0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
RFD12N06RLESM9A

RFD12N06RLESM9A

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    SOT428

  • 描述:

    MOSFET N-CH 60V 18A DPAK

  • 数据手册
  • 价格&库存
RFD12N06RLESM9A 数据手册
Is Now Part of To learn more about ON Semiconductor, please visit our website at www.onsemi.com Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com. ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. RFD12N06RLESM October 2013 Data Sheet N-Channel UltraFET Power MOSFET 60 V, 17 A, 71 mΩ Packaging Features JEDEC TO-252AA DRAIN (FLANGE) • Ultra Low On-Resistance - rDS(ON) = 0.063Ω, VGS = 10V - rDS(ON) = 0.071Ω, VGS = 5V • Simulation Models - Temperature Compensated PSPICE® and SABER© Electrical Models - Spice and SABER© Thermal Impedance Models - www.fairchildsemi.com GATE SOURCE • Peak Current vs Pulse Width Curve • UIS Rating Curve Symbol D • Switching Time vs RGS Curves Ordering Information G PART NUMBER PACKAGE RFD12N06RLESM9A TO-252AA BRAND 12N6LE S Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified RFD12N06RLESM9A Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Drain Current Continuous (TC= 25oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC= 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC= 135oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC= 135oC, VGS = 4.5V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UIS Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, See Techbrief TB334. . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg NOTE: 60 60 ±16 UNITS V V V 17 18 8 8 Figure 4 Figures 6, 17, 18 49 0.327 -55 to 175 W W/oC oC 300 260 oC oC A A A A 1. TJ = 25oC to 150oC. CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. ©2002 Fairchild Semiconductor Corporation RFD12N06RLESM9A Rev. C0 RFD12N06RLESM Electrical Specifications TC = 25oC, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS ID = 250µA, VGS = 0V (Figure 12) 60 - - V ID = 250µA, VGS = 0V , T C = -40oC (Figure 12) 55 - - V VDS = 55V, VGS = 0V - - 1 µA VDS = 50V, VGS = 0V, TC = 150oC - - 250 µA VGS = ±16V - - ±100 nA OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current Gate to Source Leakage Current BVDSS IDSS IGSS ON STATE SPECIFICATIONS Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 11) 1 - 3 V Drain to Source On Resistance rDS(ON) ID = 18A, VGS = 10V (Figures 9, 10) - 0.052 0.063 Ω ID = 8A, VGS = 5V (Figure 9) - 0.060 0.071 Ω ID = 8A, VGS = 4.5V (Figure 9) - 0.064 0.075 Ω TO-252AA - - 3.06 oC/W - - 100 oC/W THERMAL SPECIFICATIONS Thermal Resistance Junction to Case RθJC Thermal Resistance Junction to Ambient RθJA SWITCHING SPECIFICATIONS (VGS = 4.5V) Turn-On Time Turn-On Delay Time tON td(ON) - 153 ns 13 - ns tr - 89 - ns - 22 - ns tf - 37 - ns tOFF - - 89 ns - - 59 ns - 5.3 - ns - 34 - ns Fall Time Turn-Off Time - td(OFF) Rise Time Turn-Off Delay Time VDD = 30V, ID = 8A VGS = 4.5V, RGS = 22Ω (Figures 15, 21, 22) SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time Turn-On Delay Time Rise Time tON td(ON) tr Turn-Off Delay Time Fall Time Turn-Off Time VDD = 30V, ID = 18A VGS = 10V, RGS = 24Ω (Figures 16, 21, 22) td(OFF) - 41 - ns tf - 50 - ns tOFF - - 136 ns GATE CHARGE SPECIFICATIONS Total Gate Charge Qg(TOT) VGS = 0V to 10V Gate Charge at 5V Qg(5) VGS = 0V to 5V Qg(TH) VGS = 0V to 1V VDD = 30V, ID = 8A, Ig(REF) = 1.0mA - 12 15 nC - 6.8 8.2 nC - 0.54 0.65 nC Gate to Source Gate Charge Qgs - 1.7 - nC Gate to Drain “Miller” Charge Qgd - 3 - nC Threshold Gate Charge (Figures 14, 19, 20) CAPACITANCE SPECIFICATIONS Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 13) - 485 - pF - 130 - pF - 28 - pF MIN TYP MAX UNITS ISD = 8A - - 1.25 V ISD = 4A - - 1.0 V Source to Drain Diode Specifications PARAMETER Source to Drain Diode Voltage Reverse Recovery Time Reverse Recovered Charge ©2002 Fairchild Semiconductor Corporation SYMBOL VSD TEST CONDITIONS trr ISD = 8A, dISD/dt = 100A/µs - - 70 ns QRR ISD = 8A, dISD/dt = 100A/µs - - 165 nC RFD12N06RLESM Rev. C0 RFD12N06RLESM Typical Performance Curves 20 1.0 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.2 0.8 0.6 0.4 VGS = 10V 15 VGS = 4.5V 10 5 0.2 0 0 0 25 50 75 100 125 150 175 25 50 TC , CASE TEMPERATURE (oC) 75 100 125 150 175 TC, CASE TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE 2 ZθJC, NORMALIZED THERMAL IMPEDANCE 1 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC SINGLE PULSE 0.01 10-5 10-4 10-3 10-2 10-1 100 101 t, RECTANGULAR PULSE DURATION (s) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE IDM, PEAK CURRENT (A) 200 TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: 100 175 - TC I = I25 150 VGS = 5V TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 10 10-5 10-4 10-3 10-2 10-1 100 101 t, PULSE WIDTH (s) FIGURE 4. PEAK CURRENT CAPABILITY ©2002 Fairchild Semiconductor Corporation RFD12N06RLESM Rev. C0 RFD12N06RLESM Typical Performance Curves (Continued) 60 100µs 10 10 1ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1 10ms SINGLE PULSE TJ = MAX RATED TC = 25oC STARTING TJ = 25oC STARTING TJ = 150oC 1 0.1 1 10 0.01 100 0.1 10 100 NOTE: Refer to Fairchild Application Notes AN9321 and AN9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY FIGURE 5. FORWARD BIAS SAFE OPERATING AREA 20 20 VGS = 10V PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V VGS = 4V ID, DRAIN CURRENT (A) VGS = 5V 15 10 TJ = 25oC 5 TJ = 175oC 15 VGS = 3.5V 10 VGS = 3V 5 TJ = -55oC PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TC = 25oC 0 0 2.0 1.0 3.0 4.0 5.0 0 1 2 3 VDS, DRAIN TO SOURCE VOLTAGE (V) VGS, GATE TO SOURCE VOLTAGE (V) FIGURE 7. TRANSFER CHARACTERISTICS 4 FIGURE 8. SATURATION CHARACTERISTICS 2.5 80 ID = 17A PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TC = 25oC NORMALIZED DRAIN TO SOURCE ON RESISTANCE rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) 1 tAV, TIME IN AVALANCHE (ms) VDS, DRAIN TO SOURCE VOLTAGE (V) ID, DRAIN CURRENT (A) If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] IAS, AVALANCHE CURRENT (A) ID, DRAIN CURRENT (A) 100 70 ID = 12A ID = 7A 60 50 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 2.0 1.5 1.0 VGS = 10V, ID = 18A 0.5 40 2 4 6 8 VGS, GATE TO SOURCE VOLTAGE (V) 10 FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT ©2002 Fairchild Semiconductor Corporation -80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC) FIGURE 10. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE RFD12N06RLESM Rev. C0 RFD12N06RLESM Typical Performance Curves (Continued) 1.2 1.2 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE NORMALIZED GATE THRESHOLD VOLTAGE VGS = VDS, ID = 250µA 1.0 0.8 0.6 ID = 250µA 1.1 1.0 0.9 0.4 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) -80 200 -40 0 40 80 120 160 200 TJ , JUNCTION TEMPERATURE (oC) FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE 10 CISS = CGS + CGD 1000 C, CAPACITANCE (pF) VGS , GATE TO SOURCE VOLTAGE (V) 2000 COSS ≅ CDS + CGD 100 VGS = 0V, f = 1MHz CRSS = CGD VDD = 30V 8 6 4 2 0 10 0.1 0 60 1.0 10 VDS , DRAIN TO SOURCE VOLTAGE (V) WAVEFORMS IN DESCENDING ORDER: ID = 17A ID = 12A ID = 7A 6 9 Qg, GATE CHARGE (nC) 12 15 NOTE: Refer to Fairchild Application Notes AN7254 and AN7260. FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT 100 150 VGS = 4.5V, VDD = 30V, ID = 8A VGS = 10V, VDD = 30V, ID = 18A 120 SWITCHING TIME (ns) SWITCHING TIME (ns) 3 tr 90 60 tf td(OFF) 30 80 60 tr tf 40 td(OFF) 20 td(ON) td(ON) 0 0 0 10 20 30 40 RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 15. SWITCHING TIME vs GATE RESISTANCE ©2002 Fairchild Semiconductor Corporation 50 0 10 20 30 40 RGS, GATE TO SOURCE RESISTANCE (Ω) 50 FIGURE 16. SWITCHING TIME vs GATE RESISTANCE RFD12N06RLESM Rev. C0 RFD12N06RLESM Test Circuits and Waveforms VDS BVDSS L tP VARY tP TO OBTAIN REQUIRED PEAK IAS + RG VDS IAS VDD VDD - VGS DUT tP 0V IAS 0 0.01Ω tAV FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 18. UNCLAMPED ENERGY WAVEFORMS VDS VDD RL Qg(TOT) VDS VGS = 10V VGS Qg(5) + VDD VGS = 5V VGS DUT VGS = 1V Ig(REF) 0 Qg(TH) Qgs Qgd Ig(REF) 0 FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS VDS tON tOFF td(ON) td(OFF) tr RL VDS tf 90% 90% + VGS VDD - 10% 10% 0 DUT 90% RGS VGS VGS 0 FIGURE 21. SWITCHING TIME TEST CIRCUIT ©2002 Fairchild Semiconductor Corporation 10% 50% 50% PULSE WIDTH FIGURE 22. SWITCHING TIME WAVEFORM RFD12N06RLESM Rev. C0 RFD12N06RLESM PSPICE Electrical Model .SUBCKT HUF76409D 2 1 3 ; rev 23 August 1999 CA 12 8 6.30e-10 CB 15 14 6.30e-10 CIN 6 8 4.60e-10 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD LDRAIN DPLCAP DRAIN 2 5 10 5 51 ESLC 11 - RDRAIN 6 8 EVTHRES + 19 8 + LGATE GATE 1 MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD + 50 - IT 8 17 1 EVTEMP RGATE + 18 22 9 20 21 EBREAK 17 18 DBODY - 16 MWEAK 6 MMED MSTRO RLGATE LSOURCE CIN 8 SOURCE 3 7 RSOURCE RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 1.88e-2 RGATE 9 20 3.76 RLDRAIN 2 5 10 RLGATE 1 9 37.3 RLSOURCE 3 7 34.3 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 2.40e-2 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B DBREAK + RSLC2 ESG LDRAIN 2 5 1.00e-9 LGATE 1 9 3.73e-9 LSOURCE 3 7 3.43e-9 RLDRAIN RSLC1 51 EBREAK 11 7 17 18 66.55 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 RLSOURCE S1A 12 S2A 13 8 14 13 S1B CA RBREAK 15 17 18 RVTEMP S2B 13 CB 6 8 EGS - 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD 19 - IT 14 + + VBAT 5 8 EDS - + 8 22 RVTHRES VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*43),3))} .MODEL DBODYMOD D (IS = 3.84e-13 RS = 1.56e-2 TRS1 = -1.0e-3 TRS2 = 7.0e-6 CJO = 6.4e-10 TT = 5.10e-8 XTI =4.35 M = 0.52) .MODEL DBREAKMOD D (RS = 3.70e- 1TRS1 = 9.10e- 4TRS2 = -1e-6) .MODEL DPLCAPMOD D (CJO = 3.70e-1 0IS = 1e-3 0N = 10 M = 0.79) .MODEL MMEDMOD NMOS (VTO = 2.08 KP = 3.2 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 3.76) .MODEL MSTROMOD NMOS (VTO = 2.40 KP = 28 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.80 KP = 0.08 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 37.6 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 1.13e- 3TC2 = -3.00e-7) .MODEL RDRAINMOD RES (TC1 = 9.80e-3 TC2 = 2.85e-5) .MODEL RSLCMOD RES (TC1 = 5.00e-3 TC2 = 5.05e-6) .MODEL RSOURCEMOD RES (TC1 = 1.5e-3 TC2 = 1e-6) .MODEL RVTHRESMOD RES (TC1 = -1.48e-3 TC2 = -8.30e-6) .MODEL RVTEMPMOD RES (TC1 = -1.68e- 3TC2 = 8e-7) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -5 VOFF= -2.8) VON = -2.8 VOFF= -5) VON = -0.5 VOFF= 0.5) VON = 0.5 VOFF= -0.5) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. ©2002 Fairchild Semiconductor Corporation RFD12N06RLESM Rev. C0 RFD12N06RLESM SABER Electrical Model REV 23 August 1999 template huf76409d n2,n1,n3 electrical n2,n1,n3 { var i iscl d..model dbodymod = (is = 3.84e-13, cjo = 6.40e-10, tt = 5.10e-8, xti = 4.35, m = 0.52) d..model dbreakmod = () d..model dplcapmod = (cjo = 3.70e-10, is = 1e-30, m = 0.79) m..model mmedmod = (type=_n, vto = 2.08, kp = 3.2, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 2.40, kp = 28, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 1.80, kp = 0.08, is = 1e-30, tox = 1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -5, voff = -2.8) DPLCAP sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -2.8, voff = -5) 10 sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.5, voff = 0.5) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = -0.5) c.ca n12 n8 = 6.30e-10 c.cb n15 n14 = 6.30e-10 c.cin n6 n8 = 4.60e-10 DRAIN 2 RSLC1 51 RLDRAIN RDBREAK RSLC2 72 ISCL RDRAIN 6 8 ESG EVTHRES + 19 8 + i.it n8 n17 = 1 LGATE GATE 1 EVTEMP RGATE + 18 22 9 20 MWEAK MSTRO CIN DBODY EBREAK + 17 18 MMED m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u 71 11 16 6 RLGATE res.rbreak n17 n18 = 1, tc1 = 1.13e-3, tc2 = -3.00e-7 res.rdbody n71 n5 = 1.56e-2, tc1 = -1.0e-3, tc2 = 7.00e-6 res.rdbreak n72 n5 = 3.70e-1, tc1 = 9.10e-4, tc2 = -1e-6 res.rdrain n50 n16 = 1.88e-2, tc1 = 9.80e-3, tc2 = 2.85e-5 res.rgate n9 n20 = 3.76 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 37.3 res.rlsource n3 n7 = 34.3 res.rslc1 n5 n51= 1e-6, tc1 = 5.00e-3, tc2 = 5.05e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 2.40e-2, tc1 = 1.5e-3, tc2 =1e-6 res.rvtemp n18 n19 = 1, tc1 = -1.68e-3, tc2 = 8.00e-7 res.rvthres n22 n8 = 1, tc1 = -1.48e-3, tc2 = -8.30e-6 21 RDBODY DBREAK 50 - d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod l.ldrain n2 n5 = 1.00e-9 l.lgate n1 n9 = 3.73e-9 l.lsource n3 n7 = 3.43e-9 LDRAIN 5 - 8 LSOURCE 7 SOURCE 3 RSOURCE RLSOURCE S1A 12 S2A 14 13 13 8 S1B CA RBREAK 15 17 18 RVTEMP S2B 13 + 6 8 EGS 19 CB + - - IT 14 VBAT 5 8 EDS - + 8 22 RVTHRES spe.ebreak n11 n7 n17 n18 = 66.55 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/43))** 3)) } } ©2002 Fairchild Semiconductor Corporation RFD12N06RLESM Rev. C0 RFD12N06RLESM SPICE Thermal Model th JUNCTION REV 10 September 1999 HUF76409T CTHERM1 th 6 9.50e-4 CTHERM2 6 5 2.40e-3 CTHERM3 5 4 3.90e-3 CTHERM4 4 3 4.10e-3 CTHERM5 3 2 5.60e-3 CTHERM6 2 tl 4.00e-2 RTHERM1 RTHERM1 th 6 2.00e-2 RTHERM2 6 5 1.10e-1 RTHERM3 5 4 2.75e-1 RTHERM4 4 3 5.53e-1 RTHERM5 3 2 7.25e-1 RTHERM6 2 tl 7.56e-1 RTHERM2 CTHERM1 6 CTHERM2 5 RTHERM3 CTHERM3 SABER Thermal Model SABER thermal model HUF76409T template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 9.50e-4 ctherm.ctherm2 6 5 = 2.40e-3 ctherm.ctherm3 5 4 = 3.90e-3 ctherm.ctherm4 4 3 = 4.10e-3 ctherm.ctherm5 3 2 = 5.60e-3 ctherm.ctherm6 2 tl = 4.00e-2 rtherm.rtherm1 th 6 = 2.00e-2 rtherm.rtherm2 6 5 = 1.10e-1 rtherm.rtherm3 5 4 = 2.75e-1 rtherm.rtherm4 4 3 = 5.53e-1 rtherm.rtherm5 3 2 = 7.25e-1 rtherm.rtherm6 2 tl = 7.56e-1 } 4 RTHERM4 CTHERM4 3 RTHERM5 CTHERM5 2 RTHERM6 CTHERM6 tl ©2002 Fairchild Semiconductor Corporation CASE RFD12N06RLESM Rev. C0 RFD12N06RLESM TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. Sync-Lock™ F-PFS™ AccuPower™ ® FRFET® AX-CAP®* ®* ® SM BitSiC™ Global Power Resource PowerTrench GreenBridge™ PowerXS™ Build it Now™ TinyBoost® Green FPS™ Programmable Active Droop™ CorePLUS™ TinyBuck® ® Green FPS™ e-Series™ QFET CorePOWER™ TinyCalc™ QS™ Gmax™ CROSSVOLT™ TinyLogic® GTO™ Quiet Series™ CTL™ TINYOPTO™ IntelliMAX™ RapidConfigure™ Current Transfer Logic™ TinyPower™ ISOPLANAR™ DEUXPEED® ™ TinyPWM™ Dual Cool™ Marking Small Speakers Sound Louder TinyWire™ EcoSPARK® Saving our world, 1mW/W/kW at a time™ and Better™ TranSiC™ EfficentMax™ SignalWise™ MegaBuck™ TriFault Detect™ ESBC™ SmartMax™ MICROCOUPLER™ TRUECURRENT®* SMART START™ MicroFET™ ® SerDes™ Solutions for Your Success™ MicroPak™ SPM® MicroPak2™ Fairchild® STEALTH™ MillerDrive™ Fairchild Semiconductor® UHC® SuperFET® MotionMax™ FACT Quiet Series™ ® Ultra FRFET™ SuperSOT™-3 mWSaver FACT® UniFET™ SuperSOT™-6 OptoHiT™ FAST® VCX™ SuperSOT™-8 OPTOLOGIC® FastvCore™ VisualMax™ OPTOPLANAR® SupreMOS® FETBench™ VoltagePlus™ SyncFET™ FPS™ XS™ tm *Trademarks of System General Corporation, used under license by Fairchild Semiconductor. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used here in: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handing and storage and provide access to Fairchild’s full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative / In Design Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. No Identification Needed Full Production Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. Obsolete Not In Production Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. Rev. I66 ©2002 Fairchild Semiconductor Corporation RFD12N06RLESM Rev. C0 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: orderlit@onsemi.com © Semiconductor Components Industries, LLC N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5817−1050 www.onsemi.com 1 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative www.onsemi.com
RFD12N06RLESM9A 价格&库存

很抱歉,暂时无法提供与“RFD12N06RLESM9A”相匹配的价格&库存,您可以联系我们找货

免费人工找货
RFD12N06RLESM9A
  •  国内价格 香港价格
  • 2500+3.856652500+0.46818
  • 5000+3.673015000+0.44589
  • 12500+3.5034812500+0.42531
  • 25000+3.4967625000+0.42449

库存:0