0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MJD18002D2T4G

MJD18002D2T4G

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    SOT428

  • 描述:

    TRANS NPN 450V 2A DPAK

  • 数据手册
  • 价格&库存
MJD18002D2T4G 数据手册
MJD18002D2 Bipolar NPN Transistor High Speed, High Gain Bipolar NPN Power Transistor with Integrated Collector−Emitter Diode and Built−In Efficient Antisaturation Network The MJD18002D2 is a state−of−the−art high speed, high gain bipolar transistor (H2BIP). Tight dynamic characteristics and lot to lot minimum spread (±150 ns on storage time) make it ideally suitable for light ballast applications. Therefore, there is no longer a need to guarantee an hFE window. Features http://onsemi.com POWER TRANSISTOR 2 AMPERES 1000 VOLTS, 50 WATTS • Low Base Drive Requirement • High Peak DC Current Gain (55 Typical) @ IC = 100 mA • Extremely Low Storage Time Min/Max Guarantees Due to the • • • • • • • H2BIP Structure which Minimizes the Spread Integrated Collector−Emitter Free Wheeling Diode Fully Characterized and Guaranteed Dynamic VCEsat Characteristics Make It Suitable for PFC Application Epoxy Meets UL 94 V−0 @ 0.125 in ESD Ratings: Human Body Model, 3B u 8000 V Machine Model, C u 400 V Six Sigma® Process Providing Tight and Reproductible Parameter Spreads Pb−Free Package is Available 4 1 2 MAXIMUM RATINGS Rating Symbol Value Unit Collector−Emitter Sustaining Voltage VCEO 450 Vdc Collector−Base Breakdown Voltage VCBO 1000 Vdc Collector−Emitter Breakdown Voltage VCES 1000 Vdc Emitter−Base Voltage VEBO 11 Vdc Collector Current Collector Current − Continuous − Peak (Note 1) IC ICM 2.0 5.0 Adc Base Current Base Current − Continuous − Peak (Note 1) IB IBM 1.0 2.0 Adc Symbol Value Unit PD 50 0.4 W W/°C TJ, Tstg −65 to +150 °C Thermal Resistance, Junction−to−Case RqJC 5.0 °C/W Thermal Resistance, Junction−to−Ambient RqJA 71.4 °C/W TL 260 °C THERMAL CHARACTERISTICS Characteristic Total Device Dissipation @ TC = 25°C Derate above 25°C Operating and Storage Temperature Range Maximum Lead Temperature for Soldering Purposes: 1/8″ from Case for 5 seconds March, 2009 − Rev. 3 MARKING DIAGRAM YWW 180 02D2G Y WW 18002D2 G = Year = Work Week = Device Code = Pb−Free Package ORDERING INFORMATION Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Pulse Test: Pulse Width = 5.0 ms, Duty Cycle = 10%. © Semiconductor Components Industries, LLC, 2009 3 DPAK CASE 369C STYLE 1 1 Device MJD18002D2T4 MJD18002D2T4G Package Shipping† DPAK 3000/Tape & Reel DPAK (Pb−Free) 3000/Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. Publication Order Number: MJD18002D2/D MJD18002D2 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit OFF CHARACTERISTICS Collector−Emitter Sustaining Voltage (IC = 100 mA, L = 25 mH) VCEO(sus) 450 570 − Vdc Collector−Base Breakdown Voltage (ICBO = 1 mA) VCBO 1000 1100 − Vdc Emitter−Base Breakdown Voltage (IEBO = 1 mA) VEBO 11 14 − Vdc Collector Cutoff Current (VCE = Rated VCEO, IB = 0) ICEO − − 100 mAdc ICES − − − − − − 100 500 100 mAdc IEBO − − 500 mAdc − − 0.78 0.87 1.0 1.1 − − 0.36 0.50 0.6 1.0 − − 0.40 0.65 0.75 1.2 14 8.0 25 15 − − 6.0 4.0 10 6.0 − − ft − 13 − MHz Output Capacitance (VCB = 10 Vdc, IE = 0, f = 1 MHz) Cob − 50 100 pF Input Capacitance (VEB = 8 Vdc) Cib − 340 500 pF − 1.2 1.5 Collector Cutoff Current (VCE = Rated VCES, VEB = 0) @ TC = 25°C @ TC = 125°C @ TC = 125°C (VCE = 500 V, VEB = 0) Emitter−Cutoff Current (VEB = 10 Vdc, IC = 0) ON CHARACTERISTICS Base−Emitter Saturation Voltage (IC = 0.4 Adc, IB = 40 mAdc) (IC = 1.0 Adc, IB = 0.2 Adc) @ TC = 25°C @ TC = 25°C Collector−Emitter Saturation Voltage (IC = 0.4 Adc, IB = 40 mAdc) @ TC = 25°C @ TC = 125°C (IC = 1.0 Adc, IB = 0.2 Adc) VBE(sat) VCE(sat) @ TC = 25°C @ TC = 125°C DC Current Gain (IC = 0.4 Adc, VCE = 1.0 Vdc) @ TC = 25°C @ TC = 125°C (IC = 1.0 Adc, VCE = 1.0 Vdc) @ TC = 25°C @ TC = 125°C hFE Vdc Vdc − DYNAMIC CHARACTERISTICS Current Gain Bandwidth (IC = 0.5 Adc, VCE = 10 Vdc, f = 1 MHz) DIODE CHARACTERISTICS VEC Forward Diode Voltage (IEC = 1.0 Adc) @ TC = 25°C (IEC = 0.4 Adc) @ TC = 25°C − 1.0 1.3 @ TC = 125°C − 0.6 − − 517 − − 480 − − 7.4 − Forward Recovery Time (IF = 0.4 Adc, di/dt = 10 A/ms) @ TC = 25°C (IF = 1.0 Adc, di/dt = 10 A/ms) @ TC = 25°C tfr Vdc ns DYNAMIC SATURATION VOLTAGE Dynamic Saturation Voltage Determinated 1 ms and 3 ms respectively after rising IB1 reaches 90% of final IB1 VCE(dsat) IC = 0.4 Adc IB1 = 40 mA VCC = 300 Vdc @ 1 ms @ TC = 25°C @ 3 ms @ TC = 25°C − 2.5 − IC = 1 Adc IB1 = 0.2 A VCC = 300 Vdc @ 1 ms @ TC = 25°C − 11.7 − @ 3 ms @ TC = 25°C − 1.3 − http://onsemi.com 2 V MJD18002D2 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit @ TC = 25°C @ TC = 125°C ton − − 225 375 350 − ns @ TC = 25°C @ TC = 125°C toff 0.8 − − 1.5 1.1 − ms @ TC = 25°C @ TC = 125°C ton − − 100 94 150 − ns @ TC = 25°C @ TC = 125°C toff 0.95 − − 1.5 1.25 − ms SWITCHING CHARACTERISTICS: Resistive Load (D.C.S. 10%, Pulse Width = 40 ms) Turn−on Time Turn−off Time Turn−on Time Turn−off Time IC = 0.4 Adc, IB1 = 40 mAdc IB2 = 200 mAdc VCC = 300 Vdc IC = 1.0 Adc, IB1 = 0.2 Adc IB2 = 0.5 Adc VCC = 300 Vdc SWITCHING CHARACTERISTICS: Inductive Load (Vclamp = 300 V, VCC = 15 V, L = 200 mH) Fall Time Storage Time Cross−over Time IC = 0.4 Adc IB1 = 40 mAdc IB2 = 0.2 Adc Fall Time Storage Time Cross−over Time IC = 0.8 Adc IB1 = 160 mAdc IB2 = 160 mAdc Fall Time Storage Time Cross−over Time IC = 1.0 Adc IB1 = 0.2 Adc IB2 = 0.5 Adc @ TC = 25°C @ TC = 125°C tf − − 130 120 175 − ns @ TC = 25°C @ TC = 125°C ts 0.4 − − 0.7 0.7 − ms @ TC = 25°C @ TC = 125°C tc − − 110 100 175 − ns @ TC = 25°C @ TC = 125°C tf − − 130 140 175 − ns @ TC = 25°C @ TC = 125°C ts 2.1 − − 3.0 2.4 − ms @ TC = 25°C @ TC = 125°C tc − − 275 350 350 − ns @ TC = 25°C @ TC = 125°C tf − − 100 100 150 − ns @ TC = 25°C @ TC = 125°C ts − − 1.05 1.45 1.2 − ms @ TC = 25°C @ TC = 125°C tc − − 100 115 150 − ns http://onsemi.com 3 MJD18002D2 TYPICAL STATIC CHARACTERISTICS 100 100 80 60 40 VCE = 5 V hFE, DC CURRENT GAIN hFE, DC CURRENT GAIN VCE = 1 V TJ = 125°C 25°C −20°C 20 0 0.001 0.01 0.1 1 IC, COLLECTOR CURRENT (AMPS) 80 60 25°C 40 −20°C 20 0 10 TJ = 125°C 0.001 0.01 0.1 1 IC, COLLECTOR CURRENT (AMPS) Figure 1. DC Current Gain @ 1 V Figure 2. DC Current Gain @ 5 V 4 100 3 IC/IB = 20 VCE, VOLTAGE (VOLTS) VCE, VOLTAGE (VOLTS) TJ = 25°C 2A 1A 2 1.5 A 400 mA 1 0 IC = 200 mA 0.001 0.01 0.1 1 IB, BASE CURRENT (AMPS) 10 1 TJ = 125°C 0.1 10 Figure 3. Collector Saturation Region −20°C 0.001 0.01 0.1 1 IC, COLLECTOR CURRENT (AMPS) 10 10 IC/IB = 10 IC/IB = 5 VCE, VOLTAGE (VOLTS) VCE, VOLTAGE (VOLTS) 25°C Figure 4. Collector−Emitter Saturation Voltage 100 10 1 TJ = 125°C 0.1 10 −20°C 0.001 25°C 0.01 0.1 1 IC, COLLECTOR CURRENT (AMPS) 1 TJ = 125°C 0.1 10 Figure 5. Collector−Emitter Saturation Voltage −20°C 0.001 25°C 0.01 0.1 1 IC, COLLECTOR CURRENT (AMPS) 10 Figure 6. Collector−Emitter Saturation Voltage http://onsemi.com 4 MJD18002D2 TYPICAL STATIC CHARACTERISTICS 10 10 IC/IB = 10 VBE, VOLTAGE (VOLTS) VBE, VOLTAGE (VOLTS) IC/IB = 5 1 −20°C 25°C TJ = 125°C 0.1 0.001 0.01 0.1 1 IC, COLLECTOR CURRENT (AMPS) 1 −20°C 25°C TJ = 125°C 0.1 10 0.001 Figure 7. Base−Emitter Saturation Region IC/IB = 5 FORWARD DIODE VOLTAGE (VOLTS) VBE, VOLTAGE (VOLTS) IC/IB = 20 1 −20°C 25°C TJ = 125°C 0.001 0.01 0.1 1 IC, COLLECTOR CURRENT (AMPS) 10 Figure 8. Base−Emitter Saturation Region IC/IB = 10 10 0.1 0.01 0.1 1 IC, COLLECTOR CURRENT (AMPS) 10 10 1 VEC(V) = −20°C 125°C 0.1 25°C 0.01 0.1 1 10 REVERSE EMITTER−COLLECTOR CURRENT (AMPS) Figure 9. Base−Emitter Saturation Region IC/IB = 20 Figure 10. Forward Diode Voltage TYPICAL SWITCHING CHARACTERISTICS 1000 3000 TJ = 125°C TJ = 25°C 2500 100 Cob (pF) 10 t, TIME (ms) C, CAPACITANCE (pF) Cib (pF) TJ = 25°C f(test) = 1 MHz 2000 IBon = IBoff IC/IB = 10 VCC = 300 V 1500 PW = 40 ms 1000 500 1 1 10 VR, REVERSE VOLTAGE (VOLTS) 0 100 IC/IB = 5 0.1 Figure 11. Capacitance 0.4 0.7 1 1.3 IC, COLLECTOR CURRENT (AMPS) Figure 12. Resistive Switch Time, ton http://onsemi.com 5 1.6 MJD18002D2 TYPICAL SWITCHING CHARACTERISTICS 5.5 3 TJ = 125°C TJ = 25°C 5.0 TJ = 125°C VCC = 300 V PW = 40 ms 4.0 2.5 t, TIME (ms) 4.5 t, TIME (ms) IBon = IBoff IC/IB = 10 3.5 3.0 IC/IB = 5 2.5 TJ = 25°C 2 IBon = IBoff, VCC = 15 V, VZ = 300 V LC = 200 mH 1.5 2.0 1.5 0.1 0.4 0.7 1 1.3 IC, COLLECTOR CURRENT (AMPS) 1 1.6 Figure 13. Resistive Switch Time, toff TJ = 125°C TJ = 25°C 600 t, TIME (ms) 400 1.5 4 TJ = 125°C TJ = 25°C IC/IBon = 5 IBon = IBoff, VCC = 15 V, VZ = 300 V LC = 200 mH 500 0.5 1 IC, COLLECTOR CURRENT (AMPS) Figure 14. Inductive Storage Time, tsi @ IC/IB = 5 3 tc t, TIME (ms) 700 0 300 tfi 200 IC = 1 A IBon = IBoff, VCC = 15 V, VZ = 300 V LC = 200 mH 2 IC = 300 mA 1 100 0 0 0.5 1 IC, COLLECTOR CURRENT (AMPS) 0 1.5 3 Figure 15. Inductive Switching, tc & tfi @ IC/IB = 5 1000 1800 600 IC = 1 A 400 IBon = IBoff, VCC = 15 V, VZ = 300 V LC = 200 mH IC = 1 A 600 IC = 0.3 A 200 0 15 12 TJ = 125°C TJ = 25°C 1200 t, TIME (ms) tfi, FALL TIME (ns) IBon = IBoff, VCC = 15 V, VZ = 300 V LC = 200 mH 9 hFE, FORCED GAIN Figure 16. Inductive Storage Time TJ = 125°C TJ = 25°C 800 6 IC = 0.3 A 3 5 7 9 11 hFE, FORCED GAIN 13 0 15 3 Figure 17. Inductive Fall Time 6 9 hFE, FORCED GAIN 12 Figure 18. Inductive Cross−Over Time http://onsemi.com 6 15 MJD18002D2 TYPICAL SWITCHING CHARACTERISTICS 1600 1.6 IBon = IBoff, VCC = 15 V, VZ = 300 V LC = 200 mH TJ = 125°C TJ = 25°C tc 800 tfi 400 0 0.3 IC/IB = 5 1.2 t, TIME (ms) t, TIME (ms) 1200 0.8 0.4 0.7 1.1 IC, COLLECTOR CURRENT (AMPS) 0 1.5 TJ = 125°C TJ = 25°C 0 TJ = 125°C TJ = 25°C TJ = 125°C TJ = 25°C IBoff = IC/2, VCC = 15 V, VZ = 300 V LC = 200 mH 250 t, TIME (ms) t, TIME (ms) 300 IC/IB = 5 100 1.5 Figure 20. Inductive Switching Time, tsi IBoff = IC/2, VCC = 15 V, VZ = 300 V LC = 200 mH 150 IC/IB = 10 0.5 1 IC, COLLECTOR CURRENT (AMPS) Figure 19. Inductive Switching Time, tfi & TC @ G = 10 200 IBoff = IC/2, VCC = 15 V, VZ = 300 V LC = 200 mH IC/IB = 10 200 150 100 IC/IB = 10 50 0 IC/IB = 5 50 1.5 0.5 1 IC, COLLECTOR CURRENT (AMPS) 0 Figure 21. Inductive Storage Time, tfi Figure 22. Inductive Storage Time, tc CROSS−OVER TIME (ns) 2.4 10 IBon = IBoff, VCC = 15 V, VZ = 300 V LC = 200 mH 2.2 2.0 IB = 200 mA tfi 8 6 4 10% IC tc 90% IB1 IB 3 1.4 10% Vclamp Vclamp 5 IB = 100 mA 90% IC tsi 7 IB = 50 mA IB = 500 mA 1.6 IC 9 1.8 2 1.2 1 1.5 0.5 1 IC, COLLECTOR CURRENT (AMPS) 0 0.4 0.8 hFE, FORCED GAIN 1 0 1.6 1.2 0 1 2 3 4 TIME 5 6 7 Figure 24. Inductive Switching Measurements Figure 23. Inductive Storage Time, tsi http://onsemi.com 7 8 MJD18002D2 Figure 25. Inductive Load Switching Drive Circuit +15 V IC PEAK 1 mF 100 W 3W 150 W 3W 100 mF MTP8P10 VCE PEAK VCE MTP8P10 RB1 MPF930 IB1 MUR105 MPF930 +10 V Iout IB A COMMON IB2 50 W RB2 MJE210 500 mF V(BR)CEO(sus) L = 10 mH RB2 = ∞ VCC = 20 Volts IC(pk) = 100 mA MTP12N10 150 W 3W 1 mF VFRM VFR (1.1 VF) Unless Otherwise Specified VF 10 8 0.1 VF VF tfr 6 IF 4 10% IF 2 0 0 2 4 6 8 10 10 ms DC 1 10 Figure 26. tfr Measurement 50 ms 1000 100 VCE, COLLECTOR−EMITTER VOLTAGE (VOLTS) 1 TC = 125°C Gain = 4 LC = 500 mH 2 POWER DERATING FACTOR IC, COLLECTOR CURRENT (AMPS) 1 ms 1 ms Figure 27. Forward Bias Safe Operating Area 2.5 1.5 VBE(off) = −1.5 V 1 VBE(off) = −5 V 0.5 VBE = 0 V 0 5 ms 0.1 0.01 10 RBSOA L = 500 mH RB2 = 0 VCC = 15 Volts RB1 selected for desired IB1 EXTENDED SOA 12 IC, COLLECTOR CURRENT (AMPS) -Voff Inductive Switching L = 200 mH RB2 = 0 VCC = 15 Volts RB1 selected for desired IB1 0 0.6 Thermal Derating 0.4 0.2 0 200 1200 400 800 1000 600 VCE, COLLECTOR−EMITTER VOLTAGE (VOLTS) Second Breakdown Derating 0.8 20 Figure 28. Reverse Bias Safe Operating Area 40 60 80 100 120 TC, CASE TEMPERATURE (°C) 140 Figure 29. Forward Bias Power Derating http://onsemi.com 8 160 MJD18002D2 Figure 27 may be found at any case temperature by using the appropriate curve on Figure 29. TJ(pk) may be calculated from the data in Figure 30. At any case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. For inductive loads, high voltage and current must be sustained simultaneously during turn−off with the base to emitter junction reverse biased. The safe level is specified as a reverse biased safe operating area (Figure 28). This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC−VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 27 is based on TC = 25°C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC > 25°C. Second Breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on r(t) TRANSIENT THERMAL RESISTANCE (NORMALIZED) 1 0.5 0.2 0.1 0.05 0.1 P(pk) 0.02 t1 0.01 t2 SINGLE PULSE 0.01 DUTY CYCLE, D = t1/t2 0.01 0.1 1 RqJC(t) = r(t) RqJC RqJC = 55°/W MAX D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT t1 TJ(pk) - TC = P(pk)RqJC(t) 10 100 1000 t, TIME (ms) Figure 30. Typical Thermal Response (ZqJC(t)) for MJD18002D2 1100 440 BVCER (Volts) @ 10 mA 1000 400 900 TJ = 25°C 800 380 360 700 600 340 BVCER(sus) @ 200 mA 500 400 di/dt = 10 A/ms TC = 25°C 420 10 100 320 1000 RBE () 10,000 100,000 300 0 Figure 31. BVCER 1 1.5 0.5 IF, FORWARD CURRENT (AMPS) Figure 32. Forward Recovery Time, tfr Six Sigma is a registered trademark and servicemark of Motorola, Inc. http://onsemi.com 9 2 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS DPAK (SINGLE GAUGE) CASE 369C ISSUE F 4 1 2 DATE 21 JUL 2015 3 SCALE 1:1 A E b3 C A B c2 4 L3 Z D 1 L4 2 3 NOTE 7 b2 e c SIDE VIEW b 0.005 (0.13) TOP VIEW H DETAIL A M BOTTOM VIEW C Z H L2 GAUGE PLANE C L L1 DETAIL A Z SEATING PLANE BOTTOM VIEW A1 ALTERNATE CONSTRUCTIONS ROTATED 905 CW STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR STYLE 6: PIN 1. MT1 2. MT2 3. GATE 4. MT2 STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN STYLE 7: PIN 1. GATE 2. COLLECTOR 3. EMITTER 4. COLLECTOR STYLE 3: PIN 1. ANODE 2. CATHODE 3. ANODE 4. CATHODE STYLE 8: PIN 1. N/C 2. CATHODE 3. ANODE 4. CATHODE STYLE 4: PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE STYLE 9: STYLE 10: PIN 1. ANODE PIN 1. CATHODE 2. CATHODE 2. ANODE 3. RESISTOR ADJUST 3. CATHODE 4. CATHODE 4. ANODE SOLDERING FOOTPRINT* 6.20 0.244 2.58 0.102 5.80 0.228 INCHES MIN MAX 0.086 0.094 0.000 0.005 0.025 0.035 0.028 0.045 0.180 0.215 0.018 0.024 0.018 0.024 0.235 0.245 0.250 0.265 0.090 BSC 0.370 0.410 0.055 0.070 0.114 REF 0.020 BSC 0.035 0.050 −−− 0.040 0.155 −−− MILLIMETERS MIN MAX 2.18 2.38 0.00 0.13 0.63 0.89 0.72 1.14 4.57 5.46 0.46 0.61 0.46 0.61 5.97 6.22 6.35 6.73 2.29 BSC 9.40 10.41 1.40 1.78 2.90 REF 0.51 BSC 0.89 1.27 −−− 1.01 3.93 −−− GENERIC MARKING DIAGRAM* XXXXXXG ALYWW AYWW XXX XXXXXG IC Discrete = Device Code = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “G”, may or may not be present. Some products may not follow the Generic Marking. 6.17 0.243 SCALE 3:1 DIM A A1 b b2 b3 c c2 D E e H L L1 L2 L3 L4 Z XXXXXX A L Y WW G 3.00 0.118 1.60 0.063 STYLE 5: PIN 1. GATE 2. ANODE 3. CATHODE 4. ANODE NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES. 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, L3 and Z. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE. 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY. 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H. 7. OPTIONAL MOLD FEATURE. mm Ǔ ǒinches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. DOCUMENT NUMBER: DESCRIPTION: 98AON10527D DPAK (SINGLE GAUGE) Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 onsemi and are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2018 www.onsemi.com onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
MJD18002D2T4G 价格&库存

很抱歉,暂时无法提供与“MJD18002D2T4G”相匹配的价格&库存,您可以联系我们找货

免费人工找货