0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
NCP4688DSN25T1G

NCP4688DSN25T1G

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    SOT23-5

  • 描述:

    IC REG LINEAR 2.5V 150MA SOT23-5

  • 数据手册
  • 价格&库存
NCP4688DSN25T1G 数据手册
NCP4688 Voltage Regulator - Low Noise, LDO Linear 150 mA The NCP4688 is a CMOS 150 mA LDO linear voltage regulator with high output voltage accuracy which features a low noise output voltage and high ripple rejection. The low level of output noise 10 mVrms typically is kept at any output voltage. The very common SOT23−5 package and small mDFN 1x1 package are suitable for industrial applications, portable communication equipments and RF modules. Operating Input Voltage Range: 2 V to 5.25 V Output Voltage Range: 1.2 to 4.8 V (available in 0.1 V steps) ±1% Output Voltage Accuracy Output Noise: 10 mVrms Line Regulation: 0.02%/V Current Limit Circuit High PSRR: 80 dB at 1 kHz, 75 dB at 10 kHz Available in SOT−23−5 and mDFN 1.0 x 1.0 mm Package These are Pb−Free Devices Typical Applications • • • • • MARKING DIAGRAMS XXXMM Features • • • • • • • • • http://onsemi.com Home Appliances, Industrial Equipment Cable Boxes, Satellite Receivers, Entertainment Systems Car Audio Equipment, Navigation Systems Notebook Adaptors, LCD TVs, Cordless Phones and Private LAN Systems RF Modules NCP4688x VIN VIN C1 1.0 mF SOT−23−5 CASE 1212 1 1 UDFN−4 CASE 517BR 1 XX MG G (Top Views) XX, XXX = Specific Device Code M, MM = Date Code G = Pb−Free Package (*Note: Microdot may be in either location) ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 12 of this data sheet. VOUT VOUT CE GND C2 1.0 mF Figure 1. Typical Application Schematic © Semiconductor Components Industries, LLC, 2012 October, 2019 − Rev. 1 1 Publication Order Number: NCP4688/D NCP4688 NCP4688D NCP4688xxxx Vout Vin Vin Vout Vref Vref Noise Reduction Noise Reduction CE CE Current Limit Current Limit GND GND Figure 2. Simplified Schematic Block Diagram Table 1. PIN FUNCTION DESCRIPTION Pin No. SOT−23−5 Pin No. DFN 1x1 1 4 VIN Input pin 2 2 GND Ground pin 3 3 CE Chip enable pin (“H” active) NC Non connected Pin Name 4 5 1 VOUT *EP EP Description Output pin Exposed Pad (leave floating or connect to GND) Table 2. ABSOLUTE MAXIMUM RATINGS Rating Symbol Value Unit VIN 0−6V V Output Voltage VOUT −0.3 to VIN + 0.3 V Chip Enable Input VCE 0−6V V Power Dissipation SOT−23−5 PD 420 mW Input Voltage 400 Power Dissipation mDFN 1.0 x 1.0 mm Junction Temperature TJ −40 to 150 °C Storage Temperature TSTG −55 to 125 °C ESD Capability, Human Body Model (Note 1) ESDHBM 2000 V ESD Capability, Machine Model (Note 1) ESDMM 200 V Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per AEC−Q100−002 (EIA/JESD22−A114) ESD Machine Model tested per AEC−Q100−003 (EIA/JESD22−A115) Latchup Current Maximum Rating tested per JEDEC standard: JESD78 http://onsemi.com 2 NCP4688 Table 3. THERMAL CHARACTERISTICS Rating Symbol Value Unit Thermal Characteristics, SOT−23−5 Thermal Resistance, Junction−to−Air RqJA 238 °C/W Thermal Characteristics, mDFN 1x1 Thermal Resistance, Junction−to−Air RqJA 250 °C/W Table 4. ELECTRICAL CHARACTERISTICS (−40°C ≤ TA ≤ 85°C; CIN = COUT = 1.0 mF, unless otherwise noted. Typical values are at TA = +25°C.) Test Conditions Parameter Operating Input Voltage Output Voltage 1.2 V < Vout < 4.8 V Symbol Min VIN 2.0 VOUT Ta = 25°C, Vout > 2.0 V Unit 5.25 V x0.99 x1.01 V x1.015 V Ta = 25°C, Vout ≤ 2.0 V −20 +20 mV −40°C < Ta < 85°C, Vout ≤ 2.0 V −30 +30 mV Output Voltage Temp. Coefficient −40°C < Ta < 85°C Line Regulation Set Vout + 0.3 < VIN < 5.25 V Vout > 4.1 V Set Vout + 0.5 < VIN < 5.0 V 1.7 V ≤ VOUT < 4.1 V 2.2 < VIN < 5.0 V Vout < 1.7 V Load Regulation 1 mA < IOUT ≤ 150 mA Dropout Voltage IOUT = 150 mA LineReg LoadReg 1.2 V ≤ VOUT < 1.3 V VOUT = 0 V Quiescent Current Iout = 0 mA −14 VDO 0.02 0.10 %/V 0 14 mV V 0.39 0.80 1.3 V ≤ VOUT < 1.4 V 0.37 0.70 1.4 V ≤ VOUT ≤ 1.5 V 0.34 0.60 1.5 V ≤ VOUT < 1.7 V 0.32 0.50 1.7 V ≤ VOUT < 2.0 V 0.29 0.41 2.0 V ≤ VOUT < 2.5 V 0.25 0.36 2.5 V ≤ VOUT < 2.8 V 0.22 0.31 2.8 V ≤ VOUT ≤ 4.8 V 0.20 0.28 IOUT Short Current Limit ppm/°C ±100 Output Current Vout > 4.1 V 150 VIN = VIN max , VCE = 0 V CE Pin Pull−Down Current mA ISC 40 IQ 80 Vout ≤ 4.1 V CE Pin Threshold Voltage Max x0.985 −40°C < Ta < 85°C, Vout > 2.0 V Standby Current Typ mA 100 mA 75 ISTB 0.1 1.0 mA IPD 0.3 0.6 mA VIN V CE Input Voltage “H” VCEH CE Input Voltage “L” VCEL VOUT > 4.1 V @ VIN = 5.25 V, f = 1 kHz VOUT ≤ 4.1 V @ VIN = f = 10 kHz Set VOUT + 1.0 V, ΔVIN_PK−PK = 0.2 V, f = 100 kHz IOUT = 30 mA PSRR Output Noise Voltage IOUT = 30 mA, f = 10 Hz to 100 kHz VNOISE 10 mVrms Autodischarge NMOS Resistance VIN = 4.0 V, VCE = 0.0 V RDSON 60 ohm Power Supply Rejection Ratio http://onsemi.com 3 1.0 0.4 80 dB 75 65 NCP4688 TYPICAL CHARACTERISTICS 3.0 1.4 Vin = 5.25 V Vin = 5.25 V 2.5 Vin = 4.0 V OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) 1.2 1.0 Vin = 3.0 V 0.8 Vin = 2.0 V 0.6 0.4 0 50 100 150 200 50 100 150 200 250 Figure 4. Output Voltage vs. Output Current NCP4688xx25 1.2 Vin = 4.3 V 3.5 Vin = 4.5 V 3.0 Vin = 4.8 V 2.5 300 1.4 Vin = 5.25 V 2.0 1.5 1.0 1.0 0.8 0.6 Iout = 1 mA 0.4 Iout = 30 mA 0.2 0.5 0 50 100 150 200 250 0 300 Iout = 50 mA 0 1 2 3 4 5 OUTPUT CURRENT (mA) INPUT VOLTAGE (V) Figure 5. Output Voltage vs. Output Current NCP4688xx40 Figure 6. Output Voltage vs. Input Voltage NCP4688xx12 6 4.5 3.0 4.0 OUTPUT VOLTAGE (V) 2.5 OUTPUT VOLTAGE (V) 0 Figure 3. Output Voltage vs. Output Current NCP4688xx12 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) 0 250 OUTPUT CURRENT (mA) 4.0 2.0 1.5 1.0 Iout = 1 mA 0.5 0 Vin = 2.8 V 1.0 OUTPUT CURRENT (mA) 4.5 0 Vin = 3.0 V 1.5 0.5 0.2 0 Vin = 4.0 V 2.0 Iout = 30 mA Iout = 50 mA 0 1 2 3.5 3.0 2.5 2.0 Iout = 1 mA 1.5 1.0 Iout = 30 mA 0.5 3 4 5 0 6 Iout = 50 mA 0 1 2 3 4 5 INPUT VOLTAGE (V) INPUT VOLTAGE (V) Figure 7. Output Voltage vs. Input Voltage NCP4688xx25 Figure 8. Output Voltage vs. Input Voltage NCP4688xx40 http://onsemi.com 4 6 NCP4688 80 90 70 80 SUPPLY CURRENT (mA) SUPPLY CURRENT (mA) TYPICAL CHARACTERISTICS 60 50 40 30 20 10 0 0 1 2 3 4 5 40 30 20 0 1 2 3 4 5 INPUT VOLTAGE (V) INPUT VOLTAGE (V) Figure 9. Supply Current vs. Input Voltage NCP4688xx12 Figure 10. Supply Current vs. Input Voltage NCP4688xx25 6 80 70 SUPPLY CURRENT (mA) SUPPLY CURRENT (mA) 50 0 6 80 60 50 40 30 20 10 0 1 2 3 4 5 75 70 65 60 55 50 −50 6 0 25 50 75 TEMPERATURE (°C) Figure 11. Supply Current vs. Input Voltage NCP4688xx40 Figure 12. Supply Current vs. Temperature NCP4688xx12 80 80 75 75 70 65 60 55 50 −50 −25 INPUT VOLTAGE (V) SUPPLY CURRENT (mA) SUPPLY CURRENT (mA) 60 10 90 0 70 −25 0 25 50 75 70 65 60 55 50 −50 100 −25 0 25 50 75 TEMPERATURE (°C) TEMPERATURE (°C) Figure 13. Supply Current vs. Temperature NCP4688xx25 Figure 14. Supply Current vs. Temperature NCP4688xx40 http://onsemi.com 5 100 100 NCP4688 TYPICAL CHARACTERISTICS 1.215 2.52 OUTPUT VOLTAGE (V) 2.53 OUTPUT VOLTAGE (V) 1.220 1.210 1.205 1.200 1.195 −25 0 25 50 75 −25 0 25 50 75 TEMPERATURE (°C) TEMPERATURE (°C) Figure 15. Output Voltage vs. Temperature NCP4688xx12 Figure 16. Output Voltage vs. Temperature NCP4688xx25 100 0.50 0.45 DROPOUT VOLTAGE (V) 4.01 OUTPUT VOLTAGE (V) 2.49 2.47 −50 100 4.02 4.00 3.99 3.98 3.97 3.96 −50 −25 0 25 50 75 100 85°C 0.40 25°C 0.35 0.30 −40°C 0.25 0.20 0.15 0.10 0.05 0 0 30 60 90 120 150 TEMPERATURE (°C) OUTPUT CURRENT (mA) Figure 17. Output Voltage vs. Temperature NCP4688xx40 Figure 18. Dropout Voltage vs. Output Current NCP4688xx12 0.30 0.25 0.25 85°C DROPOUT VOLTAGE (V) DROPOUT VOLTAGE (V) 2.50 2.48 1.190 −50 25°C 0.20 0.15 −40°C 0.10 0.05 0 2.51 0 30 60 90 120 0.20 0.15 −40°C 0.10 0.05 0 150 85°C 25°C 0 30 60 90 120 150 OUTPUT CURRENT (mA) OUTPUT CURRENT (mA) Figure 19. Dropout Voltage vs. Output Current NCP4688xx25 Figure 20. Dropout Voltage vs. Output Current NCP4688xx40 http://onsemi.com 6 NCP4688 120 120 110 110 100 100 90 80 70 Iout = 50 mA 60 50 Vin = 2.2 V 40 PSRR (dB) 30 100 10k 80 70 Vin = 3.5 V 40 100k 30 100 1M Iout = 150 mA 1k 10k 100k 1M FREQUENCY (Hz) Figure 21. PSRR vs. Frequency NCP4688xx12 Figure 22. PSRR vs. Frequency NCP4688xx25 120 0.8 110 0.7 100 0.6 90 Iout = 1 mA 80 70 Iout = 50 mA 60 0.5 0.4 0.3 0.2 Vin = 5.0 V 0.1 40 30 100 Iout = 150 mA 1k 10k 100k 0 100 1M 1k 10k 100k 1M FREQUENCY (Hz) FREQUENCY (Hz) Figure 23. PSRR vs. Frequency NCP4688xx40 Figure 24. Output Noise Density vs. Frequency NCP4688xx12 0.8 0.7 0.7 0.6 0.6 0.5 0.5 mV / sqrt Hz 0.8 0.4 0.3 0.4 0.3 0.2 0.2 0.1 0.1 0 Iout = 50 mA 60 50 Iout = 150 mA 1k Iout = 1 mA 90 FREQUENCY (Hz) 50 mV / sqrt Hz PSRR (dB) Iout = 1 mA mV / sqrt Hz PSRR (dB) TYPICAL CHARACTERISTICS 10 100 1k 10k 100k 0 10 1M 100 1k 10k 100k 1M FREQUENCY (Hz) FREQUENCY (Hz) Figure 25. Output Noise Density vs. Frequency NCP4688xx25 Figure 26. Output Noise Density vs. Frequency NCP4688xx40 http://onsemi.com 7 NCP4688 5.0 3.2 4.5 2.7 4.0 2.2 3.5 1.201 2.503 2.502 2.501 1.200 2.500 1.199 2.499 1.198 1.197 Iout = 30 mA 0 40 2.498 2.497 80 120 160 200 240 280 320 360 400 VIN (V) 1.202 VOUT (V) 1.203 3.7 VIN (V) VOUT (V) TYPICAL CHARACTERISTICS Iout = 30 mA 0 40 80 120 160 200 240 280 320 360 400 t (ms) t (ms) Figure 27. Line Transient Response NCP4688xx12 Figure 28. Line Transient Response NCP4688xx25 5.75 225 5.25 150 4.75 75 4.002 4.001 1.24 1.22 1.20 4.000 1.18 3.999 1.16 3.998 3.997 1.14 1.12 Iout = 30 mA 0 40 80 120 160 200 240 280 320 360 400 IOUT (mA) VOUT (V) 0 VIN (V) VOUT (V) 4.25 4.003 Vin = 2.2 V 0 20 40 60 t (ms) t (ms) Figure 29. Line Transient Response NCP4688xx40 Figure 30. Load Transient Response Load Step 1 mA to 150 mA NCP4688xx12 150 225 100 150 50 75 0 1.20 2.54 2.52 2.50 1.19 2.48 1.18 2.46 2.44 2.42 Vin = 2.2 V 0 20 40 60 80 100 120 140 160 180 200 IOUT (mA) 1.21 0 VOUT (V) 1.22 IOUT (mA) VOUT (V) 1.23 1.17 1.16 80 100 120 140 160 180 200 Vin = 3.5 V 0 20 40 60 80 100 120 140 160 180 200 t (ms) t (ms) Figure 31. Load Transient Response Load Step 50 mA to 100 mA NCP4688xx12 Figure 32. Load Transient Response Load Step 1 mA to 150 mA NCP4688xx25 http://onsemi.com 8 NCP4688 TYPICAL CHARACTERISTICS 150 225 100 150 50 4.04 4.02 4.00 2.49 3.98 2.48 3.96 2.47 2.46 3.94 3.92 Vin = 3.5 V 0 20 40 60 80 100 120 140 160 180 200 0 IOUT (mA) 2.50 4.06 VOUT (V) 2.52 2.51 75 0 IOUT (mA) VOUT (V) 2.53 Vin = 5.0 V 0 20 40 60 80 100 120 140 160 180 200 t (ms) t (ms) Figure 33. Load Transient Response Load Step 50 mA to 100 mA NCP4688xx25 Figure 34. Load Transient Response Load Step 1 mA to 150 mA NCP4688xx40 150 3.3 100 2.2 50 0 4.00 2.0 1.5 3.99 1.0 3.98 0.5 20 40 60 80 100 120 140 160 180 200 0.6 0.7 0.8 t (ms) Figure 35. Load Transient Response Load Step 50 mA to 100 mA NCP4688xx40 Figure 36. Turn Off with CE Behavior NCP4688Dx12 7.5 3.50 5.0 VCE (V) Iout = 30 mA 1.0 4.0 3.0 Iout = 1 mA Iout = 30 mA 1.0 0 Iout = 150 mA −0.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 −1.0 0.9 1.0 0 5.0 2.0 0.5 2.5 Chip Enable 0 Iout = 1 mA 0.9 1.0 5.25 1.75 2.5 1.5 0.4 0.5 t (ms) Chip Enable 2.0 Iout = 30 mA VCE (V) 0 Iout = 1 mA 0 Iout = 150 mA −0.5 0 0.1 0.2 0.3 Vin = 5.0 V VOUT (V) 3.97 3.96 VOUT (V) VOUT (V) 4.01 0 2.5 VCE (V) 4.02 IOUT (mA) VOUT (V) 4.03 1.1 Chip Enable Iout = 150 mA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 t (ms) t (ms) Figure 37. Turn Off with CE Behavior NCP4688Dx25 Figure 38. Turn Off with CE Behavior NCP4688Dx40 http://onsemi.com 9 0.9 1.0 NCP4688 TYPICAL CHARACTERISTICS 3.3 2.0 1.5 2.5 2.0 1.5 1.0 0.5 0.5 0 −0.5 0 −0.5 20 40 60 80 100 120 140 160 180 200 1.75 0 1.0 0 3.50 VCE (V) 2.5 0 VOUT (V) Iout = 1 mA Iout = 30 mA Iout = 150 mA Chip Enable 1.1 VCE (V) VOUT (V) Chip Enable 5.25 2.2 Iout = 1 mA Iout = 30 mA Iout = 150 mA 0 20 40 60 80 100 120 140 160 180 200 t (ms) t (ms) Figure 39. Turn ON with CE Behavior NCP4688xx12 Figure 40. Turn ON with CE Behavior NCP4688xx25 http://onsemi.com 10 NCP4688 APPLICATION INFORMATION Enable Operation A typical application circuit for NCP4688 series is shown in the Figure 41. NCP4688x VIN VIN C1 1.0 mF CE The enable pin CE may be used for turning the regulator on and off. The IC is switched on when a high level voltage is applied to the CE pin. The enable pin has an internal pull down current source which assure off state of LDO in case the CE pin will stay floating. If the enable function is not needed connect CE pin to VIN. The D version of the NCP4688 device includes a transistor between VOUT and GND that is used for faster discharging of the output capacitor. This function is activated when the IC goes into disable mode. VOUT VOUT C2 1.0 mF GND Figure 41. Typical Application Schematic Thermal Consideration As a power across the IC increase, it might become necessary to provide some thermal relief. The maximum power dissipation supported by the device is dependent upon board design and layout. Mounting pad configuration on the PCB, the board material, and also the ambient temperature affect the rate of temperature increase for the part. When the device has good thermal conductivity through the PCB the junction temperature will be relatively low in high power dissipation applications. Input Decoupling Capacitor (C1) A 1.0 mF ceramic input decoupling capacitor should be connected as close as possible to the input and ground pin of the NCP4688 device. Higher values and lower ESR improves line transient response. Output Decoupling Capacitor (C2) ESR vs. Output Current When using the NCP4688 devices, consider the following points: The relation between Output Current Iout and ESR of the output capacitor are shown below in Figures 42, 43 and 44. The conditions when the device performs stable operation are marked as the hatched area in the charts. 100 100 10 10 ESR (W) ESR (W) A 1.0 mF ceramic output decoupling capacitor is sufficient to achieve stable operation of the device. If tantalum capacitor is used, and its ESR is high, the loop oscillation may result. For information about ESR see Figures 42, 43 and 44. The capacitor should be connected as close as possible to the output and ground pin. Larger values and lower ESR improves dynamic parameters. 1 0.1 0.01 1 0.1 0 25 50 75 100 125 150 0.01 0 25 50 75 100 125 150 LOAD CURRENT (mA) LOAD CURRENT (mA) Figure 42. ESR vs. Load Current NCP4688xx12 Figure 43. ESR vs. Load Current NCP4688xx25 http://onsemi.com 11 NCP4688 100 ESR (W) 10 1 0.1 0.01 0 25 50 75 100 125 150 LOAD CURRENT (mA) Figure 44. ESR vs. Load Current NCP4688xx40 ORDERING INFORMATION Marking Nominal Output Voltage Feature Package Shipping† NCP4688DMU12TCG 3A 1.2 V Auto discharge DFN1010 (Pb−Free) 10000 / Tape & Reel NCP4688DMU15TCG 3E 1.5 V Auto discharge DFN1010 (Pb−Free) 10000 / Tape & Reel NCP4688DMU18TCG 3H 1.8 V Auto discharge DFN1010 (Pb−Free) 10000 / Tape & Reel NCP4688DMU25TCG 3R 2.5 V Auto discharge DFN1010 (Pb−Free) 10000 / Tape & Reel NCP4688DMU28TCG 3U 2.8 V Auto discharge DFN1010 (Pb−Free) 10000 / Tape & Reel NCP4688DMU30TCG 3X 3.0 V Auto discharge DFN1010 (Pb−Free) 10000 / Tape & Reel NCP4688DMU33TCG 4A 3.3 V Auto discharge DFN1010 (Pb−Free) 10000 / Tape & Reel NCP4688DSN12T1G L12 1.2 V Auto discharge SOT−23 (Pb−Free) 3000 / Tape & Reel NCP4688DSN15T1G L15 1.5 V Auto discharge SOT−23 (Pb−Free) 3000 / Tape & Reel NCP4688DSN18T1G L18 1.8 V Auto discharge SOT−23 (Pb−Free) 3000 / Tape & Reel NCP4688DSN25T1G L25 2.5 V Auto discharge SOT−23 (Pb−Free) 3000 / Tape & Reel NCP4688DSN28T1G L28 2.8 V Auto discharge SOT−23 (Pb−Free) 3000 / Tape & Reel NCP4688DSN33T1G L33 3.3 V Auto discharge SOT−23 (Pb−Free) 3000 / Tape & Reel Device †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 12 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS SOT−23 5−LEAD CASE 1212−01 ISSUE A DATE 28 JAN 2011 SCALE 2:1 A 5 E 1 A2 0.05 S B D A1 4 2 L 3 L1 5X e E1 b 0.10 C M C B A S S C RECOMMENDED SOLDERING FOOTPRINT* 3.30 XXX = Specific Device Code M = Date Code G = Pb−Free Package (Note: Microdot may be in either location) 0.95 PITCH DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. DESCRIPTION: 98ASH70518A SOT−23 5−LEAD MILLIMETERS MIN MAX --1.45 0.00 0.10 1.00 1.30 0.30 0.50 0.10 0.25 2.70 3.10 2.50 3.10 1.50 1.80 0.95 BSC 0.20 --0.45 0.75 XXX MG G 0.85 0.56 DIM A A1 A2 b c D E E1 e L L1 GENERIC MARKING DIAGRAM* 5X 5X DOCUMENT NUMBER: NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSIONS: MILLIMETERS. 3. DATUM C IS THE SEATING PLANE. A *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “ G”, may or may not be present. Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS UDFN4 1.0x1.0, 0.65P CASE 517BR−01 ISSUE O 1 SCALE 4:1 PIN ONE REFERENCE 2X 0.05 C 4X A B D ÉÉ ÉÉ typ DETAIL A 0.05 C 2X NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.20 mm FROM TERMINAL. 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. L3 c 0.18 L2 E 3X TOP VIEW 0.43 4X (A3) 0.05 C A 3X 0.05 C NOTE 4 A1 SIDE VIEW e DETAIL A e/2 1 3X 2 DATE 27 OCT 2010 C SEATING PLANE DETAIL B 0.10 0.23 DIM A A1 A3 b D D2 E e L L2 L3 GENERIC MARKING DIAGRAM* L 1 D2 4 3 4X b 0.05 XX MM XX = Specific Device Code MM = Date Code D2 45 5 MILLIMETERS MIN MAX −−− 0.60 0.00 0.05 0.10 REF 0.20 0.30 1.00 BSC 0.43 0.53 1.00 BSC 0.65 BSC 0.20 0.30 0.27 0.37 0.02 0.12 M C A B NOTE 3 BOTTOM VIEW *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “ G”, may or may not be present. RECOMMENDED MOUNTING FOOTPRINT* 0.65 PITCH DETAIL B 2X 0.52 PACKAGE OUTLINE 1.30 0.53 4X 0.30 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. DOCUMENT NUMBER: DESCRIPTION: 98AON53254E UDFN4, 1.0X1.0, 0.65P Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
NCP4688DSN25T1G 价格&库存

很抱歉,暂时无法提供与“NCP4688DSN25T1G”相匹配的价格&库存,您可以联系我们找货

免费人工找货