not have power. The Rx DC common mode impedance that exists when no power is present or fundamental reset is asserted. This helps ensure that the receiver detect circuit does not falsely assume a receiver is powered on when it is not. This term must be measured at 300 mV above the Rx ground. VRX-IDLE-DET-DIFFp-p = 2 × |VRX-D+ – VRX-D–|. Measured at the package pins of the receiver MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 61 Electrical Characteristics Table 13. PCI Express (5 Gbps) Differential Transmitter (Tx) Output DC Specifications At recommended operating conditions (see Table 4). Parameter Symbol Min Nom Max Units Condition VTX-DIFFp-p 800 1000 1200 mV VTX-DIFFp-p = 2 × |VTX-D+ – VTX-D–|, Measured at the package pins with a test load of 50 Ω to GND on each pin. Low power differential peak-to-peak output voltage swing VTX-DIFFp-p_low 400 500 1200 mV VTX-DIFFp-p = 2 × |VTX-D+ – VTX-D–|, Measured at the package pins with a test load of 50 Ω to GND on each pin. De-emphasized differential output voltage (ratio) VTX-DE-RATIO-3.5dB 3.0 3.5 4.0 dB Ratio of the VTX-DIFFp-p of the second and following bits after a transition divided by the VTX-DIFFp-p of the first bit after a transition. Measured at the package pins with a test load of 50 Ω to GND on each pin. De-emphasized differential output voltage (ratio) VTX-DE-RATIO-6.0dB 5.5 6.0 6.5 dB Ratio of the VTX-DIFFp-p of the second and following bits after a transition divided by the VTX-DIFFp-p of the first bit after a transition. Measured at the package pins with a test load of 50 Ω to GND on each pin. ZTX-DIFF-DC 80 100 120 Ω Tx DC differential mode low impedance ZTX-DC 40 50 60 Ω Required Tx D+ as well as D– DC impedance during all states Differential peak-to-peak output voltage swing DC differential Tx impedance Transmitter DC impedance Table 14. PCI Express (5 Gbps) Differential Receiver (Rx) Input DC Specifications Parameter Symbol Min Nom Max Units Notes Differential input peak-to-peak voltage VRX-DIFFp-p 120 1000 1200 mV 1 DC differential Input Impedance ZRX-DIFF-DC 80 100 120 Ω 2 MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 62 Freescale Semiconductor Electrical Characteristics Table 14. PCI Express (5 Gbps) Differential Receiver (Rx) Input DC Specifications (continued) Parameter Symbol Min Nom Max Units Notes ZRX-DC 40 50 60 Ω 3 ZRX-HIGH-IMP-DC 50 — — ΚΩ 4 VRX-IDLE-DET-DIFFp-p 65 — 175 mV 5 DC input impedance Powered down DC input impedance Electrical idle detect threshold Notes: 1. 2. 3. 4. 5. VRX-DIFFp-p = 2 × |VRX-D+ – VRX-D-| Measured at the package pins with a test load of 50 Ω to GND on each pin. Rx DC differential mode impedance. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM), there is a 5 ms transition time before the receiver termination values must be met on all unconfigured lanes of a port. Required Rx D+ as well as D– DC Impedance (50 ±20% tolerance). Measured at the package pins with a test load of 50 Ω to GND on each pin. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM), there is a 5 ms transition time before the receiver termination values must be met on all unconfigured lanes of a port. Required Rx D+ as well as D– DC Impedance when the receiver terminations do not have power. The Rx DC common mode impedance that exists when no power is present or fundamental reset is asserted. This helps ensure that the receiver detect circuit does not falsely assume a receiver is powered on when it is not. This term must be measured at 300 mV above the Rx ground. VRX-IDLE-DET-DIFFp-p = 2 × |VRX-D+ – VRX-D–|. Measured at the package pins of the receiver 3.5.3.3 DC Level Requirements for Serial RapidIO Configurations Table 15. Serial RapidIO Transmitter DC Specifications for Transfer Rates ≤ 3.125 Gbaud At recommended operating conditions (see Table 4). Parameter Symbol Min Nom Max Units VO –0.40 — 2.30 V Long run differential output voltage VDIFFPP 800 — 1600 mVp-p L[A–J]TECR0[AMP_RED] = 0b000000 Short run differential output voltage VDIFFPP 500 — 1000 mVp-p L[A–J]TECR0[AMP_RED] = 0b001000 ZTX-DIFF-DC 80 100 120 Output voltage DC differential TX impedance Note: Ω Condition — — Voltage relative to COMMON of either signal comprising a differential pair. Table 16. Serial RapidIO Receiver DC Specifications for Transfer Rates ≤ 3.125 Gbaud At recommended operating conditions (see Table 4). Parameter Differential input voltage DC differential RX impedance Notes: 1. 2. Symbol Min Nom Max Units VIN 200 — 1600 mVp-p ZRX-DIFF-DC 80 100 120 Ω Voltage relative to COMMON of either signal comprising a differential pair. Specifications are for Long and Short Run. MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 63 Electrical Characteristics Table 17. Serial RapidIO Transmitter DC Specifications for Short Run at 5 Gbaud At recommended operating conditions (see Table 4). Parameter Symbol Min Nom Max Units Condition Output differential voltage (into floating load Rload = 100 Ω) T_Vdiff 400 — 750 mV Amplitude setting L[A–J]TECR0[AMP_RED] = 0b001101 T_Rd 80 100 120 Ω Differential resistance — Table 18. Serial RapidIO Receiver DC Specifications for Short Run at 5 Gbaud At recommended operating conditions (see Table 4). Parameter Symbol Min Nom Max Units Input differential voltage R_Vdiff 125 — 1200 mV Differential resistance R_Rdin 80 — 120 Ω Table 19. Serial RapidIO Transmitter DC Specifications for Long Run at 5 Gbaud At recommended operating conditions (see Table 4). Parameter Symbol Min Nom Max Units Output differential voltage (into floating load Rload = 100 Ω) T_Vdiff 800 — 1200 mV Amplitude setting L[A–J]TECR0[AMP_RED] = 0b000000 (with de-emphasis disabled) De-emphasized differential output voltage T_VTX-DE-RATIO-3.5dB 3 3.5 4 dB • p(n)_(y)_tx_eq_type[1:0] = 01 • p(n)_(y)_tx_ratio_post1q[3:0] = 1110 Tx De-emphasized level T_VTX-DE-RATIO-6.0dB 5.5 6 6.5 dB • p(n)_(y)_tx_eq_type[1:0] = 01 • p(n)_(y)_tx_ratio_post1q[3:0] = 1100 T_Rd 80 100 120 Ω — Differential resistance Conditions Table 20. Serial RapidIO Receiver DC Specifications for Long Run at 5 Gbaud At recommended operating conditions (see Table 4). Parameter Symbol Min Nom Max Units Condition Input differential voltage R_Vdiff N/A — 1200 mV It is assumed that for the R_Vdiff min specification, that the eye can be closed at the receiver after passing the signal through a CEI/SRIO Level II LR compliant channel. Differential resistance R_Rdin 80 — 120 Ω — MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 64 Freescale Semiconductor Electrical Characteristics 3.5.3.4 DC-Level Requirements for CPRI Configurations This section provide various DC-level requirements for CPRI configurations. Table 21. CPRI Transmitter DC Specifications (LV: 1.2288, 2.4576 and 3.072 Gbps) At recommended operating conditions (see Table 4). Parameter Symbol Min Nom Max Units VO –0.40 — 2.30 V VDIFFPP 800 — 1600 T_Rd 80 100 120 Output voltage Differential output voltage Differential resistance Note: Condition Voltage relative to COMMON of either signal comprising a differential pair. mVp-p L[A–J]TECR0[AMP_RED] = 0b000000. Ω — LV is XAUI-based. Table 22. CPRI Transmitter DC Specifications (LV-II: 1.2288, 2.4576, 3.072, 4.9152, and 6.144 Gbps) At recommended operating conditions (see Table 4). Parameter Output differential voltage (into floating load Rload = 100 Ω) Differential resistance Note: Symbol Min Nom Max Units T_Vdiff 800 — 1200 mV T_Rd 80 100 120 Ω Condition L[A–J]TECR0[AMP_RED] = 0x000000 — LV-II is CEI-6G-LR-based. Table 23. CPRI Receiver DC Specifications (LV: 1.2288, 2.4576 and 3.072 Gbps) At recommended operating conditions (see Table 4). Parameter Differential input voltage Difference resistance Note: Symbol Min Nom Max Units VIN 200 — 1600 mVp-p Measured at receiver. R_Rdin 80 — 120 Ω Condition — LV is XAUI-based. Table 24. CPRI Receiver DC Specifications (LV-II: 1.2288, 2.4576, 3.072, 4.9152, and 6.144 Gbps) At recommended operating conditions (see Table 4). Parameter Symbol Min Nom Max Units Condition Input differential voltage R_Vdiff N/A — 1200 mV It is assumed that for the R_Vdiff min specification, that the eye can be closed at the receiver after passing the signal through a CEI/CPRI Level II LR compliant channel. Differential resistance R_Rdin 80 — 120 Ω Note: — LV-II is CEI-6G-LR-based. MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 65 Electrical Characteristics 3.5.3.5 DC-Level Requirements for SGMII Configurations Table 25 describes the SGMII SerDes transmitter AC-coupled DC electrical characteristics. Table 25. SGMII DC Transmitter Electrical Characteristics At recommended operating conditions (see Table 4). Parameter Symbol Min Nom Max Unit Conditions Output differential voltage |VOD| 0.64 × Nom 500 1.45 × Nom mV 1. The |VOD| value shown in the Typ column is based on the condition of XVDD_SRDS2-Typ=1.0 V, no common mode offset variation (VOS =500mV), SerDes transmitter is terminated with 100-Ω differential load between SD_TXn and SD_TXn. 2. Amplitude setting: [A–J]TECR0[AMD_RED] = 0b000000 Output differential voltage |VOD| 0.64 × Nom 459 1.45 × Nom mV 1. The |VOD| value shown in the Typ column is based on the condition of XVDD_SRDS2-Typ=1.0V, no common mode offset variation (VOS =500mV), SerDes transmitter is terminated with 100-Ω differential load between SD_TXn and SD_TXn. 2. Amplitude setting: [A–J]TECR0[AMD_RED] = 0b000010 Output differential voltage |VOD| 0.64 × Nom 417 1.45 × Nom mV 1. The |VOD| value shown in the Typ column is based on the condition of XVDD_SRDS2-Typ=1.0V, no common mode offset variation (VOS =500mV), SerDes transmitter is terminated with 100-Ω differential load between SD_TXn and SD_TXn. 2. Amplitude setting: [A–J]TECR0[AMD_RED] = 0b000101 Output differential voltage |VOD| 0.64 × Nom 376 1.45 × Nom mV 1. The |VOD| value shown in the Typ column is based on the condition of XVDD_SRDS2-Typ=1.0V, no common mode offset variation (VOS =500mV), SerDes transmitter is terminated with 100-Ω differential load between SD_TXn and SD_TXn. 2. Amplitude setting: [A–J]TECR0[AMD_RED] = 0b001000 Output differential voltage |VOD| 0.64 × Nom 333 1.45 × Nom mV 1. The |VOD| value shown in the Typ column is based on the condition of XVDD_SRDS2-Typ=1.0V, no common mode offset variation (VOS =500mV), SerDes transmitter is terminated with 100-Ω differential load between SD_TXn and SD_TXn. 2. Amplitude setting: [A–J]TECR0[AMD_RED] = 0b001100 MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 66 Freescale Semiconductor Electrical Characteristics Table 25. SGMII DC Transmitter Electrical Characteristics (continued) At recommended operating conditions (see Table 4). Parameter Symbol Min Nom Max Unit Conditions Output differential voltage |VOD| 0.64 × Nom 292 1.45 × Nom mV 1. The |VOD| value shown in the Typ column is based on the condition of XVDD_SRDS2-Typ=1.0V, no common mode offset variation (VOS =500mV), SerDes transmitter is terminated with 100-Ω differential load between SD_TXn and SD_TXn. 2. Amplitude setting: [A–J]TECR0[AMD_RED] = 0b001111 Output differential voltage |VOD| 0.64 × Nom 250 1.45 × Nom mV 1. The |VOD| value shown in the Typ column is based on the condition of XVDD_SRDS2-Typ=1.0V, no common mode offset variation (VOS =500mV), SerDes transmitter is terminated with 100-Ω differential load between SD_TXn and SD_TXn. 2. Amplitude setting: [A–J]TECR0[AMD_RED] = 0b010011 Output impedance (single-ended) RO 40 50 60 Ω — Output high voltage VOH — — 1.5 × |VOD, max| mV — Output low voltage VOL |VOD|, min/2 — — mV — MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 67 Electrical Characteristics Table 26 describes the SGMII SerDes receiver AC-coupled DC electrical characteristics. Table 26. SGMII DC Receiver Electrical Characteristics1,2 At recommended operating conditions (see Table 4). Parameter Symbol Min Nom Max Unit Input differential voltage3 VRX_DIFFp-p 100 — 1200 mV L[A–J]GCR1[RECTL_SIGD] = 0b001 175 — 1200 mV L[A–J]GCR1[RECTL_SIGD] = 0b100 30 — 100 mV L[A–J]GCR1[RECTL_SIGD] = 0b001 65 — 175 mV L[A–J]GCR1[RECTL_SIGD] = 0b100 80 — 120 Ω Loss of signal threshold 4 Receiver differential input impedance Notes: 1. 2. 3. 4. 3.5.4 VLOS ZRX_DIFF Condition — The supply voltage is 1.0 V. Input must be externally AC-coupled. VRX_DIFFp-p is also referred to as peak-to-peak input differential voltage. The concept of this parameter is equivalent to the Electrical Idle Detect Threshold parameter in the PCI Express interface. Refer to the PCI Express Differential Receiver (RX) Input Specifications section of the PCI Express Specification document. for details. RGMII and Other Interface DC Electrical Characteristics Table 27 describes the DC electrical characteristics for the following interfaces: • • • • • • • • • • • RGMII Ethernet SPI GPIO UART TIMER EE I2C Interrupts (IRQn, NMI_OUT/CP_RX_INT, INT_OUT/CP_TX_INT) Clock and resets (CLKIN/MCLKIN, PORESET, HRESET, HRESET_IN) DMA External Request JTAG signals Table 27. 2.5 V I/O DC Electrical Characteristics Characteristic Symbol Min Max Unit Notes Input high voltage VIH 1.7 — V 1 Input low voltage VIL — 0.7 V 1 Input high current (VIN = VDDIO) IINH — 30 μA 2 Input low current (VIN = GND) IINL –30 — μA 2 Output high voltage (VDDIO = min, IOH = –1.0 mA) VOH 2.0 VDDIO + 0.3 V 1 Output low voltage (VDDIO = min, IOL= 1.0 mA) VOL GND – 0.3 0.40 V 1 Notes: 1. 2. The min VIL and max VIH values are based on the respective min and max VIN values listed in Table 4. The symbol VIN represents the input voltage of the supply. It is referenced in Table 4. MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 68 Freescale Semiconductor Electrical Characteristics 3.6 AC Timing Characteristics This section describes the AC timing characteristics for the MSC8157. 3.6.1 DDR SDRAM AC Timing Specifications This section describes the AC electrical characteristics for the DDR SDRAM interface. 3.6.1.1 DDR SDRAM Input AC Timing Specifications Table 28 provides the input AC timing specifications for the DDR SDRAM when VDDDDR (typ) = 1.5 V. Table 28. DDR3 SDRAM Input AC Timing Specifications for 1.5 V Interface Parameter AC input low voltage Symbol Min VILAC — > 1200 MHz data rate ≤ 1200 MHz data rate AC input high voltage Unit V MVREF – 0.150 MVREF – 0.175 — VIHAC > 1200 MHz data rate ≤ 1200 MHz data rate Note: Max V MVREF + 0.150 MVREF + 0.175 At recommended operating conditions with VDDDDR of 1.5 ± 5%. Table 29 provides the input AC timing specifications for the DDR SDRAM interface. Table 29. DDR SDRAM Input AC Timing Specifications Parameter Symbol Controller Skew for MDQS—MDQ/MECC • 1333 MHz data rate • 1200 MHz data rate • 1066 MHz data rate • 800 MHz data rate • 667 MHz data rate tCISKEW Tolerated Skew for MDQS—MDQ/MECC • 1333 MHz data rate • 1200 MHz data rate • 1066 MHz data rate • 800 MHz data rate • 667 MHz data rate tDISKEW Notes: 1. 2. 3. 4. Min Max Unit –125 –142 –170 –200 –240 125 142 170 200 240 ps ps ps ps ps –250 –275 –300 –425 –510 250 275 300 425 510 ps ps ps ps ps Notes 1, 2, 4 2, 3 tCISKEW represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit that is captured with MDQS[n]. Subtract this value from the total timing budget. At recommended operating conditions with VDDDDR (1.5 V) ± 5% The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called tDISKEW.This can be determined by the following equation: tDISKEW = ±(T ÷ 4 – abs(tCISKEW)) where T is the clock period and abs(tCISKEW) is the absolute value of tCISKEW. The tCISKEW test coverage is derived from the tDISKEW parameters. MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 69 Electrical Characteristics Figure 8 shows the DDR3 SDRAM interface input timing diagram. MCK[n] MCK[n] tMCK MDQS[n] tDISKEW MDQ[n] D0 D1 tDISKEW tDISKEW Figure 8. DDR3 SDRAM Interface Input Timing Diagram 3.6.1.2 DDR SDRAM Output AC Timing Specifications Table 30 provides the output AC timing specifications for the DDR SDRAM interface. Table 30. DDR SDRAM Output AC Timing Specifications Parameter MCK[n] cycle time Symbol 1 Min Max Unit Notes tMCK 1.5 3 ns 2 0.606 0.675 0.744 0.917 1.10 — — — — — ns ns ns ns ns 0.606 0.675 0.744 0.917 1.10 — — — — — ns ns ns ns ns 0.606 0.675 0.744 0.917 1.10 — — — — — ns ns ns ns ns ADDR/CMD output setup with respect to MCK • 1333 MHz data rate • 1200 MHz data rate • 1066 MHz data rate • 800 MHz data rate • 667 MHz data rate tDDKHAS ADDR/CMD output hold with respect to MCK • 1333 MHz data rate • 1200 MHz data rate • 1066 MHz data rate • 800 MHz data rate • 667 MHz data rate tDDKHAX MCSn output setup with respect to MCK • 1333 MHz data rate • 1200 MHz data rate • 1066 MHz data rate • 800 MHz data rate • 667 MHz data rate tDDKHCS 3 3 3 MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 70 Freescale Semiconductor Electrical Characteristics Table 30. DDR SDRAM Output AC Timing Specifications (continued) Parameter Symbol 1 Min Max Unit 0.606 0.675 0.744 0.917 1.10 — — — — — ns ns ns ns ns –0.245 –0.375 –0.6 0.245 0.375 0.6 ns ns ns 250 275 300 375 450 — — — — — ps ps ps ps ps 250 275 300 375 450 — — — — — ps ps ps ps ps Notes MCSn output hold with respect to MCK • 1333 MHz data rate • 1200 MHz data rate • 1066 MHz data rate • 800 MHz data rate • 667 MHz data rate tDDKHCX MCK to MDQS Skew • > 1066 MHz data rate • 800 MHz data rate • 667 MHz data rate tDDKHMH MDQ/MECC/MDM output setup with respect to MDQS • 1333 MHz data rate • 1200 MHz data rate • 1066 MHz data rate • 800 MHz data rate • 667 MHz data rate tDDKHDS, tDDKLDS MDQ/MECC/MDM output hold with respect to MDQS • 1333 MHz data rate • 1200 MHz data rate • 1066 MHz data rate • 800 MHz data rate • 667 MHz data rate tDDKHDX, tDDKLDX MDQS preamble tDDKHMP 0.9 × tMCK — ns — MDQS postamble tDDKHME 0.4 × tMCK 0.6 × tMCK ns — Notes: 1. 2. 3. 4. 5. 6. 3 4 5, 6 5 The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. Output hold time can be read as DDR timing (DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, tDDKHAS symbolizes DDR timing (DD) for the time tMCK memory clock reference (K) goes from the high (H) state until outputs (A) are setup (S) or output valid time. Also, tDDKLDX symbolizes DDR timing (DD) for the time tMCK memory clock reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time. All MCK/MCK referenced measurements are made from the crossing of the two signals. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MECC/MDM/MDQS. Note that tDDKHMH follows the symbol conventions described in note 1. For example, tDDKHMH describes the DDR timing (DD) from the rising edge of the MCK(n) clock (KH) until the MDQS signal is valid (MH). tDDKHMH can be modified through control of the DQSS override bits in the TIMING_CFG_2 register. This is typically set to the same delay as the clock adjust in the CLK_CNTL register. The timing parameters listed in the table assume that these two parameters have been set to the same adjustment value. See the MSC8157 Reference Manual for a description and understanding of the timing modifications enabled by use of these bits. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC (MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the MSC8157. At recommended operating conditions with VDDDDR (1.5 V) ± 5%. NOTE For the ADDR/CMD setup and hold specifications in Table 30, it is assumed that the clock control register is set to adjust the memory clocks by ½ applied cycle. MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 71 Electrical Characteristics Figure 9 shows the DDR SDRAM output timing for the MCK to MDQS skew measurement (tDDKHMH). MCK[n] MCK[n] tMCK tDDKHMHmax) = 0.6 ns or 0.375 ns MDQS tDDKHMH(min) = –0.6 ns or –0.375 ns MDQS Figure 9. MCK to MDQS Timing Figure 10 shows the DDR SDRAM output timing diagram. MCK[n] MCK[n] tMCK tDDKHAS, tDDKHCS tDDKHAX, tDDKHCX ADDR/CMD Write A0 NOOP tDDKHMP tDDKHMH MDQS[n] tDDKHME tDDKHDS tDDKLDS MDQ[x] D0 D1 tDDKLDX tDDKHDX Figure 10. DDR SDRAM Output Timing MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 72 Freescale Semiconductor Electrical Characteristics Figure 11 provides the AC test load for the DDR3 controller bus. Z0 = 50 Ω Output RL = 50 Ω VDDDDR/2 Figure 11. DDR3 Controller Bus AC Test Load 3.6.1.3 DDR3 SDRAM Differential Timing Specifications This section describes the DC and AC differential timing specifications for the DDR3 SDRAM controller interface. Figure 12 shows the differential timing specification. GVDD VTR GVDD/2 VOX or VIX VCP GND Figure 12. DDR3 SDRAM Differential Timing Specifications NOTE VTR specifies the true input signal (such as MCK or MDQS) and VCP is the complementary input signal (such as MCK or MDQS). Table 31 provides the DDR3 differential specifications for the differential signals MDQS/MDQS and MCK/MCK. Table 31. DDR3 SDRAM Differential Electrical Characteristics Parameter Symbol Min Max Unit Input AC differential cross-point voltage VIXAC 0.5 × VDDDDR – 0.150 0.5 × VDDDDR + 0.150 V Output AC differential cross-point voltage VOXAC 0.5 × VDDDDR – 0.115 0.5 × VDDDDR + 0.115 V Note: 3.6.2 I/O drivers are calibrated before making measurements. HSSI AC Timing Specifications The following subsections define the AC timing requirements for the SerDes reference clocks, the PCI Express data lines, the Serial RapidIO data lines, and the SGMII data lines. MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 73 Electrical Characteristics 3.6.2.1 AC Requirements for SerDes Reference Clock Table 32 lists AC requirements for the SerDes reference clocks. Table 32. SD_REF_CLK[1–2] and SD_REF_CLK[1–2] Input Clock Requirements At recommended operating conditions (see Table 4). Parameter Symbol Min Nom Max Units Notes SD_REF_CLK[1–2]/SD_REF_CLK[1–2] frequency range tCLK_REF — 100/125 CPRI: 122.88 — MHz 1 SD_REF_CLK[1–2]/SD_REF_CLK[1–2] clock frequency tolerance • Serial RapidIO, CPRI, SGMII • PCI Express interface tCLK_TOL — –100 –300 — — 100 300 ppm ppm tCLK_DUTY 40 50 60 % 4 SD_REF_CLK[1–2]/SD_REF_CLK[1–2]max deterministic peak-peak jitter at 10-6 BER tCLK_DJ — — 42 ps — SD_REF_CLK[1–2]/SD_REF_CLK[1–2] total reference clock jitter at 10-6 BER (peak-to-peak jitter at ref_clk input) tCLK_TJ — — 86 ps 2 SD_REF_CLK/SD_REF_CLK rising/falling edge rate tCLKRR/tCLKFR 1 — 4 V/ns 3 Differential input high voltage VIH 200 — — mV 4 Differential input low voltage VIL — — –200 mV 4 Rise-Fall — — 20 % 5, 6 SD_REF_CLK[1–2]/SD_REF_CLK[1–2] reference clock duty cycle Rising edge rate (SD_REF_CLKn to falling edge rate) Notes: 1. 2. 3. 4. 5. 6. 7. Only 100, 122.88, and 125 MHz have been tested. CPRI uses 122.88 MHz. The other interfaces use 100 or 125 MHz. Other values do not work correctly with the rest of the system. Limits are from PCI Express CEM Rev 2.0. Measured from –200 mV to +200 mV on the differential waveform (derived from SD_REF_CLKn minus SD_REF_CLKn). The signal must be monotonic through the measurement region for rise and fall time. The 400 mV measurement window is centered on the differential zero crossing. See Figure 13. Measurement taken from differential waveform. Measurement taken from single-ended waveform. Matching applies to rising edge for SD_REF_CLKn and falling edge rate for SD_REF_CLKn. It is measured using a 200 mV window centered on the median cross point where SD_REF_CLKn rising meets SD_REF_CLKn falling. The median cross point is used to calculate the voltage thresholds that the oscilloscope uses for the edge rate calculations. The rising edge rate of SD_RF_CLKn should be compared to the falling edge rate of SD_REF_CLKn; the maximum allowed difference should not exceed 20% of the slowest edge rate. See Figure 14. REF_CLK jitter must be less than 0.05 UI when measured against a Golden PLL reference. The Golden PLL must have a maximum baud rate bandwidth greater than 1667, with a maximum 20 dB/dec rolloff down to a baud rate of 16.67 with no peaking around the corner frequency. MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 74 Freescale Semiconductor Electrical Characteristics Rise Edge Rate Fall Edge Rate VIH = +200 mV 0.0 V VIL = –200 mV SD_REF_CLKn – SD_REF_CLKn Figure 13. Differential Measurement Points for Rise and Fall Time Figure 14. Single-Ended Measurement Points for Rise and Fall Time Matching 3.6.2.2 Spread Spectrum Clock SD_REF_CLK[1–2] and SD_REF_CLK[1–2] were designed to work with a spread spectrum clock (+0 to 0.5% spreading at 30–33 KHz rate is allowed), assuming both ends have the same reference clock and the industry protocol supports it. For better results, use a source without significant unintended modulation. 3.6.2.3 PCI Express AC Physical Layer Specifications The AC requirements for PCI Express implementations have separate requirements for the Tx and Rx lines. The MSC8157 supports a 2.5 Gbps or a 5.0 Gbps PCI Express interface defined by the PCI Express Base Specification, Revision 2.0. The 2.5 Gbps transmitter specifications are defined in Table 33 and the receiver specifications are defined in Table 34. The 5.0 Gbps MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 75 Electrical Characteristics transmitter specifications are defined in Table 35 and the receiver specifications are defined in Table 36. The parameters are specified at the component pins. the AC timing specifications do not include REF_CLK jitter. Table 33. PCI Express 2.0 (2.5 Gbps) Differential Transmitter (Tx) Output AC Specifications At recommended operating conditions (see Table 4). Parameter Symbol Unit interval UI Tx eye width TTX-EYE Min Nom Max 399.88 400.00 400.12 Units Comments ps Each UI is 400 ps ± 300 ppm. UI does not account for spread spectrum clock dictated variations. See note 1. 0.75 — — UI The maximum transmitter jitter can be derived as TTX-MAX-JITTER = 1 – TTX-EYE = 0.25 UI. This does not include spread spectrum or REF_CLK jitter. It includes device random jitter at 10–12. See notes 2 and 3. Time between the jitter TTX-EYE-MEDIANmedian and maximum to-MAX-JITTER deviation from the median. — — 0.125 UI Jitter is defined as the measurement variation of the crossing points (VTX-DIFFp-p = 0 V) in relation to a recovered Tx UI. A recovered Tx UI is calculated over 3500 consecutive unit intervals of sample data. Jitter is measured using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the Tx UI. See notes 2 and 3. AC coupling capacitor 75 — 200 nF All transmitters must be AC coupled. The AC coupling is required either within the media or within the transmitting component itself. See note 4. Notes: 1. 2. 3. 4. CTX No test load is necessarily associated with this value. Specified at the measurement point into a timing and voltage test load as shown in Figure 15 and measured over any 250 consecutive Tx UIs. A TTX-EYE = 0.75 UI provides for a total sum of deterministic and random jitter budget of TTX-NAX-JITTER = 0.25 UI for the transmitter collected over any 250 consecutive Tx UIs. The TTX-EYE-MEDIAN-to-MAX-JITTER median is less than half of the total Tx jitter budget collected over any 250 consecutive Tx UIs. It should be noted that the median is not the same as the mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value. The DSP device SerDes transmitter does not have a built-in CTX. An external AC coupling capacitor is required. MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 76 Freescale Semiconductor Electrical Characteristics Table 34. PCI Express 2.0 (2.5 Gbps) Differential Receiver (Rx) Input AC Specifications At recommended operating conditions (see Table 4). Parameter Unit Interval UI Minimum receiver eye width Maximum time between the jitter median and maximum deviation from the median. Notes: 1. 2. 3. 4. Symbol Min Nom Max 399.88 400.00 400.12 Units Comments ps Each UI is 400 ps ± 300 ppm. UI does not account for spread spectrum clock dictated variations. See note 1. TRX-EYE 0.4 — — UI The maximum interconnect media and Transmitter jitter that can be tolerated by the Receiver can be derived as TRX-MAX-JITTER = 1 – TRX-EYE= 0.6 UI. See notes 2 and 3. TRX-EYE-MEDIAN-t — — 0.3 UI Jitter is defined as the measurement variation of the crossing points (VRX-DIFFp-p = 0 V) in relation to a recovered Tx UI. A recovered Tx UI is calculated over 3500 consecutive unit intervals of sample data. Jitter is measured using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the Tx UI. See notes 2, 3, and 4. o-MAX-JITTER No test load is necessarily associated with this value. Specified at the measurement point and measured over any 250 consecutive UIs. The test load in Figure 15 should be used as the Rx device when taking measurements. If the clocks to the Rx and Tx are not derived from the same reference clock, the Tx UI recovered from 3500 consecutive UI must be used as a reference for the eye diagram. A TRX-EYE = 0.40 UI provides for a total sum of 0.60 UI deterministic and random jitter budget for the Transmitter and interconnect collected any 250 consecutive UIs. The TRX-EYE-MEDIAN-to-MAX-JITTER specification ensures a jitter distribution in which the median and the maximum deviation from the median is less than half of the total. UI jitter budget collected over any 250 consecutive Tx UIs. It should be noted that the median is not the same as the mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value. If the clocks to the Rx and Tx are not derived from the same reference clock, the Tx UI recovered from 3500 consecutive UI must be used as the reference for the eye diagram. It is recommended that the recovered Tx UI is calculated using all edges in the 3500 consecutive UI interval with a fit algorithm using a minimization merit function. Least squares and median deviation fits have worked well with experimental and simulated data. MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 77 Electrical Characteristics Table 35. PCI Express 2.0 (5.0 Gbps) Differential Transmitter (Tx) Output AC Specifications At recommended operating conditions (see Table 4). Parameter Unit Interval Symbol UI Min Nom Max 199.94 200.00 200.06 Units Comments ps Each UI is 400 ps ± 300 ppm. UI does not account for spread spectrum clock dictated variations. See note 1. Minimum Tx eye width TTX-EYE 0.75 — — UI The maximum Transmitter jitter can be derived as: TTX-MAX-JITTER = 1 – TTX-EYE = 0.25 UI. See notes 2 and 3. Tx RMS deterministic jitter > 1.5 MHz TTX-HF-DJ-DD — — 0.15 ps — Tx RMS deterministic jitter < 1.5 MHz TTX-LF-RMS — 3.0 — ps Reference input clock RMS jitter (< 1.5 MHz) at pin < 1 ps AC coupling capacitor CTX 75 — 200 nF All transmitters must be AC coupled. The AC coupling is required either within the media or within the transmitting component itself. See note 4. Notes: 1. 2. No test load is necessarily associated with this value. Specified at the measurement point into a timing and voltage test load as shown in Figure 15 and measured over any 250 consecutive Tx UIs. A TTX-EYE = 0.75 UI provides for a total sum of deterministic and random jitter budget of TTX-MAX-JITTER = 0.25 UI for the Transmitter collected over any 250 consecutive Tx UIs. The TTX-EYE-MEDIAN-to-MAX-JITTER median is less than half of the total Tx jitter budget collected over any 250 consecutive Tx UIs. It should be noted that the median is not the same as the mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value. The DSP device SerDes transmitter does not have a built-in CTX. An external AC coupling capacitor is required. 3. 4. Table 36. PCI Express 2.0 (5.0 Gbps) Differential Receiver (Rx) Input AC Specifications At recommended operating conditions (see Table 4). Parameter Unit Interval Symbol UI Min Nom Max 199.40 200.00 200.06 Units Conditions ps Each UI is 400 ps ±300 ppm. UI does not account for spread spectrum clock dictated variations. See Note 1. Max Rx inherent timing error TRX-TJ-CC — — 0.4 UI The maximum inherent total timing error for common REF_CLK Rx architecture Maximum time between the jitter median and maximum deviation from the median TRX-TJ-DC — — 0.34 UI Max Rx inherent total timing error Max Rx inherent deterministic timing error TRX-DJ-DD-CC — — 0.30 UI The maximum inherent deterministic timing error for common REF_CLK Rx architecture Max Rx inherent deterministic timing error TRX-DJ-DD-DC — — 0.24 UI The maximum inherent deterministic timing error for common REF_CLK Rx architecture Note: No test load is necessarily accosted with this value. The AC timing and voltage parameters must be verified at the measurement point. The package pins of the device must be connected to the test/measurement load within 0.2 inches of that load, as shown in Figure 15. MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 78 Freescale Semiconductor Electrical Characteristics NOTE The allowance of the measurement point to be within 0.2 inches of the package pins is meant to acknowledge that package/board routing may benefit from D+ and D– not being exactly matched in length at the package pin boundary. If the vendor does not explicitly state where the measurement point is located, the measurement point is assumed to be the D+ and D– package pins. D+ Package Pin C = CTX TX Silicon + Package C = CTX R = 50 Ω D– Package Pin R = 50 Ω Figure 15. Test Measurement Load 3.6.2.4 Serial RapidIO AC Timing Specifications Table 37 defines the transmitter AC specifications for the Serial RapidIO interface at frequencies up to 3.125 Gbaud. The AC timing specifications do not include REF_CLK jitter. Table 37. Serial RapidIO Transmitter AC Timing Specifications Up to 3.125 Gbaud At recommended operating conditions (see Table 4). Characteristic Symbol Min Nom Max Unit Deterministic Jitter JD — — 0.17 UI p-p Total Jitter JT — — 0.35 UI p-p Unit Interval: 1.25 GBaud UI 800 – 100ppm 800 800 + 100ppm ps Unit Interval: 2.5 GBaud UI 400 – 100ppm 400 400 + 100ppm ps Unit Interval: 3.125 GBaud UI 320 – 100ppm 320 320 + 100ppm ps Table 38 defines the Receiver AC specifications for the Serial RapidIO interface at frequencies up to 3.125 Gbaud. The AC timing specifications do not include REF_CLK jitter. Table 38. Serial RapidIO Receiver AC Timing Specifications Up to 3.125 Gbaud At recommended operating conditions (see Table 4). Characteristic Symbol Min Nom Max Unit Notes Deterministic Jitter Tolerance JD — — 0.37 UI p-p 1 Combined Deterministic and Random Jitter Tolerance JDR — — 0.55 UI p-p 1 JT — — 0.65 UI p-p 1, 2 — — Total Jitter Tolerance Bit Error Rate BER — — –12 10 MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 79 Electrical Characteristics Table 38. Serial RapidIO Receiver AC Timing Specifications Up to 3.125 Gbaud (continued) At recommended operating conditions (see Table 4). Characteristic Symbol Min Nom Max Unit Notes Unit Interval: 1.25 GBaud UI 800 – 100ppm 800 800 + 100ppm ps — Unit Interval: 2.5 GBaud UI 400 – 100ppm 400 400 + 100ppm ps — Unit Interval: 3.125 GBaud UI 320 – 100ppm 320 320 + 100ppm ps — Notes: 1. 2. Measured at receiver. Total jitter is composed of three components, deterministic jitter, random jitter and single frequency sinusoidal jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 16. The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects. Table 39 defines the short run transmitter AC specifications for the Serial RapidIO interface at 5 Gbaud. The AC timing specifications do not include REF_CLK jitter. Table 39. Serial RapidIO Short Run Transmitter AC Timing Specifications at 5.0 Gbaud At recommended operating conditions (see Table 4). Characteristic Symbol Min Nom Max Unit T_UHPJ — — 0.15 UI p-p Total Jitter T_TJ — — 0.30 UI p-p Baud Rate UI 5.000 – 100ppm 5.000 5.000 + 100ppm Gbaud Uncorrelated High Probability Jitter Table 40 defines the short run Receiver AC specifications for the Serial RapidIO interface at 5 Gbaud. The AC timing specifications do not include REF_CLK jitter. Table 40. Serial RapidIO Short Run Receiver AC Timing Specifications at 5 Gbaud At recommended operating conditions (see Table 4). Characteristic Symbol Min Nom R_Baud 5.000 – 100ppm 5.000 Uncorrelated Bounded High Probability Jitter R_UBHPJ — — 0.15 UIp-p Correlated Bounded High Probability Jitter R_CBHPJ — — 0.3 UIp-p R_BHPJ — — 0.45 UIp-p R_SJ-max — — 5 UIp-p R_SJ-hf — — 0.05 UIp-p R_Tj — — 0.6 UIp-p Rx Baud Rate Bounded High Probability Jitter Sinusoidal Jitter maximum Sinusoidal Jitter, High Frequency Total jitter (without sinusoidal jitter) Note: Max Unit 5.000 + 100ppm Gbaud The AC specifications do not include REF_CLK jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region in Figure 17. The ISI jitter (R_CBHPJ) and amplitude have to be correlated, for example, by a PCB trace. MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 80 Freescale Semiconductor Electrical Characteristics Table 41 defines the Transmitter AC specifications for long run Serial RapidIO interfaces using a transfer rate of 5 Gbps. The AC timing specifications do not include REF_CLK jitter. Table 41. Serial RapidIO Transmitter Long Run AC Timing for Transfer Rate of 5 Gbps At recommended operating conditions (see Table 4). Characteristic Symbol Min Nom Max Unit Tx Baud Rate T_Baud 5.000 – 100 ppm 5.000 5.000 + 100 ppm Gbps ± 100 ppm Uncorrelated high probability jitter T_UHPJ — — 0.15 UI p-p With de-emphasis disabled. T_TJ — — 0.30 UI p-p With de-emphasis disabled. Total Jitter Conditions Table 42 defines the Receiver AC specifications for long run Serial RapidIO interfaces using a transfer rate of 5 Gbps. The AC timing specifications do not include REF_CLK jitter. Table 42. Serial RapidIO Receiver Long Run AC Timing for Transfer Rate of 5 Gbps At recommended operating conditions (see Table 4). Characteristic Symbol Min Nom Max Unit R_Baud 5.000 – 100 ppm 5.000 5.000 + 100 ppm Gbps R_GJ — — 0.275 UI p-p Informative jitter budget @Rx input Uncorrelated bounded high probability jitter (DJ) R_UBHPJ — — 0.15 UI p-p Informative jitter budget @Rx input Correlated bounded high probability jitter (ISI) R_CBHPJ — — 0.525 UI p-p Informative jitter budget @Rx input R_BHPJ — — 0.675 UI p-p Informative jitter budget @Rx input R_SJ-max — — 5 UI p-p Informative jitter budget @Rx input R_SJ-hf — — 0.05 UI p-p Informative jitter budget @Rx input R_TJ — — 0.95 UI p-p Informative jitter budget @Rx input Rx Baud Rate Gaussian Bounded high probability jitter (DJ + ISI) Sinusoidal jitter, maximum Sinusoidal jitter, high frequency Total Jitter (does not include sinusoidal jitter). Note: Condition — The AC specifications do not include REF_CLK jitter. The sinusoidal jitter in the total jitter tolerance may have any amplitude and frequency in the unshaded region of Figure 17. The ISl jitter (R_CBHPJ) and amplitude have to be correlated, for example, by a PC trace. MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 81 Electrical Characteristics 8.5 UI p-p Pass Sinusoidal Jitter Amplitude 20dB/dec 0.10 UI p-p baud/14200 Frequency baud/1667 20 MHz Figure 16. Single Frequency Sinusoidal Jitter Limits for Data Rates for 3.125 Gbps and below 5 UI p-p Sinusoidal Jitter Amplitude 0.05 UI p-p 22.1 kHz Frequency 2.999 MHz 20 MHz Figure 17. Single Frequency Sinusoidal Jitter Limits for Data Rate 5.0 Gbps 3.6.2.5 CPRI AC Timing Specifications Table 43 defines the transmitter AC specifications for the CPRI LV lanes. The AC timing specifications do not include REF_CLK jitter. MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 82 Freescale Semiconductor Electrical Characteristics Table 43. CPRI Transmitter AC Timing Specifications (LV-I: 1.2288, 2.4576, and 3.072 Gbps) At recommended operating conditions (see Table 4). Characteristic Symbol Min Nom Max Unit Deterministic Jitter JD — — 0.17 UI p-p Total Jitter JT — — 0.35 UI p-p Unit Interval: 1.2288 GBaud UI 1/1228.8 – 100ppm 1/1228.8 1/1228.8 + 100ppm µs Unit Interval: 2.4576 GBaud UI 1/2457.6 – 100ppm 1/2457.6 1/2457.6 + 100ppm µs Unit Interval: 3.072 GBaud UI 1/3072.0 – 100ppm 1/3072.0 1/3072.0 + 100ppm µs Table 44 defines the transmitter AC specifications for the CPRI LV-II lanes. The AC timing specifications do not include REF_CLK jitter. Table 44. CPRI Transmitter AC Timing Specifications (LV-II: 1.2288, 2.4576, 3.072, 4.9152, and 6.144 Gbps) At recommended operating conditions (see Table 4). Characteristic Symbol Min Nom Max Unit Uncorrelated High Probability Jitter T_UHPJ — — 0.15 UI p-p T_TJ — — 0.30 UI p-p Unit Interval: 1.2288 GBaud UI 1/1228.8 – 100ppm 1/1228.8 1/1228.8 + 100ppm µs Unit Interval: 2.4576 GBaud UI 1/2457.6 – 100ppm 1/2457.6 1/2457.6 + 100ppm µs Unit Interval: 3.072 GBaud UI 1/3072.0 – 100ppm 1/3072.0 1/3072.0 + 100ppm µs Unit Interval: 4.9152 GBaud UI 1/4915.2 – 100ppm 1/4915.2.8 1/4915.2 + 100ppm µs Unit Interval: 6.144 GBaud UI 1/6144.0 – 100ppm 1/6144.0 1/6144.0 + 100ppm µs Total Jitter Table 45 defines the receiver AC specifications for CPRI LV. The AC timing specifications do not include REF_CLK jitter. Table 45. CPRI Receiver AC Timing Specifications (LV-I: 1.2288, 2.4576, and 3.072 Gbps) At recommended operating conditions (see Table 4). Characteristic Symbol Min Nom Max Unit Deterministic jitter tolerance JD — — 0.37 UI p-p Combined deterministic and random jitter tolerance JDR — — 0.55 UI p-p JT — — 0.65 UI p-p Total Jitter tolerance MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 83 Electrical Characteristics Table 45. CPRI Receiver AC Timing Specifications (LV-I: 1.2288, 2.4576, and 3.072 Gbps) (continued) At recommended operating conditions (see Table 4). Characteristic Symbol Min Nom Max Unit Unit Interval: 1.2288 GBaud UI 1/1228.8 – 100ppm 1/1228.8 1/1228.8 + 100ppm ps Unit Interval: 2.4576 GBaud UI 1/2457.6 – 100ppm 1/2457.6 1/2457.6 + 100ppm ps Unit Interval: 3.072 GBaud UI 1/3072.0 – 100ppm 1/3072.0 1/3072.0 + 100ppm ps — 10–12 — Bit error ratio BER — Table 46 defines the receiver AC specifications for CPRI LV-II. The AC timing specifications do not include REF_CLK jitter. Table 46. CPRI Receiver AC Timing Specifications (LV-II: 1.2288, 2.4576, 3.072, 4.9152, and 6.144 Gbps) At recommended operating conditions (see Table 4). Characteristic Symbol Min Nom Max Unit R_GJ — — 0.275 UI p-p Uncorrelated bounded high probability jitter R_UBHPJ — — 0.150 UI p-p Correlated bounded high probability jitter R_CBHPJ — — 0.525 UI p-p R_BHPJ — — 0.675 UI p-p R_SJ-max — — 5.000 UI p-p R_SJ-hf — — 0.050 UI p-p Total Jitter (does not include sinusoidal jitter). R_TJ — — 0.950 UI p-p Unit Interval: 1.2288 GBaud UI 1/1228.8 – 100ppm 1/1228.8 1/1228.8 + 100ppm µs Unit Interval: 2.4576 GBaud UI 1/2457.6 – 100ppm 1/2457.6 1/2457.6 + 100ppm µs Unit Interval: 3.072 GBaud UI 1/3072.0 – 100ppm 1/3072.0 1/3072.0 + 100ppm µs Unit Interval: 4.9152 GBaud UI 1/4915.2 – 100ppm 1/4915.2.8 1/4915.2 + 100ppm µs Unit Interval: 6.144 GBaud UI 1/6144.0 – 100ppm 1/6144.0 1/6144.0 + 100ppm µs Gaussian Bounded high probability jitter Sinusoidal jitter, maximum Sinusoidal jitter, high frequency Note: The AC specifications do not include REF_CLK jitter. The sinusoidal jitter in the total jitter tolerance may have any amplitude and frequency in the unshaded region of Figure 17. The ISl jitter (R_CBHPJ) and amplitude have to be correlated, for example, by a PC trace. NOTE The intended application is a point-to-point interface up to two connectors. The maximum allowed total loss (channel + interconnects + other loss) is 20.4 dB @ 6.144 Gbps. MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 84 Freescale Semiconductor Electrical Characteristics 3.6.2.6 SGMII AC Timing Specifications Transmitter and receiver AC characteristics are measured at the transmitter outputs (SD_[A–J]_TX and SD_[A–J]_TX) or at the receiver inputs (SD_[A–J]_RX and SD_[A–J]_RX) as depicted in Figure 18, respectively. D+ Package Pin C = CTX TX Silicon + Package D– Package Pin C = CTX R = 50 Ω R = 50 Ω Figure 18. SGMII AC Test/Measurement Load Table 47 provides the SGMII transmit AC timing specifications. The AC timing specifications do not include REF_CLK jitter. Table 47. SGMII Transmit AC Timing Specifications At recommended operating conditions (see Table 4). Parameter Symbol Min Nom Max Unit Condition Unit interval UI 800 – 100ppm 800 800 + 100ppm pS ± 100ppm Deterministic jitter JD — — 0.17 UI p-p — Total jitter JT — — 0.35 UI p-p — CTX 75 — 200 nF AC coupling capacitor Note: All transmitters must be AC-coupled The AC specifications do not include REF_CLK jitter. Table 48 provides the SGMII receiver AC timing specifications. The AC timing specifications do not include REF_CLK jitter. Table 48. SGMII Receive AC Timing Specifications At recommended operating conditions (see Table 4). Parameter Symbol Min Nom Max Unit Condition Unit interval UI 800 – 100ppm 800 800 + 100ppm pS ± 100ppm Deterministic jitter tolerance JD — — 0.37 UI p-p Measured at receiver. Combined deterministic and random jitter tolerance JDR — — 0.55 UI p-p Measured at receiver JT — — 0.65 UI p-p Measured at receiver Total jitter tolerance Bit error ratio Note: BER — — 10 –12 — — The AC specifications do not include REF_CLK jitter. The sinusoidal jitter in the total jitter tolerance may have any amplitude and frequency in the unshaded region shown in Figure 19 or Figure 20. MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3 Freescale Semiconductor 85 Electrical Characteristics 8.5 UIp-p Sinusoidal Jitter Amplitude 20 dB/dec 0.10 UIp-p baud/14200 Frequency baud/1667 20 MHz Figure 19. Single Frequency Sinusoidal Jitter Limits for Baud Rate for
MSC8157SAG1000A 价格&库存

很抱歉,暂时无法提供与“MSC8157SAG1000A”相匹配的价格&库存,您可以联系我们找货

免费人工找货