0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
3820

3820

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

  • 描述:

    3820 - SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER - Renesas Technology Corp

  • 数据手册
  • 价格&库存
3820 数据手册
To all our customers Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp. The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself. Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices. Renesas Technology Corp. Customer Support Dept. April 1, 2003 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER DESCRIPTION The 3820 group is the 8-bit microcomputer based on the 740 family core technology. The 3820 group has the LCD drive control circuit and the serial I/ O as additional functions. The various microcomputers in the 3820 group include variations of internal memory size and packaging. For details, refer to the section on part numbering. For details on availability of microcomputers in the 3820 group, refer to the section on group expansion. • LCD drive control circuit Bias ................................................................................... 1/2, 1/3 Duty ............................................................................ 1/2, 1/3, 1/4 Common output .......................................................................... 4 Segment output ......................................................................... 40 2 Clock generating circuit Clock (X IN-XOUT) .................................. Internal feedback resistor Sub-clock (XCIN -XCOUT) .......... Without internal feedback resistor (connect to external ceramic resonator or quartz-crystal oscillator) Watchdog timer ............................................................. 15-bit ! 1 Power source voltage In high-speed mode .................................................... 4.0 to 5.5 V (at 8MHz oscillation frequency and high-speed selected) In middle-speed mode ................................................2.5 to 5.5 V (at 8MHz oscillation frequency and middle-speed selected) In low-speed mode ...................................................... 2.5 to 5.5 V (Extended operating temperature version: 3.0 V to 5.5 V) Power dissipation In high-speed mode ........................................................... 32 mW (at 8 MHz oscillation frequency) In low-speed mode .............................................................. 45 µ W (at 32 kHz oscillation frequency, at 3 V power source voltage) Operating temperature range ................................... – 20 to 85°C (Extended operating temperature version: –40 to 85° C) • • • FEATURES • Basic machine-language instructions ....................................... 71 • The minimum instruction execution time ............................ 0.5 µs (at 8MHz oscillation frequency) • Memory size • • • • • • ROM .................................................................. 4 K to 32 K bytes RAM ................................................................. 192 to 1024 bytes Programmable input/output ports ............................................. 43 Software pull-up/pull-down resistors (Ports P0-P7 except Port P4 0) Interrupts .................................................. 16 sources, 16 vectors (includes key input interrupt) Timers ........................................................... 8-bit ! 3, 16-bit ! 2 Serial I/O1 ..................... 8-bit ! 1 (UART or Clock-synchronized) Serial I/O2 .................................... 8-bit ! 1 (Clock-synchronized) • • APPLICATIONS Household appliances, consumer electronics, etc. PIN CONFIGURATION (TOP VIEW) P30/SEG16 P31/SEG17 P32/SEG18 P33/SEG19 P34/SEG20 P35/SEG21 P36/SEG22 P37/SEG23 P00/SEG24 P01/SEG25 P02/SEG26 P03/SEG27 P04/SEG28 P05/SEG29 P06/SEG30 P07/SEG31 P10/SEG32 P11/SEG33 P12/SEG34 P13/SEG35 P14/SEG36 P15/SEG37 P16/SEG38 P17/SEG39 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 SEG15 SEG14 SEG13 SEG12 SEG11 SEG10 SEG9 SEG8 VCC SEG7 SEG6 SEG5 SEG4 SEG3 SEG2 SEG1 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 1234 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 40 39 38 37 36 35 34 M38203M4-XXXFP M38203M4-XXXFP 33 32 31 30 29 28 27 26 25 P20 P21 P22 P23 P24 P25 P26 P27 VSS XOUT XIN P70/XCOUT P71/XCIN RESET P40 P41/φ SEG0 COM3 COM2 COM1 COM0 VL3 VL2 VL1 P61/RTP1 P60/INT3/RTP0 P57/INT2 P56/TOUT P55/CNTR1 P54/CNTR0 P53/SRDY2 P52/SCLK2 P51/SOUT2 P50/SIN2 P47/SRDY1 P46/SCLK1 P45/TXD P44/RXD P43/INT1 P42/INT0 Package type : 80P6N-A 80-pin plastic molded QFP MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER PIN CONFIGURATION (TOP VIEW) P32/SEG18 P33/SEG19 P34/SEG20 P35/SEG21 P36/SEG22 P37/SEG23 P00/SEG24 P01/SEG25 P02/SEG26 P03/SEG27 P04/SEG28 P05/SEG29 P06/SEG30 P07/SEG31 P10/SEG32 P11/SEG33 P12/SEG34 P13/SEG35 P14/SEG36 P15/SEG37 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 P31/SEG17 P30/SEG16 SEG15 SEG14 SEG13 SEG12 SEG11 SEG10 SEG9 SEG8 VCC SEG7 SEG6 SEG5 SEG4 SEG3 SEG2 SEG1 SEG0 COM3 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 40 39 38 37 36 35 34 33 M38203M4-XXXGP M38203M4-XXXHP 32 31 30 29 28 27 26 25 24 23 22 21 P16/SEG38 P17/SEG39 P20 P21 P22 P23 P24 P25 P26 P27 VSS XOUT XIN P70/XCOUT P71/XCIN RESET P40 P41/φ P42/INT0 P43/INT1 Package type : 80P6S-A/80P6D-A 80-pin plastic-molded QFP 2 COM2 COM1 COM0 VL3 VL2 VL1 P61/RTP1 P60/INT3/RTP0 P57/INT2 P56/TOUT P55/CNTR1 P54/CNTR0 P53/SRDY2 P52/SCLK2 P51/SOUT2 P50/SIN2 P47/SRDY1 P46/SCLK1 P45/TXD P44/RXD FUNCTIONAL BLOCK DIAGRAM (Package : 80P6N-A) Clock input XIN Reset input RESET VSS 32 27 73 Clock output XOUT (5V) VCC (0V) 30 28 31 29 1 Data bus Clock generating circuit CPU A ROM X Y S PCH Timer X(16) Timer Y(16) Timer 1(8) Timer 3(8) Timer 2(8) PS PCL LCD display RAM (20 bytes) LCD drive control circuit RAM 8 7 6 5 4 3 2 1 80 79 78 77 76 75 74 72 71 70 69 68 67 66 65 VL1 VL2 VL3 COM0 COM1 COM2 COM3 XCIN Subclock input XCOUT Subclock output φ Watchdog timer RESET SI/O2(8) SI/O1(8) TOUT CNTR0,CNTR1 RTP0,RTP1 SEG0 SEG1 SEG2 SEG3 SEG4 SEG5 SEG6 SEG7 SEG8 SEG9 SEG10 SEG11 SEG12 SEG13 SEG14 SEG15 XCIN INT0,INT1 Real time port function XCOUT φ INT2 Key-on wake up P7(2) P5(8) P3(8) P4(8) P6(2) P2(8) P1(8) P0(8) P0(8) 28 29 9 10 19 20 2 1 22 23 24 25 26 11 12 13 14 15 16 17 18 57 58 59 60 61 62 63 64 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 I/O port P7 I/O port P5 I/O port P4 I/O port P6 Input port P3 I/O port P2 I/O port P1 I/O port P0 SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER MITSUBISHI MICROCOMPUTERS 3820 Group 3 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER PIN DESCRIPTION Pin VCC VSS RESET XIN XOUT Reset input Clock input Clock output • Reset input pin for active “L” • Input and output pins for the main clock generating circuit. • Feedback resistor is built in between X IN pin and XOUT pin. • Connect a ceramic resonator or a quartz-crystal oscillator between the X IN and X OUT pins to set the oscillation frequency. • If an external clock is used, connect the clock source to the XIN pin and leave the X OUT pin open. • This clock is used as the oscillating source of system clock. • Input 0 ≤ VL1 ≤ VL2 ≤ V L3 ≤ VCC voltage • Input 0 – V L3 voltage to LCD • LCD common output pins • COM2 and COM3 are not used at 1/2 duty ratio. • COM3 is not used at 1/3 duty ratio. • LCD segment output pins • • • • 8-bit I/O port CMOS compatible input level CMOS 3-state output structure I/O direction register allows each port to be individually programmed as either input or output. • Pull-down control is enabled. • • • • 8-bit I/O port CMOS compatible input level CMOS 3-state output structure I/O direction register allows each port to be individually programmed as either input or output. • Pull-down control is enabled. • • • • 8-bit I/O port CMOS compatible input level CMOS 3-state output structure I/O direction register allows each pin to be individually programmed as either input or output. • Pull-up control is enabled. • 8-bit Input port • CMOS compatible input level • Pull-down control is enabled. • 1-bit input pin • CMOS compatible input level • • • • 7-bit I/O port CMOS compatible input level CMOS 3-state output structure I/O direction register allows each pin to be individually programmed as either input or output. • Pull-up control is enabled. • φ clock output pin • Interrupt input pins • Serial I/O1 function pins • Key input (key-on wake up) interrupt input pins • LCD segment pins Name Power source Function • Apply voltage of 2.5 V to 5.5 V to V CC, and 0 V to VSS. (Extended operating temperature version : 3.0 V to 5.5 V) Function except a port function VL1 – VL3 COM 0 – COM3 LCD power source Common output SEG 0 – SEG15 P00 /SEG 24 – P07 /SEG 31 Segment output I/O port P0 P10 /SEG 32 – P17 /SEG 39 I/O port P1 P20 – P27 I/O port P2 P30 /SEG 16 – P37 /SEG 23 P40 P41 / φ P42 /INT0 , P43 /INT1 P44/RXD, P45/TXD, P46 /SCLK1, P47/SRDY1 Input port P3 • LCD segment pins Input port P4 I/O port P4 4 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER PIN DESCRIPTION Pin P50 /SIN2, P51 /SOUT2, P52 /SCLK2 , P53/SRDY2 P54 /CNTR0 , P55 /CNTR1 P56/T OUT P57 /INT2 P60/INT3/RTP0 P61 /RTP1 I/O port P6 • • • • 2-bit I/O port CMOS compatible input level CMOS 3-state output structure I/O direction register allows each pin to be individually programmed as either input or output. • Pull-up control is enabled. • • • • 2-bit I/O port CMOS compatible input level CMOS 3-state output structure I/O direction register allows each pin to be individually programmed as either input or output. • Pull-up control is enabled. Name I/O port P5 • • • • Function Function except a port function 8-bit I/O port CMOS compatible input level CMOS 3-state output structure I/O direction register allows each pin to be individually programmed as either input or output. • Pull-up control is enabled. • Serial I/O2 function pins • Timer function pins • Timer output pin • Interrupt input pin • Interrupt input pins(P60) • Real time port function pin P70 /XCOUT, P71 /XCIN I/O port P7 • Sub-clock generating circuit input pins (Connect a resonator. External clock cannot be used.) 5 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER PART NUMBERING Product M3820 3 M 4 - XXX FP Package type FP : 80P6N-A package GP : 80P6S-A package HP : 80P6D-A package FS : 80D0 package ROM number Omitted in some types. Normally, using hyphen When electrical characteristic, or division of quality identification code using alphanumeric character – : standard D : Extended operating temperature version ROM/PROM size 1 : 4096 bytes 2 : 8192 bytes 3 : 12288 bytes 4 : 16384 bytes 5 : 20480 bytes 6 : 24576 bytes 7 : 28672 bytes 8 : 32768 bytes The first 128 bytes and the last 2 bytes of ROM are reserved areas ; they cannot be used. Memory type M : Mask ROM version E : EPROM or One Time PROM version RAM size 0 : 192 bytes 1 : 256 bytes 2 : 384 bytes 3 : 512 bytes 4 : 640 bytes 5 : 768 bytes 6 : 896 bytes 7 : 1024 bytes 6 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER GROUP EXPANSION Mitsubishi plans to expand the 3820 group as follows: (1) Support for mask ROM, One Time PROM, and EPROM versions (2) ROM/PROM size .......................................... 8 K to 32 K bytes RAM size ..................................................... 512 to 1024 bytes (3) Packages 80P6N-A ............................. 0.8 mm-pitch plastic molded QFP 80P6S-A ........................... 0.65 mm-pitch plastic molded QFP 80P6D-A ............................. 0.5 mm-pitch plastic molded QFP 80D0 ................ 0.8 mm-pitch ceramic LCC (EPROM version) Memory Expansion Plan ROM size (bytes) 32K New product M38207M8/E8 28K 24K 20K Mass product 16K M38203M4/E4 12K 8K 4K 192 256 384 512 RAM size (bytes) 640 768 896 1024 Currently supported products are listed below. Product M38203M4-XXXFP M38203E4-XXXFP M38203E4FP M38203M4-XXXGP M38203E4-XXXGP M38203E4GP M38203M4-XXXHP M38203E4-XXXHP M38203E4HP M38203E4FS M38207M8-XXXFP M38207E8-XXXFP M38207E8FP M38207M8-XXXGP M38207E8-XXXGP M38207E8GP M38207M8-XXXHP M38207E8-XXXHP M38207E8HP M38207E8FS (P) ROM size (bytes) ROM size for User in ( ) RAM size (bytes) Package Remarks Mask ROM version One Time PROM version One Time PROM version (blank) Mask ROM version One Time PROM version One Time PROM version (blank) Mask ROM version One Time PROM version One Time PROM version (blank) EPROM version Mask ROM version One Time PROM version One Time PROM version (blank) Mask ROM version One Time PROM version One Time PROM version (blank) Mask ROM version One Time PROM version One Time PROM version (blank) EPROM version As of May 1996 80P6N-A 16384 (16254) 512 80P6S-A 80P6D-A 80D0 80P6N-A 32768 (32638) 1024 80P6S-A 80P6D-A 80D0 7 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER GROUP EXPANSION (EXTENDED OPERATING TEMPERATURE VERSION) Mitsubishi plans to expand the 3820 group (extended operating temperature version) as follows: (1) Support for mask ROM, One Time PROM, and EPROM versions (2) ROM size ................................................... 16 K to 32 K bytes RAM size ..................................................... 512 to 1024 bytes (3) Packages 80P6N-A ............................. 0.8 mm-pitch plastic molded QFP 80P6S-A ............................0.65 mm-pitch plastic molded QFP Memory Expansion Plan ROM size (bytes) 32K New product M38207M8D 28K 24K 20K New product 16K M38203M4D 12K 8K 4K 192 256 384 512 RAM size (bytes) 640 768 896 1024 Currently supported products are listed below. Product M38203M4DXXXFP M38207M8DXXXFP M38207M8DXXXGP ROM size (bytes) ROM size for User in ( ) 16384(16254) 32768(32638) 32768(32638) RAM size (bytes) 512 1024 1024 Package 80P6N-A 80P6N-A 80P6S-A Mask ROM version Mask ROM version Mask ROM version Remarks As of May 1996 8 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER GROUP EXPANSION (LOW POWER SOURCE VOLTAGE VERSION) Mitsubishi plans to expand the 3820 group (low power source voltage version) as follows: (1) Support for mask ROM version (2) ROM size ...................................................... 8 K to 32 K bytes RAM size .................................................................. 512 bytes (3) Packages 80P6N-A ............................. 0.8 mm-pitch plastic molded QFP 80P6S-A ........................... 0.65 mm-pitch plastic molded QFP 80P6D-A ............................. 0.5 mm-pitch plastic molded QFP Memory Expansion Plan ROM size (bytes) 32K 28K 24K 20K New product 16K M38203M4L 12K New product 8K M38203M2L 4K 192 256 384 512 RAM size (bytes) 640 768 896 1024 Currently supported products are listed below. Product M38203M2LXXXFP M38203M2LXXXGP M38203M2LXXXHP M38203M4LXXXFP M38203M4LXXXGP M38203M4LXXXHP ROM size (bytes) ROM size for User in ( ) 8192 (8062) 512 16384 (16254) RAM size (bytes) Package 80P6N-A 80P6S-A 80P6D-A 80P6N-A 80P6S-A 80P6D-A Mask ROM version Mask ROM version Mask ROM version Mask ROM version Mask ROM version Mask ROM version Remarks As of May 1996 9 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER FUNCTIONAL DESCRIPTION Central Processing Unit (CPU) The 3820 group uses the standard 740 family instruction set. Refer to the table of 740 family addressing modes and machine instructions or the SERIES 740 User’s Manual for details on the instruction set. Machine-resident 740 family instructions are as follows: The FST and SLW instruction cannot be used. The STP, WIT, MUL, and DIV instruction can be used. CPU Mode Register The CPU mode register is allocated at address 003B16 . The CPU mode register contains the stack page selection bit and the internal system clock selection bit. 7 0 CPU mode register (CPUM (CM) : address 003B16) Processor mode bits b1 b0 0 0 : Single-chip mode 0 1: 1 0 : Not available 1 1: Stack page selection bit 0 : 0 RAM in the zero page is used as stack area 1 : 1 RAM in page 1 is used as stack area Not used (returns “1” when read) (Do not write “0” to this bit) Port X C switch bit 0 : I/O port 1 : X CIN, XCOUT Main clock ( X IN–XOUT ) stop bit 0 : Oscillating 1 : Stopped Main clock division ratio selection bit 0 : f(X IN)/2 (high-speed mode) 1 : f(X IN)/8 (middle-speed mode) Internal system clock selection bit 0 : X IN-XOUT selected (middle-/high-speed mode) 1 : X CIN-XCOUT selected (low-speed mode) Fig. 1 Structure of CPU mode register 10 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER MEMORY Special Function Register (SFR) Area The Special Function Register area in the zero page contains control registers such as I/O ports and timers. Zero Page The 256 bytes from addresses 000016 t o 00FF16 a re called the zero page area. The internal RAM and the special function registers (SFR) are allocated to this area. The zero page addressing mode can be used to specify memory and register addresses in the zero page area. Access to this area with only 2 bytes is possible in the zero page addressing mode. RAM RAM is used for data storage and for stack area of subroutine calls and interrupts. Special Page ROM The first 128 bytes and the last 2 bytes of ROM are reserved for device testing and the rest is user area for storing programs. The 256 bytes from addresses FF0016 to FFFF16 are called the special page area. The special page addressing mode can be used to specify memory addresses in the special page area. Access to this area with only 2 bytes is possible in the special page addressing mode. Interrupt Vector Area The interrupt vector area contains reset and interrupt vectors. RAM area RAM size (bytes) Address XXXX16 000016 SFR area 004016 LCD display RAM area 005416 010016 Zero page 192 256 384 512 640 768 896 1024 00FF16 013F16 01BF16 023F16 02BF16 033F16 03BF16 043F16 RAM XXXX16 Reserved area 044016 ROM area ROM size (bytes) Address YYYY16 Address ZZZZ16 Not used YYYY16 Reserved ROM area (128 bytes) 4096 8192 12288 16384 20480 24576 28672 32768 F00016 E00016 D00016 C00016 B00016 A00016 900016 800016 F08016 E08016 D08016 C08016 B08016 A08016 908016 808016 ZZZZ16 ROM FF0016 FFDC16 Interrupt vector area FFFE16 FFFF16 Reserved ROM area Special page Fig. 2 Memory map diagram 11 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER 000016 000116 000216 000316 000416 000516 000616 000716 000816 000916 000A16 000B16 000C16 000D16 000E16 000F16 001016 001116 001216 001316 001416 001516 001616 001716 001816 001916 001A16 001B16 001C16 001D16 001E16 001F16 Port P0 (P0) Port P0 direction register (P0D) Port P1 (P1) Port P1 direction register (P1D) Port P2 (P2) Port P2 direction register (P2D) Port P3 (P3) 002016 002116 002216 002316 002416 002516 002616 002716 Timer X (low-order) (TXL) Timer X (high-order) (TXH) Timer Y (low-order) (TYL) Timer Y (high-order) (TYH) Timer 1 (T1) Timer 2 (T2) Timer 3 (T3) Timer X mode register (TXM) Timer Y mode register (TYM) Timer 123 mode register (T123M) φ output control register (CKOUT) Port P4 (P4) Port P4 direction register (P4D) Port P5 (P5) Port P5 direction register (P5D) Port P6 (P6) Port P6 direction register (P6D) Port P7 (P7) Port P7 direction register (P7D) 002816 002916 002A16 002B16 002C16 002D16 002E16 002F16 003016 003116 003216 003316 003416 003516 PULL register A (PULLA) PULL register B (PULLB) Transmit/Receive buffer register (TB/RB) Serial I/O1 status register (SIO1STS) Serial I/O1 control register (SIO1CON) UART control register (UARTCON) Baud rate generator (BRG) Serial I/O2 control register (SIO2CON) 003616 003716 003816 003916 003A16 003B16 003C16 003D16 003E16 Watchdog timer control register (WDTCON) Segment output enable register (SEG) LCD mode register (LM) Interrupt edge selection register (INTEDGE) CPU mode register (CPUM) Interrupt request register 1(IREQ1) Interrupt request register 2(IREQ2) Interrupt control register 1(ICON1) Interrupt control register 2(ICON2) Serial I/O2 register (SIO2) 003F16 Fig.3 Memory map of special function register (SFR) 12 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER I/O PORTS Direction Registers (ports P2, P41–P4 7, and P5–P7) The 3820 group has 43 programmable I/O pins arranged in seven I/O ports (ports P0–P2 and P4–P7). The I/O ports P2, P41–P4 7, and P5–P7 have direction registers which determine the input/output direction of each individual pin. Each bit in a direction register corresponds to one pin, each pin can be set to be input port or output port. When “0” is written to the bit corresponding to a pin, that pin becomes an input pin. When “1” is written to that bit, that pin becomes an output pin. If data is read from a pin set to output, the value of the port output latch is read, not the value of the pin itself. Pins set to input are floating. If a pin set to input is written to, only the port output latch is written to and the pin remains floating. 7 0 PULL register A (PULLA : address 0016 16) P00–P07 pull-down P10–P17 pull-down P20–P27 pull-up P30–P37 pull-down P70, P71 pull-up Not used (return "0" when read) 7 0 PULL register B (PULLB : address 0017 16) P41–P43 pull-up P44–P47 pull-up P50–P53 pull-up P54–P57 pull-up P60, P61 pull-up Not used (return "0" when read) 0 : Disable 1 : Enable Note : The contents of PULL register A and PULL register B do not affect ports programmed as the output ports. Direction Registers (ports P0 and P1) Ports P0 and P1 have direction registers which determine the input /output direction of each individual port. Each port in a direction register corresponds to one port, each port can be set to be input or output. When “0” is written to the bit 0 of a direction register, that port becomes an input port. When “1” is written to that port, that port becomes an output port. Bits 1 to 7 of ports P0 and P1 direction registers are not used. Fig. 4 Structure of PULL register A and PULL register B Ports P3 and P40 These ports are only for input. Pull-up/Pull-down Control By setting the PULL register A (address 001616) or the PULL register B (address 001716 ), ports except for port P4 0 can control either pull-down or pull-up (pins that are shared with the segment output pins for LCD are pull-down; all other pins are pull-up) with a program. However, the contents of PULL register A and PULL register B do not affect ports programmed as the output ports. 13 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Pin P00 /SEG24 – P07 /SEG31 P10 /SEG32 – P17 /SEG39 Name Port P0 Input/Output Input/output, individual ports Input/output, individual ports Input/output, individual bits Port P1 P20 – P27 Port P2 I/O Format CMOS compatible input level CMOS 3-state output CMOS compatible input level CMOS 3-state output CMOS compatible input level CMOS 3-state output CMOS compatible input level CMOS compatible input level Non-Port Function LCD segment output LCD segment output Key input(Key-on wake up) interrupt input LCD segment output P30 /SEG16 – P37 /SEG23 P40 Port P3 Input Related SFRs PULL register A Segment output enable register PULL register A Segment output enable register PULL register A Interrupt control register 2 PULL register A Segment output enable register Diagram No. (1) (2) (3) Input (4) PULL register B φ output control register PULL register B Interrupt edge selection register PULL register B Serial I/O1 control register Serial I/O1 status register UART control register PULL register B Serial I/O2 control register PULL register B Timer X mode register PULL register B Timer Y mode register PULL register B Timer 123 mode register PULL register B Interrupt edge selection register PULL register B Timer X mode register Interrupt edge selection register PULL register B Timer X mode register PULL register A CPU mode register LCD mode register P41 / φ φ clock output (5) P42 /INT0 , P43 /INT1 P44 /RXD P45 /TXD P46 /SCLK1 P47/SRDY1 P50 /SIN2 P51 /SOUT2 P52 /SCLK2 P53/SRDY2 P54 /CNTR0 Port P4 Input/output, individual bits CMOS compatible input level CMOS 3-state output External interrupt input (2) (6) (7) (8) (9) (10) (11) (12) (13) (14) (10) (15) Serial I/O1 function I/O Serial I/O2 function I/O Port P5 P55 /CNTR1 P56/T OUT Input/output, individual bits CMOS compatible input level CMOS 3-state output Timer I/O Timer I/O Timer output P57 /INT2 External interrupt input (2) P60/INT3/RTP0 Port P6 P61 /RTP1 P70 /XCOUT Port P7 P71 /XCIN COM 0-COM3 SEG0 -SEG15 Common Segment Input/output, individual bits CMOS compatible input level CMOS 3-state output External interrupt input Real time port function output Real time port function output Sub-clock generating circuit I/O (16) Input/output, individual bits output output CMOS compatible input level CMOS 3-state output LCD common output LCD segment output (17) (18) (19) (20) Note : Make sure that the input level at each pin is either 0 V or VCC during execution of the STP instruction. When an input level is at an intermediate potential, a current will flow from VCC to V SS through the input-stage gate. 14 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER (1)Ports P0,P1 VL2/VL3 (2)Ports P2,P42,P43,P57 Pull-up control VL1/VSS Segment output enable bit (Note) Direction register Direction register Data bus Data bus Port latch Port latch Key input (Key-on wake up) interrupt input INT0–INT2 interrupt input Pull-down control Segment output enable bit Note. Bit 0 of port P0 direction register and port P1 direction register. (3)Ports P30–P37 VL2/VL3 (4)Port P40 Data bus VL1/VSS Data bus Pull-down control Segment output enable bit (5)Port P41 Pull-up control (6)Port P44 Pull-up control Serial I/O1 enable bit Reception enable bit Direction register Direction register Data bus Port latch Data bus Port latch φ output control bit φ Serial I/O1 input (7)Port P45 (8)Port P46 Serial I/O1 synchronization clock selection bit Serial I/O1 enable bit Serial I/O1 mode selection bit Serial I/O1 enable bit Direction register Pull-up control P45/TXD P-channel output disable bit Serial I/O1 enable bit Transmission enable bit Direction register Pull-up control Data bus Port latch Data bus Port latch Serial I/O1 output Serial I/O1 clock output Serial I/O1 clock input Fig. 5 Port block diagram (1) 15 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER (9) Port P47 Pull-up control (10) Ports P50,P55 Pull-up control Serial I/O1 mode selection bit Serial I/O1 enable bit SRDY1 output enable bit Direction register Direction register Data bus Port latch Data bus Port latch Serial I/O1 ready output Serial I/O2 input CNTR1 interrupt input (11) Port P51 (12) Port P52 Internal synchronization clock select bits Serial I/O2 port selection bit Direction register Direction register Pull-up control Serial I/O2 transmit completion signal Serial I/O2 port selection bit Pull-up control Data bus Port latch Data bus Port latch Serial I/O2 output Serial I/O2 clock output Serial I/O2 clock input (13) Port P53 Pull-up control SRDY2 output enable bit Direction register (14) Port P54 Pull-up control Direction register Data bus Port latch Data bus Port latch Serial I/O2 ready output Timer X operating mode bit (Pulse output mode selection) Timer output CNTR0 interrupt input (15) Port P56 Pull-up control (16) Ports P60, P61 Pull-up control Direction register Direction register Data bus Port latch Data bus Port latch TOUT output control bit Timer output Real time port control bit Data for real time port INT3 interrupt input Except P61 Fig. 6 Port block diagram (2) 16 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER (17) Port P70 Port selection/Pull-up control Port XC switch bit Direction register (18) Port P71 Port selection/Pull-up control Port XC switch bit Direction register Data bus Port latch Data bus Port latch Oscillation circuit Port P71 Port XC switch bit Sub-clock generating circuit input (19) COM0 –COM3 (20) SEG0 – SEG15 VL2/VL3 VL3 VL1/VSS VL2 VL1 The gate input signal of each transistor is controlled by the LCD duty ratio and the bias value. The voltage applied to the sources of P-channel and N-channel transistors is the controlled voltage by the bias value. VSS Fig. 7 Port block diagram (3) 17 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER INTERRUPTS I nterrupts occur by sixteen sources: seven external, eight internal, and one software. Interrupt Operation When an interrupt is received, the contents of the program counter and processor status register are automatically stored into the stack. The interrupt disable flag is set to inhibit other interrupts from interfering.The corresponding interrupt request bit is cleared and the interrupt jump destination address is read from the vector table into the program counter. Interrupt Control Each interrupt is controlled by an interrupt request bit, an interrupt enable bit, and the interrupt disable flag except for the software interrupt set by the BRK instruction. An interrupt occurs if the corresponding interrupt request and enable bits are “1” and the interrupt disable flag is “0”. Interrupt enable bits can be set or cleared by software. Interrupt request bits can be cleared by software, but cannot be set by software. The BRK instruction cannot be disabled with any flag or bit. The I (interrupt disable) flag disables all interrupts except the BRK instruction interrupt. Notes on Use When the active edge of an external interrupt (INT 0–INT3, CNTR0 , or CNTR 1) is changed, the corresponding interrupt request bit may also be set. Therefore, please take following sequence; (1) Disable the external interrupt which is selected. (2) Change the active edge selection. (3) Clear the interrupt request bit which is selected to “0”. (4) Enable the external interrupt which is selected. Table 1. Interrupt vector addresses and priority Interrupt Source Reset (Note 2) INT 0 INT 1 Serial I/O1 receive Serial I/O1 transmit Timer X Timer Y Timer 2 Timer 3 CNTR 0 CNTR 1 Timer 1 INT 2 INT 3 Key input (Key-on wake up) Serial I/O2 BRK instruction Priority 1 2 3 4 Vector Addresses (Note 1) High Low FFFD 16 FFFC 16 FFFB16 FFF916 FFF716 FFFA16 FFF816 FFF616 Interrupt Request Generating Conditions At reset At detection of either rising or falling edge of INT0 input At detection of either rising or falling edge of INT1 input At completion of serial I/O1 data reception At completion of serial I/O1 transmit shift or when transmit buffer register is empty At timer X underflow At timer Y underflow At timer 2 underflow At timer 3 underflow At detection of either rising or falling edge of CNTR0 input At detection of either rising or falling edge of CNTR1 input At timer 1 underflow At detection of either rising or falling edge of INT2 input At detection of either rising or falling edge of INT3 input At falling of conjunction of input level for port P2 (at input mode) At completion of serial I/O2 data transmission or reception At BRK instruction execution Remarks Non-maskable External interrupt (active edge selectable) External interrupt (active edge selectable) Valid when serial I/O1 is selected 5 6 7 8 9 10 11 12 13 14 15 16 17 FFF516 FFF316 FFF116 FFEF16 FFED16 FFEB 16 FFE916 FFE716 FFE516 FFE316 FFE116 FFDF 16 FFDD 16 FFF416 FFF216 FFF016 FFEE 16 FFEC16 FFEA 16 FFE816 FFE616 FFE416 FFE216 FFE016 FFDE16 FFDC16 Valid when serial I/O1 is selected External interrupt (active edge selectable) External interrupt (active edge selectable) External interrupt (active edge selectable) External interrupt (active edge selectable) External interrupt (valid when an “L” level is applied) Valid when serial I/O2 is selected Non-maskable software interrupt Notes 1: Vector addresses contain interrupt jump destination addresses. 2: Reset function in the same way as an interrupt with the highest priority. 18 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Interrupt request bit Interrupt enable bit Interrupt disable flag (I) BRK instruction Reset Interrupt request Fig. 8 Interrupt control 7 0 Interrupt edge selection register (INTEDGE : address 003A16) INT0 interrupt edge selection bit INT1 interrupt edge selection bit INT2 interrupt edge selection bit INT3 interrupt edge selection bit Not used (return “0” when read) 0 : Falling edge active 1 : Rising edge active 7 0 Interrupt request register 2 (IREQ2 : address 003D16) CNTR0 interrupt request bit CNTR1 interrupt request bit Timer 1 interrupt request bit INT2 interrupt request bit INT3 interrupt request bit Key input interrupt request bit Serial I/O2 interrupt request bit Not used (returns “0” when read) 0 : No interrupt request issued 1 : Interrupt request issued 7 0 Interrupt request register 1 (IREQ1 : address 003C16) INT0 interrupt request bit INT1 interrupt request bit Serial I/O1 receive interrupt request bit Serial I/O1 transmit interrupt request bit Timer X interrupt request bit Timer Y interrupt request bit Timer 2 interrupt request bit Timer 3 interrupt request bit 7 0 Interrupt control register 1 (ICON1 : address 003E16) INT0 interrupt enable bit INT1 interrupt enable bit Serial I/O1 receive interrupt enable bit Serial I/O1 transmit interrupt enable bit Timer X interrupt enable bit Timer Y interrupt enable bit Timer 2 interrupt enable bit Timer 3 interrupt enable bit 7 0 0 Interrupt control register 2 (ICON2 : address 003F16) CNTR0 interrupt enable bit CNTR1 interrupt enable bit Timer 1 interrupt enable bit INT2 interrupt enable bit INT3 interrupt enable bit Key input interrupt enable bit Serial I/O2 interrupt enable bit Not used (returns “0” when read) (Do not write “1” to this bit) 0 : Interrupts disabled 1 : Interrupts enabled Fig. 9 Structure of interrupt-related registers 19 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Key Input Interrupt (Key-on Wake Up) A key input interrupt request is generated by applying “L” level to any pin of port P3 that have been set to input mode. In other words, it is generated when AND of input level goes from “1” to “0”. An example of using a key input interrupt is shown in Figure 9, where an interrupt request is generated by pressing one of the keys consisted as an active-low key matrix which inputs to ports P20–P23. Port PXx "L" level output PULL register A Bit 2 = "1" V VV Port P27 direction register = "1" Port P27 latch Key input interrupt request P27 output V VV Port P26 direction register = "1" Port P26 latch P26 output V VV Port P25 direction register = "1" Port P25 latch P25 output V VV Port P24 direction register = "1" Port P24 latch P24 output V VV Port P23 direction register = "0" Port P23 latch P23 input Port P2 Input reading circuit V VV Port P22 direction register = "0" Port P22 latch P22 input V VV Port P21 direction register = "0" Port P21 latch P21 input V VV Port P20 direction register = "0" Port P20 latch P20 input V P-channel transistor for pull-up V V CMOS output buffer Fig. 10 Connection example when using key input interrupt and port P2 block diagram 20 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER TIMERS The 3820 group has five timers: timer X, timer Y, timer 1, timer 2, and timer 3. Timer X and timer Y are 16-bit timers, and timer 1, timer 2, and timer 3 are 8-bit timers. All timers are down count timers. When the timer reaches “0016 ”, an underflow occurs at the next count pulse and the corresponding timer latch is reloaded into the timer and the count is continued. When a timer underflows, the interrupt request bit corresponding to that timer is set to “1”. Read and write operation on 16-bit timer must be performed for both high and low-order bytes. When reading a 16-bit timer, read the high-order byte first. When writing to a 16-bit timer, write the low-order byte first. The 16-bit timer cannot perform the correct operation when reading during the write operation, or when writing during the read operation. Real time port control bit "1" P60 P60 direction register "0" Data bus QD Latch P60 data for real time port P60 latch Real time port control bit "1" P61 P61 direction register "0" P61 latch QD Latch P61 data for real time port Real time port control bit "0" "1" Timer X stop control bit Timer X (low) latch (8) Timer X (low) (8) Timer X mode register write signal f(XIN)/16 (f(XCIN)/16 in low-speed mode*) CNTR0 active edge switch bit "0" Timer X operating mode bit "00","01","11" Timer X write control bit Timer X (high) latch (8) Timer X (high) (8) Timer X interrupt request CNTR0 interrupt request P54/CNTR0 "10" "1" Pulse width measurement CNTR0 active mode edge switch bit "0" Pulse output mode QS T Q Rising edge detection Timer Y operating mode bit "00","01","10" Pulse width HL continuously measurement mode "1" P54 direction register P54 latch Pulse output mode "11" Period measurement mode CNTR1 interrupt request P55/CNTR1 CNTR1 active edge switch bit "0" Falling edge detection f(XIN)/16 (f(XCIN)/16 in low-speed mode*) Timer Y stop control bit "00","01","11" Timer Y (low) latch (8) Timer Y (low) (8) Timer Y (high) latch (8) Timer Y (high) (8) Timer Y interrupt request "1" "10"Timer Y operating mode bit f(XIN)/16 (f(XCIN)/16 in low-speed mode*) Timer 1 count source selection bit "0" XCIN "1" Timer 1 latch (8) Timer 1 (8) Timer 2 count source selection bit Timer 2 latch (8) "0" Timer 2 (8) "1" f(XIN)/16 (f(XCIN)/16 in low-speed mode*) Timer 2 write control bit Timer 1 interrupt request Timer 2 interrupt request TOUT output TOUT output control bit active edge switch bit "0" QS P56/TOUT P56 direction register "1" P56 latch Q "0" T Timer 3 latch (8) Timer 3 (8) "1" Timer 3 count source selection bit Timer 3 interrupt request TOUT output control bit f(XIN)/16(f(XCIN)/16 in low-speed mode*) * Internal clock φ = XCIN/2. Fig. 11 Timer block diagram 21 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Timer X Timer X is a 16-bit timer that can be selected in one of four modes and can be controlled the timer X write and the real time port by setting the timer X mode register. Timer mode The timer counts f(XIN)/16 (or f(X CIN)/16 in low-speed mode). Pulse output mode Each time the timer underflows, a signal output from the CNTR 0 pin is inverted. Except for this, the operation in pulse output mode is the same as in timer mode. When using a timer in this mode, set the corresponding port P54 direction register to output mode. Event counter mode The timer counts signals input through the CNTR0 pin. Except for this, the operation in event counter mode is the same as in timer mode. When using a timer in this mode, set the corresponding port P5 4 direction register to input mode. Pulse width measurement mode The count source is f(XIN )/16 (or f(XCIN )/16 in low-speed mode. If CNTR0 active edge switch bit is “0”, the timer counts while the input signal of CNTR0 pin is at “H”. If it is “1”, the timer counts while the input signal of CNTR 0 pin is at “L”. When using a timer in this mode, set the corresponding port P5 4 direction register to input mode. Note on CNTR0 Interrupt Active Edge Selection CNTR0 interrupt active edge depends on the CNTR0 active edge switch bit. Real Time Port Control While the real time port function is valid, data for the real time port are output from ports P6 0 a nd P6 1 e ach time the timer X underflows. (However, after rewriting a data for real time port, if the real time port control bit is changed from “0” to “1”, data is output without the timer X.) If the data for the real time port is changed while the real time port function is valid, the changed data are output at the next underflow of timer X. Before using this function, set the corresponding port direction registers to output mode. 7 0 Timer X mode register (TXM : address 0027 16) Timer X write control bit 0 : Write value in latch and counter 1 : Write value in latch only Real time port control bit 0 : Real time port function invalid 1 : Real time port function valid P60 data for real time port 0 : "L" level output 1 : "H" level output P61 data for real time port 0 : "L" level output 1 : "H" level output Timer X operating mode bits b5 b4 0 0 : Timer mode 0 1 : Pulse output mode 1 0 : Event counter mode 1 1 : Pulse width measurement mode CNTR0 active edge switch bit • CNTR0 interrupt 0 : Falling edge active 1 : Rising edge active • Pulse output mode 0 : Start at initial level "H" output 1 : Start at initial level "L" output • Event counter mode 0 : Rising edge active 1 : Falling edge active • Pulse width measurement mode 0 : Measure "H" level width 1 : Measure "L" level width Timer X stop control bit 0 : Count start 1 : Count stop Timer X Write Control If the timer X write control bit is “0”, when the value is written in the address of timer X, the value is loaded in the timer X and the latch at the same time. If the timer X write control bit is “1”, when the value is written in the address of timer X, the value is loaded only in the latch. The value in the latch is loaded in timer X after timer X underflows. If the value is written in latch only, unexpected value may be set in the high-order counter when the writing in high-order latch and the underflow of timer X are performed at the same timing. Fig. 12 Structure of timer X mode register 22 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Timer Y Timer Y is a 16-bit timer that can be selected in one of four modes. Timer mode The timer counts f(XIN)/16 (or f(XCIN )/16 in low-speed mode). Period measurement mode CNTR1 i nterrupt request is generated at rising/falling edge of CNTR1 pin input signal. Simultaneously, the value in timer Y latch is reloaded in timer Y and timer Y continues counting down. /Except for the above-mentioned, the operation in period measurement mode is the same as in timer mode. The timer value just before the reloading at rising/falling of CNTR1 pin input signal is retained until the timer Y is read once after the reload. The rising/falling timing of CNTR 1 p in input signal is found by CNTR 1 interrupt. When using a timer in this mode, set the corresponding port P5 5 direction register to input mode. Event counter mode The timer counts signals input through the CNTR1 pin. Except for this, the operation in event counter mode is the same as in timer mode. When using a timer in this mode, set the corresponding port P5 5 direction register to input mode. Pulse width HL continuously measurement mode CNTR 1 i nterrupt request is generated at both rising and falling edges of CNTR1 pin input signal. Except for this, the operation in pulse width HL continuously measurement mode is the same as in period measurement mode. When using a timer in this mode, set the corresponding port P55 direction register to input mode. 7 0 Timer Y mode register (TYM : address 0028 16) Not used (return "0" when read) Timer Y operating mode bits b5 b4 0 0 : Timer mode 0 1 : Period measurement mode 1 0 : Event counter mode 1 1 : Pulse width HL continuously measurement mode CNTR1 active edge switch bit • CNTR1 interrupt 0 : Falling edge active 1 : Rising edge active • Period measurement mode 0 : Measure falling edge to falling edge 1 : Measure rising edge to rising edge • Event counter mode 0 : Rising edge active 1 : Falling edge active Timer Y stop control bit 0 : Count start 1 : Count stop Fig. 13 Structure of timer Y mode register Note on CNTR1 Interrupt Active Edge Selection CNTR1 interrupt active edge depends on the CNTR1 active edge switch bit. However, in pulse width HL continuously measurement mode, CNTR1 i nterrupt request is generated at both rising and falling edges of CNTR1 pin input signal regardless of the setting of CNTR1 active edge switch bit. 23 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Timer 1, Timer 2, Timer 3 Timer 1, timer 2, and timer 3 are 8-bit timers. The count source for each timer can be selected by timer 123 mode register. The timer latch value is not affected by a change of the count source. However, because changing the count source may cause an inadvertent count down of the timer. Therefore, rewrite the value of timer whenever the count source is changed. 7 0 Timer 123 mode register (T123M :address 0029 16) TOUT output active edge switch bit 0 : Start at "H" output 1 : Start at "L" output TOUT output control bit 0 : TOUT output disabled 1 : TOUT output enabled Timer 2 write control bit 0 : Write value in latch and counter 1 : Write value in latch only Timer 2 count source selection bit 0 : Timer 1 underflow 1 : f(XIN)/16 (Middle-/high-speed mode) f(XCIN)/16 (Low-speed mode)(Note) Timer 3 count source selection bit 0 : Timer 1 underflow 1 : f(XIN)/16 (Middle-/high-speed mode) f(XCIN)/16 (Low-speed mode)(Note) Timer 1 count source selection bit 0 : f(XIN)/16 (Middle-/high-speed mode) f(XCIN)/16 (Low-speed mode)(Note) 1 : f(XCIN) Not used (return "0" when read) Note : Internal clock φ is f (XCIN)/2 in the low-speed mode. Timer 2 Write Control If the timer 2 write control bit is “0”, when the value is written in the address of timer 2, the value is loaded in the timer 2 and the latch at the same time. If the timer 2 write control bit is “1”, when the value is written in the address of timer 2, the value is loaded only in the latch. The value in the latch is loaded in timer 2 after timer 2 underflows. Timer 2 Output Control When the timer 2 (T OUT) is output enabled, an inversion signal from pin TOUT is output each time timer 2 underflows. In this case, set the port P5 6 shared with the port TOUT to the output mode. Note on Timer 1 to Timer 3 When the count source of timer 1 to 3 is changed, the timer counting value may be changed large because a thin pulse is generated in count input of timer. If timer 1 output is selected as the count source of timer 2 or timer 3, when timer 1 is written, the counting value of timer 2 or timer 3 may be changed large because a thin pulse is generated in timer 1 output. Therefore, set the value of timer in the order of timer 1, timer 2 and timer 3 after the count source selection of timer 1 to 3. Fig. 14 Structure of timer 123 mode register 24 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER SERIAL I/O1 Serial I/O1 can be used as either clock synchronous or asynchronous (UART) serial I/O1. A dedicated timer (baud rate generator) is also provided for baud rate generation. Clock Synchronous Serial I/O1 Mode Clock synchronous serial I/O1 mode can be selected by setting the mode selection bit of the serial I/O1 control register to “1”. For clock synchronous serial I/O1, the transmitter and the receiver must use the same clock. If an internal clock is used, transfer is started by a write signal to the TB/RB (address 001816). Data bus Serial I/O1 control register Address 001A 16 Address 0018 16 Receive buffer register (RB) Receive buffer full flag (RBF) Serial I/O receive interrupt request (RI) Clock control circuit P44/RXD Receive shift register Shift clock P46/SCLK1 Serial I/O1 synchronization clock selection bit Frequency division ratio 1/(n+1) Baud rate generator Address 001C 16 1/4 f(XIN ) X IN BRG count source selection bit 1/4 P47/SRDY1 F/F Falling-edge detector Shift clock Clock control circuit Transmit shift register shift completion flag (TSC) Transmit interrupt source selection bit Serial I/O transmit interrupt request (TI) Transmit buffer empty flag (TBE) Serial I/O1 status register Address 0019 16 P45/TXD Transmit shift register Transmit buffer register (TB) Address 0018 16 Data bus Fig. 15 Block diagram of clock synchronous serial I/O1 Transfer shift clock (1/2 to 1/2048 of the internal clock, or an external clock) Serial output TxD Serial input RxD D0 D0 D1 D1 D2 D2 D3 D3 D4 D4 D5 D5 D6 D6 D7 D7 Receive enable signal SRDY1 Write signal to receive/transmit buffer register (address 001816) TBE = 0 TBE = 1 TSC = 0 RBF = 1 TSC = 1 Overrun error (OE) detection Notes 1 : The serial I/O1 transmit interrupt (TI) can be selected to occur either when the transmit buffer register has emptied (TBE=1) or after the transmit shift operation has ended (TSC=1), by setting the transmit interrupt source selection bit (TIC) of the serial I/O1 control register. 2 : If data is written to the transmit buffer register when TSC=0, the transmit clock is generated continuously and serial data is output continuously from the TxD pin. 3 : The serial I/O1 receive interrupt (RI) is set when the receive buffer full flag (RBF) becomes “1” . Fig. 16 Operation of clock synchronous serial I/O1 function 25 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Asynchronous Serial I/O1 (UART) Mode Clock asynchronous serial I/O1 mode (UART) can be selected by clearing the serial I/O1 mode selection bit of the serial I/O1 control register to “0”. Eight serial data transfer formats can be selected, and the transfer formats used by a transmitter and receiver must be identical. The transmit and receive shift registers each have a buffer regis- ter, but the two buffers have the same address in memory. Since the shift register cannot be written to or read from directly, transmit data is written to the transmit buffer register, and receive data is read from the receive buffer register. The transmit buffer register can also hold the next data to be transmitted, and the receive buffer register can hold a character while the next character is being received. Data bus Address 0018 16 OE Character length selection bit P44/RXD STdetector 7 bits 8 bits PE FE SP detector Clock control circuit Serial I/O1 synchronization clock selection bit P46/SCLK1 BRG count source selection bit Frequency division ratio 1/(n+1) Baud rate generator Address 001C 16 1/4 ST/SP/PA generator 1/16 P45/TXD Character length selection bit Transmit buffer register(TB) Serial I/O1 control register Address 001A16 Receive buffer full flag (RBF) Serial I/O receive interrupt request (RI) Receive buffer register(RB) Receive shift register 1/16 UART control register Address 001B16 f(XIN) Transmit shift register shift completion flag (TSC) Transmit interrupt source selection bit Serial I/O1 status register Transmit buffer empty flag (TBE) Serial I/O1 status register Address 001916 Transmit shift register Address 001816 Data bus Fig. 17 Block diagram of UART serial I/O1 Transmit or receive clock Transmit buffer register write signal TBE=0 TSC=0 TBE=1 TBE=0 TBE=1 TSC=1V Serial output TXD ST D0 D1 1 start bit 7 or 8 data bits 1 or 0 parity bit 1 or 2 stop bit (s) SP ST D0 D1 V SP Generated at 2nd bit in 2-stop-bit mode Receive buffer register read signal RBF=0 RBF=1 RBF=1 Serial input RXD ST D0 D1 SP ST D0 D1 SP Notes 1: Error flag detection occurs at the same time that the RBF flag becomes "1" (at 1st stop bit, during reception). 2: The transmit interrupt (TI) can be selected to occur when either the TBE or TSC flag becomes "1", depending on the setting of the transmit interrupt source selection bit (TIC) of the serial I/O1 control register. 3: The serial I/O1 receive interrupt (RI) is set when the RBF flag becomes "1". 4: After data is written to the transmit buffer register when TSC=1, 0.5 to 1.5 cycles of the data shift cycle is necessary until changing to TSC=0. Fig. 18 Operation of UART serial I/O1 function 26 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Serial I/O1 Control Register (SIO1CON) 001A16 The serial I/O1 control register contains eight control bits for the serial I/O1 function. UART Control Register (UARTCON) 001B16 The UART control register consists of four control bits (bits 0 to 3) which are valid when asynchronous serial I/O is selected and set the data format of an data transfer. One bit in this register (bit 4) is always valid and sets the output structure of the P45/T XD pin. Serial I/O1 Status Register (SIO1STS) 001916 The read-only serial I/O1 status register consists of seven flags (bits 0 to 6) which indicate the operating status of the serial I/O function and various errors. Three of the flags (bits 4 to 6) are valid only in UART mode. The receive buffer full flag (bit 1) is cleared to “0” when the receive buffer is read. If there is an error, it is detected at the same time that data is transferred from the receive shift register to the receive buffer register, and the receive buffer full flag is set. A write to the serial I/O status register clears all the error flags OE, PE, FE, and SE (bit 3 to bit 6, respectively). Writing “0” to the serial I/O enable bit SIOE (bit 7 of the Serial I/O Control Register) also clears all the status flags, including the error flags. All bits of the serial I/O1 status register are initialized to “0” at reset, but if the transmit enable bit (bit 4) of the serial I/O control register has been set to “1”, the transmit shift register shift completion flag (bit 2) and the transmit buffer empty flag (bit 0) become “1”. Transmit Buffer/Receive Buffer Register (TB/ RB) 001816 The transmit buffer register and the receive buffer register are located at the same address. The transmit buffer register is writeonly and the receive buffer register is read-only. If a character bit length is 7 bits, the MSB of data stored in the receive buffer register is “0”. Baud Rate Generator (BRG) 001C16 The baud rate generator determines the baud rate for serial transfer. The baud rate generator divides the frequency of the count source by 1/(n + 1), where n is the value written to the baud rate generator. 27 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER 7 0 Serial I/O1 status register (SIO1STS : address 0019 16) Transmit buffer empty flag (TBE) 0: Buffer full 1: Buffer empty Receive buffer full flag (RBF) 0: Buffer empty 1: Buffer full Transmit shift register shift completion flag (TSC) 0: Transmit shift in progress 1: Transmit shift completed Overrun error flag (OE) 0: No error 1: Overrun error Parity error flag (PE) 0: No error 1: Parity error Framing error flag (FE) 0: No error 1: Framing error Summing error flag (SE) 0: OE U PE U FE =0 1: OE U PE U FE =1 Not used (returns “1” when read) 7 0 Serial I/O1 control register (SIO1CON : address 001A 16) BRG count source selection bit (CSS) 0: f(X IN) 1: f(X IN)/4 Serial I/O1 synchronization clock selection bit (SCS) •In clock synchronous mode 0 : BRG output/4 1 : External clock input •In UART mode 0 : BRG output/16 1 : External clock input/16 SRDY1 output enable bit (SRDY) 0: P4 7 SRDY1 pin operates as I/O port P47 1: P4 7 SRDY1 pin operates as signal output pin SRDY1 (SRDY1 signal indicates receive enable state) Transmit interrupt source selection bit (TIC) 0: When transmit buffer has emptied 1: When transmit shift operation is completed Transmit enable bit (TE) 0: Transmit disabled 1: Transmit enabled Receive enable bit (RE) 0: Receive disabled 1: Receive enabled Serial I/O1 mode selection bit (SIOM) 0: Clock asynchronous serial I/O1 (UART) mode 1: Clock synchronous serial I/O1 mode Serial I/O1 enable bit (SIOE) 0: Serial I/O1 disabled (pins P4 4–P4 7 operate as I/O pins) 1: Serial I/O1 enabled (pins P4 4–P4 7 operate as serial I/O1 pins) 7 0 UART control register (UARTCON : address 001B 16) Character length selection bit (CHAS) 0: 8 bits 1: 7 bits Parity enable bit (PARE) 0: Parity checking disabled 1: Parity checking enabled Parity selection bit (PARS) 0: Even parity 1: Odd parity Stop bit length selection bit (STPS) 0: 1 stop bit 1: 2 stop bits P45/TXD P-channel output disable bit (POFF) 0: CMOS output (in output mode) 1: N-channel open-drain output (in output mode) Not used (return“1” when read) Fig. 19 Structure of serial I/O1 control registers 28 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER SERIAL I/O2 The serial I/O2 function can be used only for clock synchronous serial I/O. For clock synchronous serial I/O2 the transmitter and the receiver must use the same clock. If the internal clock is used, transfer is started by a write signal to the serial I/O2 register. b7 b0 Serial I/O2 control register (SIO2CON : address 001D16) Internal synchronization clock select bits b2 b1 b0 Serial I/O2 Control Register (SIO2CON) 001D16 The serial I/O2 control register contains 7 bits which control various serial I/O functions. 0 0 0: f(XIN)/8 0 0 1: f(XIN)/16 0 1 0: f(XIN)/32 0 1 1: f(XIN)/64 1 0 0: Do not set 1 0 1: 1 1 0: f(XIN)/128 1 1 1: f(XIN)/256 Serial I/O2 port selection bit 0: I/O port 1: SOUT2,SCLK2 signal output SRDY2 output enable bit 0: I/O port 1: SRDY2 signal output Transfer direction selection bit 0: LSB first 1: MSB first Synchronization clock selection bit 0: External clock 1: Internal clock Not used (returns “0” when read) Fig. 20 Structure of serial I/O2 control register 1/8 1/16 Divider Internal synchronization clock select bits XIN 1/32 1/64 1/128 1/256 Data bus P53 latch "0" Synchronization clock selection bit SRDY2 Synchronization circuit SCLK2 "1" "0" P53/SRDY2 "1" SRDY2 output enable bit External clock P52 latch "0" P52/SCLK2 "1" Serial I/O2 port selection bit P51 latch "0" Serial I/O counter 2 (3) Serial I/O2 interrupt request P51/SOUT2 "1" Serial I/O2 port selection bit P50/SIN2 Serial I/O shift register 2 (8) Fig. 21 Block diagram of serial I/O2 function 29 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Transfer clock (Note 1) Serial I/O2 register write signal (Note 2) Serial I/O2 output S OUT2 Serial I/O2 input S IN2 D0 D1 D2 D3 D4 D5 D6 D7 Receive enable signal S RDY2 Serial I/O2 interrupt request bit set Notes 1: When the internal clock is selected as the transfer clock, the divide ratio can be selected by setting bits 0 to 2 of the serial I/O2 control register. 2: When the internal clock is selected as the transfer clock, the S OUT2 pin goes to high impedance after transfer completion. Fig. 22 Timing of serial I/O2 function 30 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER LCD DRIVE CONTROL CIRCUIT The 3820 group has the built-in Liquid Crystal Display (LCD) drive control circuit consisting of the following. LCD display RAM Segment output enable register LCD mode register Selector Timing controller Common driver Segment driver Bias control circuit A maximum of 40 segment output pins and 4 common output pins can be used. Up to 160 pixels can be controlled for LCD display. When the LCD enable bit is set to “1” after data is set in the LCD mode register, • • • • • • • • the segment output enable register and the LCD display RAM, the LCD drive control circuit starts reading the display data automatically, performs the bias control and the duty ratio control, and displays the data on the LCD panel. Table 2. Maximum number of display pixels at each duty ratio Duty ratio 2 3 4 Maximum number of display pixel 80 dots or 8 segment LCD 10 digits 120 dots or 8 segment LCD 15 digits 160 dots or 8 segment LCD 20 digits 7 0 Segment output enable register (SEG : address 0038 16) Segment output enable bit 0 0 : Input ports P30–P37 1 : Segment output SEG16–SEG23 Segment output enable bit 1 0 : I/O ports P00, P01 1 : Segment output SEG24,SEG25 Segment output enable bit 2 0 : I/O ports P02–P07 1 : Segment output SEG26–SEG31 Segment output enable bit 3 0 : I/O ports P10,P11 1 : Segment output SEG32,SEG33 Segment output enable bit 4 0 : I/O port P12 1 : Segment output SEG34 Segment output enable bit 5 0 : I/O ports P13–P17 1 : Segment output SEG35–SEG39 Not used (return "0" when read) (Do not write "1" to this bit) 7 0 LCD mode register (LM : address 0039 16) Duty ratio selection bits 0 0 : Not available 0 1 : 2 (use COM 0,COM1) 1 0 : 3 (use COM 0–COM2) 1 1 : 4 (use COM 0–COM3) Bias control bit 0 : 1/3 bias 1 : 1/2 bias LCD enable bit 0 : LCD OFF 1 : LCD ON Not used (returns "0" when read) (Do not write "1" to this bit) LCD circuit divider division ratio selection bits 0 0 : LCDCK count source 0 1 : 2 division of LCDCK count source 1 0 : 4 division of LCDCK count source 1 1 : 8 division of LCDCK count source LCDCK count source selection bit (Note) 0 : f(XCIN)/32 1 : f(XIN)/8192 Note : LCDCK is a clock for a LCD timing controller. Fig. 23 Structure of segment output enable register and LCD mode register 31 32 LCD enable bit Address 005316 Data bus Address 004016 Address 004116 LCD display RAM LCD circuit divider division ratio selection bits 2 Bias control bit LCD divider 1/32 Selector Selector Duty ratio selection bits 2 LCDCK count source selection bit “1” f(XIN)/ 256 “0” f(XCIN) Fig. 24 Block diagram of LCD controller/driver Timing controller LCDCK Segment Segment driver driver Bias control Common Common Common Common driver driver driver driver Selector Selector Selector Selector Segment Segment Segment Segment driver driver driver driver MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER SEG0 SEG1 SEG2 SEG3 P30/SEG16 P16/SEG38 P17/SEG39 VSS VL1 VL2 VL3 COM0 COM1 COM2 COM3 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Bias Control and Applied Voltage to LCD Power Input Pins To the LCD power input pins (VL1 –VL3 ), apply the voltage shown in Table 3 according to the bias value. Select a bias value by the bias control bit (bit 2 of the LCD mode register). Table 3. Bias control and applied voltage to VL1–VL3 Bias value 1/3 bias Voltage value VL3 =VLCD VL2 =2/3 VLCD VL1 =1/3 VLCD VL3 =VLCD VL2 =VL1=1/2 VLCD 1/2 bias Common Pin and Duty Ratio Control The common pins (COM 0–COM 3 ) to be used are determined by duty ratio. Select duty ratio by the duty ratio selection bits (bits 0 and 1 of the LCD mode register). Note 1 : VLCD i s the maximum value of supplied voltage for the LCD panel. Table 4. Duty ratio control and common pins used Duty ratio 2 3 4 Duty ratio selection bit Bit 0 Bit 1 1 0 1 1 0 1 Common pins used COM0, COM1 (Note 1) COM0–COM2 (Note 2) COM0–COM3 Notes 1 : COM2 and COM3 are open 2 : COM3 is open Contrast control Contrast control VL3 R1 VL2 R2 VL1 R3 VL3 R4 VL2 VL1 R5 1/3 bias R1 = R2 = R3 1/2 bias R4 = R5 Fig. 25 Example of circuit at each bias 33 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER LCD Display RAM Address 004016 to 005316 is the designated RAM for the LCD display. When “1” are written to these addresses, the corresponding segments of the LCD display panel are turned on. LCD Drive Timing The LCDCK timing frequency (LCD drive timing) is generated internally and the frame frequency can be determined with the following equation; f(LCDCK)= (frequency of count source for LCDCK) (divider division ratio for LCD) f(LCDCK) duty ratio Frame frequency= Bit 7 Address 6 5 4 3 2 1 0 COM 3 COM 2 COM 1 COM 0 COM 3 COM 2 COM 1 COM 0 004016 004116 004216 004316 004416 004516 004616 004716 004816 004916 004A16 004B16 004C16 004D16 004E16 004F16 005016 005116 005216 005316 SEG1 SEG3 SEG5 SEG7 SEG9 SEG11 SEG13 SEG15 SEG17 SEG19 SEG21 SEG23 SEG25 SEG27 SEG29 SEG31 SEG33 SEG35 SEG37 SEG39 SEG0 SEG2 SEG4 SEG6 SEG8 SEG10 SEG12 SEG14 SEG16 SEG18 SEG20 SEG22 SEG24 SEG26 SEG28 SEG30 SEG32 SEG34 SEG36 SEG38 Fig. 26 LCD display RAM map 34 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Internal logic LCDCK timing 1/4 duty Voltage level VL3 VL2=VL1 VSS COM0 COM1 COM2 COM3 SEG0 VL3 VSS OFF COM3 COM2 COM1 ON COM0 COM3 OFF COM2 COM1 ON COM0 1/3 duty COM0 COM1 COM2 VL3 VSS VL3 VL2=VL1 VSS SEG0 ON COM0 1/2 duty COM0 COM1 SEG0 OFF COM2 COM1 ON COM0 OFF COM2 COM1 ON COM0 OFF COM2 VL3 VL2=VL1 VSS VL3 VSS ON COM1 OFF COM0 ON COM1 OFF COM0 ON COM1 OFF COM0 ON COM1 OFF COM0 Fig. 27 LCD drive waveform (1/2 bias) 35 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Internal logic LCDCK timing 1/4 duty Voltage level VL3 VL2 VL1 VSS COM0 COM1 COM2 COM3 SEG0 VL3 VSS OFF COM3 COM2 COM1 ON COM0 COM3 OFF COM2 COM1 ON COM0 1/3 duty COM0 COM1 COM2 VL3 VSS VL3 VL2 VL1 VSS SEG0 ON COM0 1/2 duty COM0 COM1 SEG0 OFF COM2 COM1 ON COM0 OFF COM2 COM1 ON COM0 OFF COM2 VL3 VL2 VL1 VSS VL3 VSS ON COM1 OFF COM0 ON COM1 OFF COM0 ON COM1 OFF COM0 ON COM1 OFF COM0 Fig. 28 LCD drive waveform (1/3 bias) 36 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER WATCHDOG TIMER The watchdog timer gives a mean of returning to the reset status when a program cannot run on a normal loop (for example, because of a software run-away). The watchdog timer consists of an 8-bit watchdog timer L and a 6bit watchdog timer H. Initial Value of Watchdog Timer At reset or when writing data into the watchdog timer control register, the watchdog timer H is set to “3F16 ” and the watchdog timer L is set to “FF16 ”. As a write instruction, it is possible to use any instruction that can cause a write signal such as STA, LDM and CLB. Write data except bit 7 has no significance and the above value is set independently. Watchdog Timer Operation The watchdog timer stops at reset and starts a countdown by writing to the watchdog timer control register. When the watchdog timer H underflows, an internal reset occurs, and the reset status is released after waiting the reset release time. Then the program executes from the reset vector address. Usually, a program is designed so that data can be written into the watchdog timer control register before the watchdog timer H underflows. If data is not written once into the watchdog timer control register, the watchdog timer does not function. At execution of the STP instruction, both clock and watchdog timer stops. At the same time that the stop mode is released, the watchdog timer restarts a count (Note). On the other hand, at execution of the WIT instruction, the watchdog timer does not stop. The time from execution of writing to the watchdog timer control register until an underflow of the watchdog timer register H is as follows: (When bit 7 of the watchdog timer control register is “0”) Middle / High-speed mode (f(XIN)=8 MHz) .................. 32.768 ms Low-speed mode (f(XCIN )=32 kHz) ..................................... 8.19 s Note: During the stop release wait time [XIN (or XCIN ) : about 8200 clock cycles], the watchdog timer counts. Accordingly, does not underflow the watchdog timer H. • • XCIN Internal system “1” clock selection bit (Note) When writing to watchdog timer control register set “FF16” Watchdog timer L (8) Data bus When writing to watchdog timer control register set “3F16” Watchdog timer H (6) “0” “1” 1/16 “0” XIN Watchdog timer H count source selection bit Undefined instruction Reset RESET Reset circuit Internal reset Reset release wait time (about 8200 X IN clock cycles) Note: This bit is bit 7 of CPU mode register. It selects the mode (middle/high-speed or low-speed) Fig. 29 Watchdog timer block diagram 7 0 Watchdog timer control register (WDTCON : address 0037 16) Watchdog timer H bits (read only) Not used (returns “1” when read) Watchdog timer H count source selection bit 0 : Underflow from watchdog timer L 1 : f(XIN)/16 or f(X CIN)/16 Fig. 30 Structure of watchdog timer control register 37 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER φ CLOCK OUTPUT FUNCTION The internal system clock φ can be output from port P4 1 by setting the φ output control register. Set bit 1 of the port P4 direction register to when outputting φ clock. 7 0 φ output control register (CKOUT : address 002A 16) φ output control bit 0 : Port function 1 : φ clock output Not used (return “0” when read) Fig. 31 Structure of φ output control register 38 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER RESET CIRCUIT To reset the microcomputer, RESET pin should be held at an “L” level for 2 µ s or more. Then the RESET pin is returned to an “H” level (the power source voltage should be between 2.5 V and 5.5 V, and the oscillation should be stable), reset is released. In order to give the XIN clock time to stabilize, internal operation does not begin until after 8200 XIN clock cycles (timer 1 and timer 2 are connected together and 512 cycles of f(XIN)/16) are complete. After the reset is completed, the program starts from the address contained in address FFFD 16 ( high-order byte) and address FFFC16 (low-order byte). Make sure that the reset input voltage is less than 0.5 V for VCC of 2.5 V (Extended operating temperature version: the reset input voltage is less than 0.6V for VCC of 3.0V). Address ( 1 ) Port P0 direction register ( 2 ) Port P1 direction register ( 3 ) Port P2 direction register ( 4 ) Port P4 direction register ( 5 ) Port P5 direction register ( 6 ) Port P6 direction register ( 7 ) Port P7 direction register ( 8 ) PULL register A ( 9 ) PULL register B (10) Serial I/O1 status register (11) Serial I/O1 control register (12) UART control register (13) Serial I/O2 control register (14) Timer X (low-order) Power on Power source voltage 0V Reset input voltage 0V (Note) Register contents 0016 0016 0016 0016 0016 0016 0016 (000116) • • • (000316) • • • (000516) • • • (000916) • • • (000B16) • • • (000D16) • • • (000F16) • • • (001616) • • • 0 0 0 0 1 0 1 1 (001716) • • • 0016 (001916) • • • 1 0 0 0 0 0 0 0 (001A16) • • • 0016 (001B16) • • • 1 1 1 0 0 0 0 0 (001D16) • • • (002016) • • • (002116) • • • (002216) • • • (002316) • • • (002416) • • • (002516) • • • (002616) • • • (002716) • • • (002816) • • • (002916) • • • (002A16) • • • 0016 FF16 FF16 FF16 FF16 FF16 0116 FF16 0016 0016 0016 0016 (15) Timer X (high-order) (16) Timer Y (low-order) (17) Timer Y (high-order) RESET VCC 0.2VCC (18) Timer 1 (19) Timer 2 Note. Reset release voltage : VCC = 2.5V (Extended operating temperature version : 3.0V) (20) Timer 3 (21) Timer X mode register RESET VCC Power source voltage detection circuit (22) Timer Y mode register (23) Timer 123 mode register (24) φ output control register (25) Watchdog timer control register (26) Segment output enable register (27) LCD mode register (28) Interrupt edge selection register (29) CPU mode register (30) Interrupt request register 1 (003716) • • • 0 1 1 1 1 1 1 1 (003816) • • • (003916) • • • (003A16) • • • 0016 0016 0016 (003B16) • • • 0 1 0 0 1 0 0 0 (003C16) • • • (003D16) • • • (003E16) • • • (003F16) • • • 0016 0016 0016 0016 Fig. 32 Example of reset circuit (31) Interrupt request register 2 (32) Interrupt control register 1 (33) Interrupt control register 2 (34) Processor status register (35) Program counter (PS) ! ! ! ! ! 1 ! ! (PCH) Contents of address FFFD 16 (PCL) Contents of address FFFC 16 Note. ! : Undefined The contents of all other registers and RAM are undefined at poweron reset, so they must be initialized by software. Fig. 33 Internal state of microcomputer immediately after reset 39 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER XIN φ RESET Internal reset Reset address from vector table Address Data ? ? ? ? FFFC ADL FFFD ADH, ADL ADH SYNC XIN : about 8200 clock cycles Notes 1 : X IN and φ are in the relation : f(XIN) = 8 • f(φ) Notes 2 : A question mark (?) indicates an undefined status that depens on the previous status. Fig. 34 Reset sequence 40 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER CLOCK GENERATING CIRCUIT The 3820 group has two built-in oscillation circuits. An oscillation circuit can be formed by connecting a resonator between XIN and XOUT (X CIN and XCOUT ). Use the circuit constants in accordance with the resonator manufacturer's recommended values. No external resistor is needed between XIN and XOUT since a feed-back resistor exists on-chip. However, an external feed-back resistor is needed between XCIN and XCOUT. To supply a clock signal externally, input it to the X IN pin and make the XOUT pin open. The sub-clock X CIN-X COUT oscillation circuit cannot directly input clocks that are externally generated. Accordingly, be sure to cause an external resonator to oscillate. Immediately after poweron, only the XIN oscillation circuit starts oscillating, and XCIN a nd X COUT p ins function as I/O ports. The pull-up resistor of X CIN and XCOUT pins must be made invalid to use the sub-clock. Oscillation Control Stop mode If the STP instruction is executed, the internal clock φ stops at an “H” level, and X IN and X CIN oscillators stop. Timer 1 is set to “FF16” and timer 2 is set to “0116 ”. Either X IN o r X CIN d ivided by 16 is input to timer 1 as count source, and the output of timer 1 is connected to timer 2. The bits of the timer 123 mode register except bit 4 are cleared to “0”. Set the timer 1 and timer 2 interrupt enable bits to disabled (“0”) before executing the STP instruction. Oscillator restarts at reset or when an external interrupt is received, but the internal clock φ i s not supplied to the CPU until timer 2 underflows. This allows time for the clock circuit oscillation to stabilize. Wait mode If the WIT instruction is executed, the internal clock φ stops at an “H” level. The states of XIN and XCIN are the same as the state before the executing the WIT instruction. The internal clock restarts at reset or when an interrupt is received. Since the oscillator does not stop, normal operation can be started immediately after the clock is restarted. Frequency Control Middle-speed mode The internal clock φ is the frequency of XIN divided by 8. After reset, this mode is selected. High-speed mode The internal clock φ is half the frequency of XIN. Low-speed mode • The internal clock φ is half the frequency of XCIN. • A low-power consumption operation can be realized by stopping the main clock XIN in this mode. To stop the main clock, set bit 5 of the CPU mode register to “1”. When the main clock XIN is restarted, set enough time for oscillation to stabilize by programming. Note: If you switch the mode between middle/high-speed and lowspeed, stabilize both XIN a nd X CIN o scillations. The sufficient time is required for the sub-clock to stabilize, especially immediately after poweron and at returning from stop mode. When switching the mode between middle/highspeed and low-speed, set the frequency on condition that f(XIN)>3f(XCIN ). XCIN Rf CCIN XCOUT Rd CCOUT XIN XOUT CIN COUT Fig. 35 Ceramic resonator circuit XCIN Rf CCIN XCOUT Rd CCOUT XIN XOUT Open External oscillation circuit VCC VSS Fig. 36 External clock input circuit 41 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER XCIN XCOUT "1" "0" Port XC switch bit XIN XOUT Internal system clock selection bit (Note 1) Low-speed mode Timer 1 count source selection bit "1" Timer 2 count source selection bit "0" 1/2 Middle/High-speed mode 1/4 1/2 Timer 1 "0" Timer 2 "1" Main clock division ratio selection bit Middle-speed mode High-speed mode or Low-speed mode Main clock stop bit Timing φ (Internal system clock) Q S R STP instruction WIT instruction S R Q QS R STP instruction Reset Interrupt disable flag I Interrupt request Note : When using the low-speed mode, set the port XC switch bit to "1" . Fig. 37 Clock generating circuit block diagram 42 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Reset Middle-speed mode (f(φ) =1 MHz) CM7=0(8MHz selected) CM6=1(Middle-speed) CM5=0(8MHz oscillating) CM4=0(32kHz stopped) CM 6 "1" "0" High-speed mode (f( φ) =4MHz) CM7=0(8MHz selected) CM6=0(High-speed) CM5=0(8MHz oscillating) CM4=0(32kHz stopped) "0" CM 6 " "1 CM " "1 4 "0 " " "0 "1 " "0 " CM 4 "1" "1 " " "0 Middle-speed mode (f(φ) =1 MHz) CM7=0(8MHz selected) CM6=1(Middle-speed) CM5=0(8MHz oscillating) CM4=1(32kHz oscillating) CM 6 "1" "0" High-speed mode (f( φ) =4MHz) CM7=0(8MHz selected) CM6=0(High-speed) CM5=0(8MHz oscillating) CM4=1(32kHz oscillating) "0" Low-speed mode (f( φ) =16 kHz) CM7=1(32kHz selected) CM6=1(Middle-speed) CM5=0(8MHz oscillating) CM4=1(32kHz oscillating) CM 7 "1" CM 6 "1" Low-speed mode (f( φ) =16 kHz) "0" CM7=1(32kHz selected) CM6=0(High-speed) CM5=0(8MHz oscillating) CM4=1(32kHz oscillating) CM 7 "1" "0" CM 4 "1" "0" C M 4 6 "0" "0" CM 5 "1" "0 " "1 " " " "1 Low-speed mode (f( φ) =16 kHz) CM7=1(32kHz selected) CM6=1(Middle-speed) CM5=1(8MHz stopped) CM4=1(32kHz oscillating) "0 CM 6 "1" Low-speed mode (f( φ) =16 kHz) "0" CM7=1(32kHz selected) CM6=0(High-speed) CM5=1(8MHz stopped) CM4=1(32kHz oscillating) Notes 1: Switch the mode by the allows shown between the mode blocks. (Do not switch between the mode directly without an allow.) 2: The all modes can be switched to the stop mode or the wait mode and returned to the source mode when the stop mode or the wai t mode is released. 3: Timer and LCD operate in the wait mode. 4: In middle-/high-speed mode, when the stop mode is released, a delay of approximately 1 ms occurs automatically by timer 1 and timer 2. 5: In low-speed mode, when the stop mode is released, a delay of approximately 0.25 s occurs automatically by timer 1 and timer 2. 6: Wait until oscillation stabilizes after oscillating the main clock XIN before the switching from the low-speed mode to middle-/highspeed mode. 7: The example assumes that 8 MHz is being applied to the XIN pin and 32 kHz to the XCIN pin. φ indicates the internal clock. Fig. 38 State transitions of internal clock φ CM 5 "1" CM 6 " "1 CM 5 "0 " " "1 "0 C M C M 5 6 7 4 CPU mode register (CPUM : address 003B 16) CM4 : Port Xc switch bit 0: I/O port 1: X CIN, XCOUT CM5 : Main clock (X IN–XOUT) stop bit 0: Oscillating 1: Stopped CM6: Main clock division ratio selection bit 0: f(X IN)/2 (high-speed mode) 1: f(X IN)/8 (middle-speed mode) CM7: Internal system clock selection bit 0: X IN–XOUT selected (middle-/high-speed mode) 1: X CIN–XCOUT selected (low-speed mode) " M C 43 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER NOTES ON PROGRAMMING Processor Status Register The contents of the processor status register (PS) after a reset are undefined, except for the interrupt disable flag (I) which is “1”. After a reset, initialize flags which affect program execution. In particular, it is essential to initialize the index X mode (T) and the decimal mode (D) flags because of their effect on calculations. Serial I/O In clock synchronous serial I/O, if the receive side is using an external clock and it is to output the S RDY signal, set the transmit enable bit, the receive enable bit, and the S RDY output enable bit to “1”. Serial I/O1 continues to output the final bit from the T XD pin after transmission is completed. The S OUT2 pin from serial I/O2 goes to high impedance after transmission is completed. Interrupts The contents of the interrupt request bits do not change immediately after they have been written. After writing to an interrupt request register, execute at least one instruction before performing a BBC or BBS instruction. Instruction Execution Time The instruction execution time is obtained by multiplying the frequency of the internal clock φ by the number of cycles needed to execute an instruction. The number of cycles required to execute an instruction is shown in the list of machine instructions. The frequency of the internal clock φ is half of the XIN frequency. Decimal Calculations To calculate in decimal notation, set the decimal mode flag (D) to “1”, then execute an ADC or SBC instruction. Only the ADC and SBC instructions yield proper decimal results. After executing an ADC or SBC instruction, execute at least one instruction before executing a SEC, CLC, or CLD instruction. In decimal mode, the values of the negative (N), overflow (V), and zero (Z) flags are invalid. The carry flag can be used to indicate whether a carry or borrow has occurred. Initialize the carry flag before each calculation. Clear the carry flag before an ADC and set the flag before an SBC. Timers If a value n (between 0 and 255) is written to a timer latch, the frequency division ratio is 1/(n + 1). Multiplication and Division Instructions The index mode (T) and the decimal mode (D) flags do not affect the MUL and DIV instruction. The execution of these instructions does not change the contents of the processor status register. Ports The contents of the port direction registers cannot be read. The following cannot be used: • The data transfer instruction (LDA, etc.) • The operation instruction when the index X mode flag (T) is “1” • The addressing mode which uses the value of a direction register as an index • The bit-test instruction (BBC or BBS, etc.) to a direction register • The read-modify-write instruction (ROR, CLB, or SEB, etc.) to a direction register Use instructions such as LDM and STA, etc., to set the port direction registers. 44 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER DATA REQUIRED FOR MASK ORDERS The following are necessary when ordering a mask ROM production: (1) Mask ROM Order Confirmation Form (2) Mark Specification Form (3) Data to be written to ROM, in EPROM form (three identical copies) ROM PROGRAMMING METHOD The built-in PROM of the blank One Time PROM version and builtin EPROM version can be read or programmed with a generalpurpose PROM programmer using a special programming adapter. Set the address of PROM programmer in the user ROM area. Package 80P6N-A 80P6S-A 80P6D-A 80D0 Name of Programming Adapter PCA4738F-80A PCA4738G-80 PCA4738H-80 PCA4738L-80A The PROM of the blank One Time PROM version is not tested or screened in the assembly process and following processes. To ensure proper operation after programming, the procedure shown in Figure 39 is recommended to verify programming. Programming with PROM programmer Screening (Caution) (150°C for 40 hours) Verification with PROM programmer Functional check in target device Caution : The screening temperature is far higher than the storage temperature. Never expose to 150 °C exceeding 100 hours. Fig. 39 Programming and testing of One Time PROM version 45 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER ABSOLUTE MAXIMUM RATINGS Symbol VCC VI VI VI VI VI VO VO VO VO VO Pd Topr Tstg Parameter Power source voltage Input voltage P00 –P07, P10–P17, P2 0–P27, P30 –P37, P40–P47, P5 0–P57, P60 , P61, P70, P7 1 Input voltage VL1 Input voltage VL2 Input voltage VL3 Input voltage RESET, XIN Output voltage P00 –P07 , P10–P17 Output voltage P30–P37 Output voltage P20–P27 , P41–P47, P50 –P57, P60, P61, P70 , P71 Output voltage SEG 0–SEG15 Output voltage XOUT Power dissipation Operating temperature Storage temperature Conditions Ratings –0.3 to 7.0 –0.3 to V CC +0.3 All voltages are based on V SS. Output transistors are cut off. –0.3 to V L2 VL1 to VL3 VL2 to VCC +0.3 –0.3 to VCC +0.3 –0.3 to VCC +0.3 –0.3 to VL3 +0.3 –0.3 to VL3 +0.3 –0.3 to VCC +0.3 –0.3 to VL3 +0.3 –0.3 to VCC +0.3 300 –20 to 85 –40 to 125 Unit V V V V V V V V V V V V mW °C °C At output port At segment output At segment output Ta = 25 °C RECOMMENDED OPERATING CONDITIONS Symbol Parameter (VCC = 2.5 to 5.5 V, Ta = –20 to 85 °C, unless otherwise noted.) Min. 4.0 2.5 2.5 Limits Typ. 5.0 5.0 5.0 0 Max. 5.5 5.5 5.5 Unit VCC VSS VIH VIH VIH VIH VIL VIL VIL VIL Power source voltage Power source voltage “H” input voltage “H” input voltage “H” input voltage “H” input voltage “L” input voltage “L” input voltage “L” input voltage “L” input voltage High-speed mode f(X IN)=8 MHz Middle-speed mode f(XIN)=8 MHz Low-speed mode P00 –P07, P10–P17, P3 0–P37, P41 , P45, P47, P51 , P53 , P56, P61, P7 0, P71 (CM 4=0) P20 –P27, P42–P44, P4 6, P50, P52 , P54, P55 , P57, P60 RESET XIN P00 –P07, P10–P17, P3 0–P37, P40 , P41, P45, P47 , P51 , P53, P56, P6 1, P70, P71 (CM4=0) P20 –P27, P42–P44, P4 6, P50, P52 , P54, P55 , P57, P60 RESET XIN V V 0.7 VCC 0.8 VCC 0.8 VCC 0.8 VCC 0 0 0 0 VCC VCC VCC VCC 0.3 VCC 0.2 VCC 0.2 V CC 0.2 VCC V V V V V V V V 46 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER RECOMMENDED OPERATING CONDITIONS Symbol Σ I OH(peak) Σ I OH(peak) Σ I OL(peak) Σ I OL(peak) Σ I OH(avg) Σ I OH(avg) Σ I OL(avg) Σ I OL(avg) I OH(peak) I OL(peak) I OL(peak) I OH(avg) I OH(avg) I OL(avg) I OL(avg) “H” total peak output current “H” total peak output current “L” total peak output current “L” total peak output current “H” total average output current “H” total average output current “L” total average output current “L” total average output current “H” peak output current “L” peak output current “L” peak output current “H” average output current “H” average output current “L” average output current “L” average output current Clock input frequency for timers X and Y (duty cycle 50 %) Main clock input oscillation frequency (Note 4) Parameter (VCC = 2.5 to 5.5 V, Ta = –20 to 85 ° C, unless otherwise noted.) Min. Limits Typ. Max. –40 –40 40 40 –20 –20 20 20 –5 5 10 –1.0 –2.5 2.5 5.0 4.0 Unit mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA MHz P00–P07 , P10 –P17, P2 0–P2 7 (Note 1) P41–P47,P5 0–P57, P60, P6 1, P70, P71 (Note 1) P00–P07 , P10 –P17, P2 0–P2 7 (Note 1) P41–P47,P5 0–P57, P60, P6 1, P70, P71 (Note 1) P00–P07 , P10 –P17, P2 0–P2 7 (Note 1) P41–P47,P5 0–P57, P60, P6 1, P70, P71 (Note 1) P00–P07 , P10 –P17, P2 0–P2 7 (Note 1) P41–P47,P5 0–P57, P60, P6 1, P70, P71 (Note 1) P00–P07, P10–P17 , P20–P27, P41 –P47, P50–P57 , P60, P61, P70 , P71 (Note 2) P00–P07 , P10 –P17 (Note 2) P20–P27, P41–P47 , P50–P57, P60 , P61, P70, P7 1 (Note 2) P00–P07, P10–P17 (Note 3) P20–P27, P41–P47 , P50–P57, P60 , P61, P70, P7 1 (Note 3) P00–P07, P10–P17 (Note 3) P20–P27, P41–P47 , P50–P57, P60 , P61, P70, P7 1 (Note 3) 4.0 V ≤ V CC ≤ 5.5 V VCC ≤ 4.0 V High-speed mode (4.0 V ≤ VCC ≤ 5.5 V) High-speed mode (VCC ≤ 4.0 V) Middle-speed mode f(CNTR 0) f(CNTR 1) (2XVCC)–4 MHz 8.0 (4XVCC)–8 8.0 50 32.768 MHz MHz MHz kHz f(XIN) f(XCIN ) Notes Sub-clock input oscillation frequency (Note 4, 5) 1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an av erage value measured over 100 ms. The total peak current is the peak value of all the currents. 2: The peak output current is the peak current flowing in each port. 3: The average output current is an average value measured over 100 ms. 4: When the oscillation frequency has a duty cycle of 50 %. 5: When using the microcomputer in low-speed mode, make sure that the sub-clock input oscillation frequency f(X CIN) is less than f(XIN )/3. 47 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER ELECTRICAL CHARACTERISTICS Symbol Parameter (VCC =4.0 to 5.5 V, Ta = –20 to 85 ° C, unless otherwise noted.) Test conditions I OH = –0.1 mA I OH = –25 µA VCC = 2.5 V I OH = –5 mA I OH = –1.25 mA I OH = –1.25 mA VCC = 2.5 V I OL = 5 mA I OL = 1.25 mA I OL = 1.25 mA VCC = 2.5 V I OL = 10 mA I OL = 2.5 mA I OL = 2.5 mA VCC = 2.5 V Min. VCC–2.0 VCC–1.0 VCC–2.0 VCC–0.5 VCC–1.0 2.0 0.5 1.0 2.0 0.5 1.0 0.5 0.5 0.5 5.0 30 6.0 70 25 140 45 5.0 5.0 4.0 –5.0 VI = VSS Pull-ups “off” VCC= 5.0 V, VI = VSS Pull-ups “on” VCC= 3.0 V, VI = VSS Pull-ups “on” VI = V SS VI = V SS When clock is stopped –5.0 –30 –6 –70 –25 –140 –45 –5.0 –4.0 2.0 5.5 Limits Typ. Max. Unit V V V V V V V V V V V V V V µA µA µA µA µA µA µA µA µA µA µA µA V VOH “H” output voltage P00–P0 7, P10–P1 7, P30–P3 7 VOH “H” output voltage P20–P2 7, P41–P4 7,P50–P57, P60, P61, P70, P71 (Note 1) VOL “L” output voltage P00–P0 7, P10–P1 7, P30–P3 7 VOL “L” output voltage P20–P2 7, P41–P4 7, P50–P5 7, P60, P61, P70, P71 (Note 1) Hysteresis Hysteresis Hysteresis CNTR0 , CNTR1, INT0 –INT 3, P20 –P27 R XD, SCLK1, SIN2, SCLK2 RESET VT+ – VT– VT+ – V T– VT+ – V T– I IH “H” input current P00–P0 7, P10–P1 7, P30–P3 7 RESET: VCC=2.5 V to 5.5 V VI = VCC Pull-downs “off” VCC= 5.0 V, VI = VCC Pull-downs “on” VCC= 3.0 V, VI = VCC Pull-downs “on” VI = V CC VI = V CC VI = V CC I IH I IH I IH I IL “H” input current “H” input current “H” input current “L” input current P20–P2 7, P40–P4 7, P50–P5 7, P60, P61, P70, P71 RESET X IN P00–P0 7, P10–P1 7, P30–P3 7, P40, P70 I IL “L” input current P20–P2 7, P41–P4 7, P50–P5 7, P60, P61, P71 I IL I IL VRAM “L” input current RESET “L” input current X IN RAM hold voltage Note : When “1” is set to port XC switch bit (bit 4 of address 003B16) of CPU mode register, the drive ability of port P70 is different from the value above mentioned. 48 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER ELECTRICAL CHARACTERISTICS Symbol Parameter I CC Power source current (VCC =2.5 to 5.5 V, T a = –20 to 85 ° C, unless otherwise noted.) Limits Test conditions Min. Typ. • High-speed mode, VCC = 5 V f(XIN) = 8 MHz 6.4 f(XCIN ) = 32.768 kHz Output transistors “off” • High-speed mode, VCC = 5 V f(XIN) = 8 MHz (in WIT state) 1.6 f(XCIN ) = 32.768 kHz Output transistors “off” • Low-speed mode, VCC = 5V, Ta ≤ 55°C f(XIN) = stopped 25 f(XCIN ) = 32.768 kHz Output transistors “off” • Low-speed mode, VCC = 5 V, Ta = 25°C f(XIN) = stopped 7.0 f(XCIN ) = 32.768 kHz (in WIT state) Output transistors “off” • Low-speed mode, VCC = 3 V, Ta ≤ 55°C f(XIN) = stopped 15 f(XCIN ) = 32.768 kHz Output transistors “off” • Low-speed mode, VCC = 3V, Ta = 25°C f(XIN) = stopped 4.5 f(XCIN ) = 32.768 kHz (in WIT state) Output transistors “off” All oscillation stopped (in STP state) Output transistors “off” Ta = 25 °C Ta = 85 °C 0.1 Max. Unit 13 mA 3.2 mA 36 µA 14.0 µA 22 µA 9.0 µA 1.0 10 µA 49 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER TIMING REQUIREMENTS 1(V CC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted.) Symbol t w(RESET) t c(X IN) t wH(XIN) t wL(XIN) t c(CNTR) t wH(CNTR) t wL(CNTR) t wH(INT) t wL(INT) t c(S CLK1) t wH(SCLK1) t wL(SCLK1) tsu(R X D–SCLK1) th(S CLK1–RX D) t c(S CLK2) t wH(SCLK2) t wL(SCLK2) tsu(SIN2 –SCLK2) th(S CLK2–SIN2 ) Parameter Reset input “L” pulse width Main clock input cycle time (XIN input) Main clock input “H” pulse width Main clock input “L” pulse width CNTR0, CNTR1 input cycle time CNTR0, CNTR1 input “H” pulse width CNTR0 , CNTR1 input “L” pulse width INT0 to INT3 input “H” pulse width INT0 to INT3 input “L” pulse width Serial I/O1 clock input cycle time (Note) Serial I/O1 clock input “H” pulse width (Note) Serial I/O1 clock input “L” pulse width (Note) Serial I/O1 input set up time Serial I/O1 input hold time Serial I/O2 clock input cycle time Serial I/O2 clock input “H” pulse width Serial I/O2 clock input “L” pulse width Serial I/O2 input set up time Serial I/O2 input hold time Min. 2 125 45 40 250 105 105 80 80 800 370 370 220 100 1000 400 400 200 200 Limits Typ. Max. Unit µs ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Note: When f(XIN) = 8 MHz and bit 6 of address 001A16 is “1” (clock synchronous). Divide this value by four when f(XIN) = 8 MHz and bit 6 of address 001A 16 is “0” (UART). TIMING REQUIREMENTS 2(VCC = 2.5 to 4.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted.) Symbol t w(RESET) t c(X IN) t wH(XIN) t wL(XIN) t c(CNTR) t wH(CNTR) t wL(CNTR) t wH(INT) t wL(INT) t c(S CLK1) t wH(SCLK1) t wL(SCLK1) tsu(R X D–SCLK1) th(S CLK1–RX D) t c(S CLK2) t wH(SCLK2) t wL(SCLK2) tsu(SIN2 –SCLK2) th(S CLK2–SIN2 ) Parameter Reset input “L” pulse width Main clock input cycle time (XIN input) Main clock input “H” pulse width Main clock input “L” pulse width CNTR0, CNTR1 input cycle time CNTR0, CNTR1 input “H” pulse width CNTR0, CNTR1 input “L” pulse width INT0 to INT3 input “H” pulse width INT0 to INT3 input “L” pulse width Serial I/O1 clock input cycle time (Note) Serial I/O1 clock input “H” pulse width (Note) Serial I/O1 clock input “L” pulse width (Note) Serial I/O1 input set up time Serial I/O1 input hold time Serial I/O2 clock input cycle time Serial I/O2 clock input “H” pulse width Serial I/O2 clock input “L” pulse width Serial I/O2 input set up time Serial I/O2 input hold time Limits Min. 2 125 45 40 500/ (V CC–2) 250/ (V CC–2)–20 250/ (V CC–2)–20 230 230 2000 950 950 400 200 2000 950 950 400 300 Typ. Max. Unit µs ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Note: When f(XIN) = 2 MHz and bit 6 of address 001A16 is “1” (clock synchronous). Divide this value by four when f(XIN) = 2 MHz and bit 6 of address 001A 16 is “0” (UART). 50 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER SWITCHING CHARACTERISTICS 1(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted.) Symbol t wH(SCLK1 ) t wL(SCLK1 ) td(SCLK1–TX D) tv(SCLK1–TXD) t r(SCLK1 ) t f(SCLK1 ) t wH(SCLK2 ) t wL(SCLK2 ) td(SCLK2–S OUT2) tv(SCLK2–SOUT2 ) t f(SCLK2 ) t r(CMOS) t f(CMOS) Parameter Serial I/O1 clock output “H” pulse width Serial I/O1 clock output “L” pulse width Serial I/O1 output delay time (Note 1) Serial I/O1 output valid time (Note 1) Serial I/O1 clock output rising time Serial I/O1 clock output falling time Serial I/O2 clock output “H” pulse width Serial I/O2 clock output “L” pulse width Serial I/O2 output delay time Serial I/O2 output valid time Serial I/O2 clock output falling time CMOS output rising time (Note 2) CMOS output falling time (Note 2) Limits Min. tc(SCLK1)/2–30 tc(SCLK1)/2–30 140 –30 30 30 tc(SCLK2) /2–160 tc(SCLK2) /2–160 0.2!tC(SCLK2) 0 10 10 40 30 30 Typ. Max. Unit ns ns ns ns ns ns ns ns ns ns ns ns ns Notes1: When the P45 /TXD P-channel output disable bit of the UART control register (bit 4 of address 001B 16) is “0”. 2: XOUT and XCOUT pins are excluded. SWITCHING CHARACTERISTICS 2 (V CC = 2.5 to 4.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted.) Symbol t wH(SCLK1 ) t wL(SCLK1 ) td(SCLK1–TX D) tv(SCLK1–TXD) t r(SCLK1 ) t f(SCLK1 ) t wH(SCLK2 ) t wL(SCLK2 ) td(SCLK2–S OUT2) tv(SCLK2–SOUT2 ) t f(SCLK2 ) t r(CMOS) t f(CMOS) Parameter Serial I/O1 clock output “H” pulse width Serial I/O1 clock output “L” pulse width Serial I/O1 output delay time (Note 1) Serial I/O1 output valid time (Note 1) Serial I/O1 clock output rising time Serial I/O1 clock output falling time Serial I/O2 clock output “H” pulse width Serial I/O2 clock output “L” pulse width Serial I/O2 output delay time Serial I/O2 output valid time Serial I/O2 clock output falling time CMOS output rising time (Note 2) CMOS output falling time (Note 2) Min. tc(SCLK1)/2–50 tc(SCLK1)/2–50 –30 50 50 tc(SCLK2) /2–240 tc(SCLK2) /2–240 0.2!tC(SCLK2) 0 20 20 50 50 50 Limits Typ. Max. Unit ns ns ns ns ns ns ns ns ns ns ns ns ns 350 Notes1:When the P4 5/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B 16) is “0”. 2: XOUT and XCOUT pins are excluded. 51 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER ABSOLUTE MAXIMUM RATINGS (Extended Operating Temperature Version) Symbol VCC VI VI VI VI VI VO VO VO VO VO Pd Topr Tstg Parameter Power source voltage Input voltage P00 –P07, P10–P17, P2 0–P27, P30 –P37, P40–P47, P5 0–P57, P60 , P61, P70, P7 1 Input voltage VL1 Input voltage VL2 Input voltage VL3 Input voltage RESET, XIN Output voltage P00 –P07 , P10–P17 Output voltage P30–P37 Output voltage P20–P27 , P41–P47, P50 –P57, P60, P61, P70 , P71 Output voltage SEG 0–SEG15 Output voltage XOUT Power dissipation Operating temperature Storage temperature Conditions Ratings –0.3 to 7.0 –0.3 to V CC +0.3 All voltages are based on V SS. Output transistors are cut off. –0.3 to V L2 VL1 to VL3 VL2 to V CC +0.3 –0.3 to VCC +0.3 –0.3 to VCC +0.3 –0.3 to VL3 +0.3 –0.3 to VL3 +0.3 –0.3 to VCC +0.3 –0.3 to VL3 +0.3 –0.3 to VCC +0.3 300 –40 to 85 –65 to 150 Unit V V V V V V V V V V V V mW °C °C At output port At segment output At segment output Ta = 25 °C RECOMMENDED OPERATING CONDITIONS (Extended Operating Temperature Version) (V CC = 3.0 to 5.5 V, Ta = –40 to –20 ° C and VCC = 2.5 to 5.5 V, Ta = –20 to 85 °C, unless otherwise noted.) Symbol Parameter High-speed mode f(XIN)=8 MHz VCC Power source voltage Middle-speed mode f(XIN )=8 MHz Low-speed mode VSS VIH VIH VIH VIH VIL VIL VIL VIL “H” input voltage “H” input voltage “H” input voltage “L” input voltage “L” input voltage “L” input voltage “L” input voltage Power source voltage “H” input voltage Ta = –20 to 85 ° C Ta = –40 to –20 °C Ta = –20 to 85 ° C Ta = –40 to –20 °C Min. 4.0 2.5 3.0 2.5 3.0 Limits Typ. 5.0 5.0 5.0 5.0 5.0 0 Max. 5.5 5.5 5.5 5.5 5.5 VCC VCC VCC VCC 0.3 VCC 0.2 VCC 0.2 V CC 0.2 VCC Unit V V V V V V V V V V P00 –P07, P10–P17 , P30–P37, P41 , P45, P47, P5 1, P53 , P56, P61, P7 0, P71 (CM 4=0) P20 –P27, P42–P44 , P46, P50, P52, P54 , P55, P57 , P60 RESET XIN P00 –P07, P10–P17 , P30–P37, P40 , P41, P45, P4 7, P51 , P53, P56, P6 1, P70, P7 1 (CM4=0) P20 –P27, P42–P44 , P46, P50, P52, P54 , P55, P57 , P60 RESET XIN 0.7 VCC 0.8 VCC 0.8 VCC 0.8 VCC 0 0 0 0 52 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER (VCC = 3.0 to 5.5 V, Ta = –40 to –20 ° C and VCC = 2.5 to 5.5 V, Ta = –20 to 85 ° C unless otherwise noted.) Symbol Σ I OH(peak) Σ I OH(peak) Σ I OL(peak) Σ I OL(peak) Σ I OH(avg) Σ I OH(avg) Σ I OL(avg) Σ I OL(avg) I OH(peak) I OL(peak) I OL(peak) I OH(avg) I OH(avg) I OL(avg) I OL(avg) “H” total peak output current “H” total peak output current “L” total peak output current “L” total peak output current “H” total average output current “H” total average output current “L” total average output current “L” total average output current “H” peak output current “L” peak output current “L” peak output current “H” average output current “H” average output current “L” average output current “L” average output current Clock input frequency for timers X and Y (duty cycle 50 %) Main clock input oscillation frequency (Note 4) Parameter P00–P07 , P10 –P17, P2 0–P2 7 (Note 1) P41–P47,P5 0–P57, P60, P6 1, P70, P71 (Note 1) P00–P07 , P10 –P17, P2 0–P2 7 (Note 1) P41–P47,P5 0–P57, P60, P6 1, P70, P71 (Note 1) P00–P07 , P10 –P17, P2 0–P2 7 (Note 1) P41–P47,P5 0–P57, P60, P6 1, P70, P71 (Note 1) P00–P07 , P10 –P17, P2 0–P2 7 (Note 1) P41–P47,P5 0–P57, P60, P6 1, P70, P71 (Note 1) P00–P07, P10–P17 , P20–P27, P41 –P47, P50–P57 , P60, P61, P70 , P71 (Note 2) P00–P07 , P10 –P17 (Note 2) P20–P27, P41–P47 , P50–P57, P60 , P61, P70, P7 1 (Note 2) P00–P07, P10–P17 (Note 3) P20–P27, P41–P47 , P50–P57, P60 , P61, P70, P7 1 (Note 3) P00–P07, P10–P17 (Note 3) P20–P27, P41–P47 , P50–P57, P60 , P61, P70, P7 1 (Note 3) 4.0 V ≤ V CC ≤ 5.5 V VCC ≤ 4.0 V RECOMMENDED OPERATING CONDITIONS (Extended Operating Temperature Version) Min. Limits Typ. Max. –40 –40 40 40 –20 –20 20 20 –5 5 10 –1.0 –2.5 2.5 5.0 4.0 Unit mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA MHz f(CNTR 0) f(CNTR 1) (2XVCC)–4 MHz 8.0 (4XVCC)–8 8.0 50 32.768 MHz MHz MHz kHz f(XIN) f(XCIN ) Notes High-speed mode (4.0 V ≤ VCC ≤ 5.5 V) High-speed mode (VCC ≤ 4.0 V) Middle-speed mode Sub-clock input oscillation frequency (Note 4, 5) 1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an av erage value measured over 100 ms. The total peak current is the peak value of all the currents. 2: The peak output current is the peak current flowing in each port. 3: The average output current is an average value measured over 100 ms. 4: When the oscillation frequency has a duty cycle of 50 %. 5: When using the microcomputer in low-speed mode, make sure that the sub-clock input oscillation frequency f(XCIN) is less than f(XIN )/3. 53 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER ELECTRICAL CHARACTERISTICS (Extended Operating Temperature Version) (VCC =2.5 to 5.5 V, Ta = –20 to 85 °C, and V CC =3.0 to 5.5 V, Ta = –40 to –20 °C, unless otherwise noted.) Symbol Parameter Test conditions I OH = –2.5 mA I OH = –0.6 mA VCC = 3.0 V I OH = –5 mA I OH = –1.25 mA I OH = –1.25 mA VCC = 3.0 V I OL = 5 mA I OL = 1.25 mA I OL = 1.25 mA VCC = 3.0 V I OL = 10 mA I OL = 2.5 mA I OL = 2.5 mA VCC = 3.0 V Min. VCC–2.0 VCC–0.9 VCC–2.0 VCC–0.5 VCC–0.9 2.0 0.5 1.1 2.0 0.5 1.1 0.5 0.5 0.5 5.0 30 6.0 70 25 170 55 5.0 5.0 4.0 –5.0 VI = V SS Pull-ups “off” VCC= 5.0 V, VI = V SS Pull-ups “on” VCC= 3.0 V, VI = V SS Pull-ups “on” VI = VSS VI = VSS When clock is stopped –5.0 –30 –6 –70 –25 –140 –45 –5.0 –4.0 2.0 5.5 Limits Typ. Max. Unit V V V V V V V V V V V V V V µA µA µA µA µA µA µA µA µA µA µA µA V VOH “H” output voltage P00–P0 7, P10–P1 7, P30–P3 7 VOH “H” output voltage P20–P2 7, P41–P4 7,P50–P57, P60, P61, P70, P71 (Note) VOL “L” output voltage P00–P0 7, P10–P1 7, P30–P3 7 VOL “L” output voltage P20–P2 7, P41–P4 7, P50–P5 7, P60, P61, P70, P71 (Note) Hysteresis Hysteresis Hysteresis CNTR0 , CNTR1, INT0 –INT3 , P20 –P27 RXD, SCLK1, SIN2 , SCLK2 RESET VT+ – V T– VT+ – V T– VT+ – V T– I IH “H” input current P00–P0 7, P10–P1 7, P30–P3 7 RESET: VCC=3.0 V to 5.5 V VI = V CC Pull-downs “off” VCC= 5.0 V, VI = V CC Pull-downs “on” VCC= 3.0 V, VI = V CC Pull-downs “on” VI = VCC VI = VCC VI = VCC I IH I IH I IH I IL “H” input current “H” input current “H” input current “L” input current P20–P2 7, P40–P4 7, P50–P5 7, P60, P61, P70, P71 RESET X IN P00–P0 7, P10–P1 7, P30–P3 7, P40, P70 I IL “L” input current P20–P2 7, P41–P4 7, P50–P5 7, P60, P61, P71 I IL I IL VRAM “L” input current RESET “L” input current X IN RAM hold voltage Note : When “1” is set to port XC switch bit (bit 4 of address 003B 16) of CPU mode register, the drive ability of port P70 is different from the value above mentioned. 54 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER (VCC =3.0 to 5.5 V, Ta = –40 to –20 °C and VCC =2.5 to 5.5 V, Ta = –20 to 85 °C, unless otherwise noted.) Symbol Parameter Test conditions • High-speed mode, VCC = 5 V f(XIN) = 8 MHz f(XCIN ) = 32.768 kHz Output transistors “off” • High-speed mode, VCC = 5 V f(XIN) = 8 MHz (in WIT state) f(XCIN ) = 32.768 kHz Output transistors “off” • Low-speed mode, VCC = 5V, Ta ≤ 55°C f(XIN) = stopped f(XCIN ) = 32.768 kHz Output transistors “off” • Low-speed mode, VCC = 5 V, Ta = 25°C f(XIN) = stopped f(XCIN ) = 32.768 kHz (in WIT state) Output transistors “off” • Low-speed mode, VCC = 3 V, Ta ≤ 55°C f(XIN) = stopped f(XCIN ) = 32.768 kHz Output transistors “off” • Low-speed mode, VCC = 3V, Ta = 25°C f(XIN) = stopped f(XCIN ) = 32.768 kHz (in WIT state) Output transistors “off” All oscillation stopped (in STP state) Output transistors “off” Ta = 25 °C Ta = 85 °C ELECTRICAL CHARACTERISTICS (Extended Operating Temperature Version) Min. Limits Typ. Max. Unit 6.4 13 mA 1.6 3.2 mA 25 36 µA I CC Power source current 7.0 14.0 µA 15 22 µA 4.5 9.0 µA 0.1 1.0 10 µA 55 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER TIMING REQUIREMENTS 1 (Extended Operating Temperature Version) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted.) Symbol t w(RESET) t c(XIN) t wH(XIN) t wL(XIN) t c(CNTR) t wH(CNTR) t wL(CNTR) t wH(INT) t wL(INT) t c(SCLK1 ) t wH(SCLK1) t wL(SCLK1) tsu(R XD–SCLK1) th(S CLK1–RXD) t c(SCLK2 ) t wH(SCLK2) t wL(SCLK2) tsu(SIN2–S CLK2) th(S CLK2–SIN2) Parameter Reset input “L” pulse width Main clock input cycle time (X IN input) Main clock input “H” pulse width Main clock input “L” pulse width CNTR 0, CNTR1 input cycle time CNTR0 , CNTR1 input “H” pulse width CNTR0, CNTR1 input “L” pulse width INT 0 to INT3 input “H” pulse width INT 0 to INT3 input “L” pulse width Serial I/O1 clock input cycle time (Note) Serial I/O1 clock input “H” pulse width (Note) Serial I/O1 clock input “L” pulse width (Note) Serial I/O1 input set up time Serial I/O1 input hold time Serial I/O2 clock input cycle time Serial I/O2 clock input “H” pulse width Serial I/O2 clock input “L” pulse width Serial I/O2 input set up time Serial I/O2 input hold time Min. 2 125 45 40 250 105 105 80 80 800 370 370 220 100 1000 400 400 200 200 Limits Typ. Max. Unit µs ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Note: When f(X IN) = 8 MHz and bit 6 of address 001A16 is “1” (clock synchronous). Divide this value by four when f(XIN) = 8 MHz and bit 6 of address 001A16 is “0” (UART). TIMING REQUIREMENTS 2 (Extended Operating Temperature Version) (VCC = 2.5 to 4.0 V, VSS = 0 V, Ta = –20 to 85 °C, and V CC = 3.0 to 4.0 V, VSS = 0 V, Ta = –40 to –20 °C, unless otherwise noted.) Limits Symbol Parameter Min. Typ. Max. t w(RESET) Reset input “L” pulse width 2 t c(XIN) Main clock input cycle time (X IN input) 125 t wH(XIN) Main clock input “H” pulse width 45 t wL(XIN) Main clock input “L” pulse width 40 500/ t c(CNTR) CNTR 0, CNTR1 input cycle time (V CC–2) 250/ t wH(CNTR) CNTR 0, CNTR1 input “H” pulse width (V CC–2)–20 250/ t wL(CNTR) CNTR 0, CNTR1 input “L” pulse width (V CC–2)–20 t wH(INT) INT 0 to INT3 input “H” pulse width 230 t wL(INT) INT 0 to INT3 input “L” pulse width 230 t c(SCLK1 ) Serial I/O1 clock input cycle time (Note) 2000 t wH(SCLK1) Serial I/O1 clock input “H” pulse width (Note) 950 t wL(SCLK1) Serial I/O1 clock input “L” pulse width (Note) 950 tsu(R XD–SCLK1) Serial I/O1 input set up time 400 th(S CLK1–RXD) Serial I/O1 input hold time 200 t c(SCLK2 ) Serial I/O2 clock input cycle time 2000 t wH(SCLK2) Serial I/O2 clock input “H” pulse width 950 t wL(SCLK2) Serial I/O2 clock input “L” pulse width 950 tsu(SIN2–S CLK2) Serial I/O2 input set up time 400 th(S CLK2–SIN2) Serial I/O2 input hold time 300 Note: When f(X IN) = 2 MHz and bit 6 of address 001A16 is “1” (clock synchronous). Divide this value by four when f(XIN) = 2 MHz and bit 6 of address 001A16 is “0” (UART). Unit µs ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns 56 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER SWITCHING CHARACTERISTICS 1 (Extended Operating Temperature Version) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted.) Symbol t wH(SCLK1) t wL(SCLK1) td(S CLK1–TXD) tv(SCLK1–TX D) t r(SCLK1 ) t f(SCLK1) t wH(SCLK2) t wL(SCLK2) td(S CLK2–SOUT2 ) tv(SCLK2–S OUT2) t f(SCLK2) t r(CMOS) t f(CMOS) Parameter Serial I/O1 clock output “H” pulse width Serial I/O1 clock output “L” pulse width Serial I/O1 output delay time (Note 1) Serial I/O1 output valid time (Note 1) Serial I/O1 clock output rising time Serial I/O1 clock output falling time Serial I/O2 clock output “H” pulse width Serial I/O2 clock output “L” pulse width Serial I/O2 output delay time Serial I/O2 output valid time Serial I/O2 clock output falling time CMOS output rising time (Note 2) CMOS output falling time (Note 2) Min. tc(SCLK1)/2–30 tc(SCLK1)/2–30 –30 30 30 tc(SCLK2)/2–160 tc(SCLK2)/2–160 0.2!tC(SCLK2 ) 0 10 10 40 30 30 Limits Typ. Max. Unit ns ns ns ns ns ns ns ns ns ns ns ns ns 140 Notes1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B 16) is “0”. 2: X OUT and XCOUT pins are excluded. SWITCHING CHARACTERISTICS 2 (Extended Operating Temperature Version) (VCC = 2.5 to 4.0 V, VSS = 0 V, Ta = –20 to 85 °C, and V CC = 3.0 to 4.0 V, Ta = –40 to –20 ° C, unless otherwise noted.) Limits Symbol Parameter Typ. Min. t wH(SCLK1) t wL(SCLK1) td(S CLK1–TXD) tv(SCLK1–TX D) t r(SCLK1 ) t f(SCLK1) t wH(SCLK2) t wL(SCLK2) td(S CLK2–SOUT2 ) tv(SCLK2–S OUT2) t f(SCLK2) t r(CMOS) t f(CMOS) Serial I/O1 clock output “H” pulse width Serial I/O1 clock output “L” pulse width Serial I/O1 output delay time (Note 1) Serial I/O1 output valid time (Note 1) Serial I/O1 clock output rising time Serial I/O1 clock output falling time Serial I/O2 clock output “H” pulse width Serial I/O2 clock output “L” pulse width Serial I/O2 output delay time Serial I/O2 output valid time Serial I/O2 clock output falling time CMOS output rising time (Note 2) CMOS output falling time (Note 2) tc(SCLK1)/2–50 tc(SCLK1)/2–50 350 –30 50 50 tc(SCLK2) /2–240 tc(SCLK2) /2–240 0.2!tC(SCLK2 ) 0 20 20 50 50 50 Max. Unit ns ns ns ns ns ns ns ns ns ns ns ns ns Notes1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B 16) is “0”. 2: X OUT and XCOUT pins are excluded. Measurement output pin 100pF Measurement output pin CMOS output 100pF 1k Ω N-channel open-drain output (Note) Note: When bit 4 of the UART control register (address 001B 16) is “1”. (N-channel open-drain output mode) Fig.40 Circuit for measuring output switching characteristics 57 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER ABSOLUTE MAXIMUM RATINGS (Low Power Source Voltage Version) Symbol VCC VI VI VI VI VI VO VO VO VO VO Pd Topr Tstg Parameter Power source voltage Input voltage P00–P07, P10–P17 , P20–P27, P30–P37, P40–P47 , P50–P57, P60, P61, P70 , P71 Input voltage VL1 Input voltage VL2 Input voltage VL3 Input voltage RESET, XIN Output voltage P00 –P07, P10–P17 Output voltage P30 –P37 Output voltage P20 –P27, P41–P47, P5 0–P57, P60, P61, P7 0, P71 Output voltage SEG0–SEG15 Output voltage XOUT Power dissipation Operating temperature Storage temperature Conditions Ratings –0.3 to 7.0 –0.3 to V CC +0.3 All voltages are based on VSS. Output transistors are cut off. –0.3 to V L2 VL1 to VL3 VL2 to VCC +0.3 –0.3 to VCC +0.3 –0.3 to VCC +0.3 –0.3 to VL3 +0.3 –0.3 to VL3 +0.3 –0.3 to VCC +0.3 –0.3 to VL3 +0.3 –0.3 to VCC +0.3 300 –20 to 85 –40 to 150 Unit V V V V V V V V V V V V mW °C °C At output port At segment output At segment output Ta = 25 ° C RECOMMENDED OPERATING CONDITIONS (Low Power Source Voltage Version) (VCC = 2.2 to 5.5 V, Ta = –20 to 85 °C, unless otherwise noted.) Symbol Parameter High-speed mode f(XIN)=8 MHz Middle-speed mode f(XIN)=8 MHz Low-speed mode P00–P07, P10–P17 , P30–P37, P41 , P45, P47 , P51, P53, P56, P61 , P70, P71 (CM 4=0) P20–P27, P42–P44 , P46, P50 , P52, P54, P55 , P57, P60 RESET XIN P00–P07, P10–P17 , P30–P37, P40 , P41, P45 , P47, P51, P53, P56 , P61, P70, P7 1 (CM4=0) P20–P27, P42–P44 , P46, P50 , P52, P54, P55 , P57, P60 RESET XIN Min. 4.0 2.2 2.2 Limits Typ. 5.0 5.0 5.0 0 Max. 5.5 5.5 5.5 Unit VCC VSS VIH VIH VIH VIH VIL VIL VIL VIL Power source voltage Power source voltage “H” input voltage “H” input voltage “H” input voltage “H” input voltage “L” input voltage “L” input voltage “L” input voltage “L” input voltage V V 0.7 VCC 0.8 VCC 0.8 VCC 0.8 VCC 0 0 0 0 VCC VCC VCC VCC 0.3 VCC 0.2 VCC 0.2 VCC 0.2 VCC V V V V V V V V 58 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER RECOMMENDED OPERATING CONDITIONS (Low Power Source Voltage Version) (VCC = 2.2 to 5.5 V, Ta = –20 to 85 °C, unless otherwise noted.) Symbol Σ I OH(peak) Σ I OH(peak) Σ I OL(peak) Σ I OL(peak) Σ I OH(avg) Σ I OH(avg) Σ I OL(avg) Σ I OL(avg) I OH(peak) I OL(peak) I OL(peak) I OH(avg) I OH(avg) I OL(avg) I OL(avg) “H” total peak output current “H” total peak output current “L” total peak output current “L” total peak output current “H” total average output current “H” total average output current “L” total average output current “L” total average output current “H” peak output current “L” peak output current “L” peak output current “H” average output current “H” average output current “L” average output current “L” average output current Clock input frequency for timers X and Y (duty cycle 50 %) Main clock input oscillation frequency (Note 4) Parameter P00–P07 , P10 –P17, P2 0–P2 7 (Note 1) P41–P47,P5 0–P57, P60, P6 1, P70, P71 (Note 1) P00–P07 , P10 –P17, P2 0–P2 7 (Note 1) P41–P47,P5 0–P57, P60, P6 1, P70, P71 (Note 1) P00–P07 , P10 –P17, P2 0–P2 7 (Note 1) P41–P47,P5 0–P57, P60, P6 1, P70, P71 (Note 1) P00–P07 , P10 –P17, P2 0–P2 7 (Note 1) P41–P47,P5 0–P57, P60, P6 1, P70, P71 (Note 1) P00–P07, P10–P17 , P20–P27, P41 –P47, P50–P57 , P60, P61, P70 , P71 (Note 2) P00–P07 , P10 –P17 (Note 2) P20–P27, P41–P47 , P50–P57, P60 , P61, P70, P7 1 (Note 2) P00–P07, P10–P17 (Note 3) P20–P27, P41–P47 , P50–P57, P60 , P61, P70, P7 1 (Note 3) P00–P07, P10–P17 (Note 3) P20–P27, P41–P47 , P50–P57, P60 , P61, P70, P7 1 (Note 3) 4.0 V ≤ V CC ≤ 5.5 V VCC ≤ 4.0 V High-speed mode (4.0 V ≤ VCC ≤ 5.5 V) f(XIN) High-speed mode (VCC ≤ 4.0 V) Middle-speed mode f(XCIN ) Notes Sub-clock input oscillation frequency (Note 4, 5) 32.768 Min. Limits Typ. Max. –40 –40 40 40 –20 –20 20 20 –5 5 10 –1.0 –2.5 2.5 5.0 4.0 Unit mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA MHz f(CNTR 0) f(CNTR 1) (10XVCC–4) MHz 9 MHz 8.0 (20XVCC–8) MHz 9 8.0 50 MHz kHz 1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an av erage value measured over 100 ms. The total peak current is the peak value of all the currents. 2: The peak output current is the peak current flowing in each port. 3: The average output current is an average value measured over 100 ms. 4: When the oscillation frequency has a duty cycle of 50 %. 5: When using the microcomputer in low-speed mode, make sure that the sub-clock input oscillation frequency f(X CIN) is less than f(XIN )/3. 59 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER (VCC =4.0 to 5.5 V, Ta = –20 to 85 ° C, unless otherwise noted.) Symbol Parameter ELECTRICAL CHARACTERISTICS (Low Power Source Voltage Version) Test conditions IOH = –0.1 mA IOH = –25 µ A VCC = 2.2 V IOH = –5 mA IOH = –1.25 mA IOH = –1.25 mA VCC = 2.2 V IOL = 5 mA IOL = 1.25 mA IOL = 1.25 mA VCC = 2.2 V IOL = 10 mA IOL = 2.5 mA IOL = 2.5 mA VCC = 2.2 V Min. VCC–2.0 VCC–1.0 VCC–2.0 VCC–0.5 VCC–1.0 2.0 0.5 1.1 2.0 0.5 1.0 0.5 0.5 0.5 5.0 30 6.0 70 25 170 55 5.0 8.0 4.0 5.0 –5.0 VI = VSS Pull-ups “off” VCC= 5.0 V, VI = VSS Pull-ups “on” VCC= 3.0 V, VI = VSS Pull-ups “on” VI = V SS VI = V SS –5.0 –30 –6 –70 –25 –140 –45 –5.0 –8.0 Limits Typ. Max. Unit V V V V V V V V V V V V V V µA µA µA µA µA µA µA µA µA µA µA µA VOH “H” output voltage P00–P0 7, P10–P1 7, P30–P3 7 VOH “H” output voltage P20–P2 7, P41–P4 7,P50–P5 7, P60, P61, P70, P71 (Note) VOL “L” output voltage P00–P0 7, P10–P1 7, P30–P3 7 VOL “L” output voltage P20–P2 7, P41–P4 7, P50–P57, P60, P61, P70, P71 (Note) Hysteresis Hysteresis Hysteresis CNTR0, CNTR1 , INT0–INT 3, P20 –P27 RXD, SCLK1, SIN2, SCLK2 RESET VT+ – VT– VT+ – VT– VT+ – VT– I IH “H” input current P00–P0 7, P10–P1 7, P30–P3 7 RESET: VCC=2.2 V to 5.5 V VI = VCC Pull-downs “off” VCC= 5.0 V, VI = VCC Pull-downs “on” VCC= 3.0 V, VI = VCC Pull-downs “on” VI = V CC VI = V CC VI = V CC I IH I IH I IH I IL “H” input current “H” input current “H” input current “L” input current P20–P2 7, P40–P4 7, P50–P57, P60, P61, P70, P71 RESET XIN P00–P0 7, P10–P1 7, P30–P37, P40, P70 I IL “L” input current P20–P2 7, P41–P4 7, P50–P57, P60, P61, P71 I IL I IL “L” input current “L” input current RESET XIN Note : When “1” is set to port XC switch bit (bit 4 of address 003B16) of CPU mode register, the drive ability of port P7 0 is different from the value above mentioned. 60 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER ELECTRICAL CHARACTERISTICS (Low Power Source Voltage Version) (VCC =2.2 to 5.5 V, Ta = –20 to 85 ° C, unless otherwise noted.) Symbol VRAM RAM hold voltage Parameter Test conditions When clock is stopped • High-speed mode, VCC = 5 V f(XIN) = 8 MHz f(XCIN ) = 32.768 kHz Output transistors “off” • High-speed mode, VCC = 5 V f(XIN) = 8 MHz (in WIT state) f(XCIN ) = 32.768 kHz Output transistors “off” • Low-speed mode, VCC = 5V, Ta ≤ 55°C f(XIN) = stopped f(XCIN ) = 32.768 kHz Output transistors “off” • Low-speed mode, VCC = 5 V, Ta = 25°C f(XIN) = stopped f(XCIN) = 32.768 kHz (in WIT state) Output transistors “off” • Low-speed mode, VCC = 3 V, Ta ≤ 55°C f(XIN) = stopped f(XCIN ) = 32.768 kHz Output transistors “off” • Low-speed mode, VCC = 3V, Ta = 25°C f(XIN) = stopped f(XCIN) = 32.768 kHz (in WIT state) Output transistors “off” All oscillation stopped (in STP state) Output transistors “off” Ta = 25 °C Ta = 85 °C Min. 2.0 Limits Typ. Max. 5.5 Unit V 6.4 13 mA 1.6 3.2 mA 25 36 µA I CC Power source current 7.0 14.0 µA 15 22 µA 4.5 9.0 µA 0.2 2.0 20 µA 61 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER TIMING REQUIREMENTS 1 (Low Power Source Voltage Version) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 ° C, unless otherwise noted.) Symbol t w(RESET) t c(X IN) t wH(XIN) t wL(XIN) t c(CNTR) t wH(CNTR) t wL(CNTR) t wH(INT) t wL(INT) t c(S CLK1) t wH(SCLK1) t wL(SCLK1) tsu(R X D–SCLK1) th(S CLK1–RX D) t c(S CLK2) t wH(SCLK2) t wL(SCLK2) tsu(SIN2 –SCLK2) th(S CLK2–SIN2 ) _____ Parameter Reset input “L” pulse width Main clock input cycle time (XIN input) Main clock input “H” pulse width Main clock input “L” pulse width CNTR0, CNTR1 input cycle time CNTR0, CNTR1 input “H” pulse width CNTR0 , CNTR1 input “L” pulse width INT0 to INT3 input “H” pulse width INT0 to INT3 input “L” pulse width Serial I/O1 clock input cycle time (Note) Serial I/O1 clock input “H” pulse width (Note) Serial I/O1 clock input “L” pulse width (Note) Serial I/O1 input set up time Serial I/O1 input hold time Serial I/O2 clock input cycle time Serial I/O2 clock input “H” pulse width Serial I/O2 clock input “L” pulse width Serial I/O2 input set up time Serial I/O2 input hold time Min. 2 125 45 40 250 105 105 80 80 800 370 370 220 100 1000 400 400 200 200 Limits Typ. Max. Unit µs ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Note: When f(XIN) = 8 MHz and bit 6 of address 001A16 is “1” (clock synchronous). Divide this value by four when f(XIN) = 8 MHz and bit 6 of address 001A 16 is “0” (UART). (VCC = 2.5 to 4.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted.) Symbol t w(RESET) t c(XIN) t wH(XIN) t wL(XIN) t c(CNTR) t wH(CNTR) t wL(CNTR) t wH(INT) t wL(INT) t c(SCLK1 ) t wH(SCLK1) t wL(SCLK1) tsu(R XD–SCLK1) th(S CLK1–RXD) t c(SCLK2 ) t wH(SCLK2) t wL(SCLK2) tsu(SIN2–S CLK2) th(S CLK2–SIN2) _____ TIMING REQUIREMENTS 2 (Low Power Source Voltage Version) Parameter Reset input “L” pulse width Main clock iuput cycle time (X IN input) Main clock input “H” pulse width Main clock input “L” pulse width CNTR 0, CNTR1 input cycle time CNTR 0, CNTR1 input “H” pulse width CNTR 0, CNTR1 input “L” pulse width INT 0 to INT3 input “H” pulse width INT 0 to INT3 input “L” pulse width Serial I/O1 clock input cycle time (Note) Serial I/O1 clock input “H” pulse width (Note) Serial I/O1 clock input “L” pulse width (Note) Serial I/O1 input set up time Serial I/O1 input hold time Serial I/O2 clock input cycle time Serial I/O2 clock input “H” pulse width Serial I/O2 clock input “L” pulse width Serial I/O2 input set up time Serial I/O2 input hold time Limits Min. 2 125 45 40 900/ (VCC–0.4) 450/ (VCC–0.4)–20 450/ (VCC–0.4)–20 230 230 2000 950 950 400 200 2000 950 950 400 300 Typ. Max. Unit µs ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Note: When f(X IN) = 2 MHz and bit 6 of address 001A16 is “1” (clock synchronous). Divide this value by four when f(XIN) = 2 MHz and bit 6 of address 001A16 is “0” (UART). 62 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER SWITCHING CHARACTERISTICS 1 (Low Power Source Voltage Version) (V CC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted.) Symbol twH(SCLK1 ) twL(SCLK1 ) td(SCLK1–TX D) tv(SCLK1–TXD) tr(S CLK1) tf(SCLK1 ) twH(SCLK2 ) twL(SCLK2 ) td(SCLK2–S OUT2) tv(SCLK2–SOUT2 ) tf(SCLK2 ) tr(CMOS) tf(CMOS) Parameter Serial I/O1 clock output “H” pulse width Serial I/O1 clock output “L” pulse width Serial I/O1 output delay time (Note 1) Serial I/O1 output valid time (Note 1) Serial I/O1 clock output rising time Serial I/O1 clock output falling time Serial I/O2 clock output “H” pulse width Serial I/O2 clock output “L” pulse width Serial I/O2 output delay time Serial I/O2 output valid time Serial I/O2 clock output falling time CMOS output rising time (Note 2) CMOS output falling time (Note 2) Min. tc(SCLK1)/2–30 tc(SCLK1)/2–30 –30 30 30 tc(SCLK2) /2–160 tc(SCLK2) /2–160 0.2!tC(SCLK2) 0 10 10 40 30 30 Limits Typ. Max. Unit ns ns ns ns ns ns ns ns ns ns ns ns ns 140 Notes 1: When the P4 5/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B 16) is “0”. 2: XOUT and XCOUT pins are excluded. SWITCHING CHARACTERISTICS 2 (Low Power Source Voltage Version) (V CC = 2.2 to 4.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted.) Symbol twH(SCLK1 ) twL(SCLK1 ) td(SCLK1–TX D) tv(SCLK1–TXD) tr(S CLK1) tf(SCLK1 ) twH(SCLK2 ) twL(SCLK2 ) td(SCLK2–S OUT2) tv(SCLK2–SOUT2 ) tf(SCLK2 ) tr(CMOS) tf(CMOS) Parameter Serial I/O1 clock output “H” pulse width Serial I/O1 clock output “L” pulse width Serial I/O1 output delay time (Note 1) Serial I/O1 output valid time (Note 1) Serial I/O1 clock output rising time Serial I/O1 clock output falling time Serial I/O2 clock output “H” pulse width Serial I/O2 clock output “L” pulse width Serial I/O2 output delay time Serial I/O2 output valid time Serial I/O2 clock output falling time CMOS output rising time (Note 2) CMOS output falling time (Note 2) Min. tc(SCLK1)/2–50 tc(SCLK1)/2–50 –30 50 50 tc(SCLK2)/2–240 tc(SCLK2)/2–240 0.2!tC(SCLK2) 0 20 20 50 50 50 Limits Typ. Max. Unit ns ns ns ns ns ns ns ns ns ns ns ns ns 350 Notes 1: When the P4 5/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B 16) is “0”. 2: XOUT and XCOUT pins are excluded. Measurement output pin 100pF Measurement output pin CMOS output 100pF 1k Ω N-channel open-drain output (Note) Note: When bit 4 of the UART control register (address 001B 16) is “1”. (N-channel open-drain output mode) Fig.41 Circuit for measuring output switching characteristics 63 MITSUBISHI MICROCOMPUTERS 3820 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER TIMING DIAGRAM tC(CNTR) tWH(CNTR) tWL(CNTR) 0.2VCC CNTR0,CNTR1 0.8VCC tWH(INT) tWL(INT) 0.2VCC INT0–INT3 0.8VCC tW(RESET) RESET 0.2VCC 0.8VCC tC(XIN) tWH(XIN) tWL(XIN) 0.2VCC XIN 0.8VCC tf tWL(SCLK1),tWL(S CLK2) 0.2VCC tC(SCLK1),tC(SCLK2) tr tWH(SCLK1),tWH(SCLK2) 0.8VCC SCLK1 SCLK2 tsu(RXD-SCLK1) tsu(SIN2-SCLK2) th(SCLK1-RXD) th(SCLK2-SIN2) RXD SIN2 0.8VCC 0.2VCC td(SCLK1-TXD),td(SCLK2-SOUT2) tv(SCLK1-TXD), tv(SCLK2-SOUT2) TXD SOUT2 64 MITSUBISHI MICROCOMPUTERS 3820Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Keep safety first in your circuit designs! • Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials • • • These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer’s application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party. Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts or circuit application examples contained in these materials. All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein. Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein. • • • • © 1996 MITSUBISHI ELECTRIC CORP. H-DF047-C KI-9609 New publication, effective Sep. 1996. Specifications subject to change without notice. REVISION DESCRIPTION LIST Rev. No. 1.0 First Edition 3820GROUP DATA SHEET Revision Description Rev. date 971128 (1/1)

很抱歉,暂时无法提供与“3820”相匹配的价格&库存,您可以联系我们找货

免费人工找货
HoBH3820-5W-0.3mR-1%
  •  国内价格
  • 1+1.875
  • 10+1.725
  • 30+1.695
  • 100+1.605

库存:0

0513820200
  •  国内价格
  • 1+0.43561
  • 10+0.41911
  • 100+0.36961
  • 500+0.35971

库存:0

RTT03820JTP
  •  国内价格
  • 100+0.0044
  • 500+0.00413
  • 1000+0.00373
  • 5000+0.00319
  • 10000+0.00286

库存:3548

RTT038201FTP
  •  国内价格
  • 100+0.00504
  • 500+0.00474
  • 1000+0.00429
  • 5000+0.00369
  • 10000+0.00333

库存:550

RTT038200FTP
  •  国内价格
  • 100+0.0061
  • 500+0.00572
  • 1000+0.00516
  • 5000+0.00441
  • 10000+0.00396

库存:1731

BFC233820104
  •  国内价格
  • 1+5.18244
  • 30+5.00374
  • 100+4.64633
  • 500+4.28892
  • 1000+4.11022

库存:50

RTT038202FTP
  •  国内价格
  • 100+0.00505
  • 500+0.00474
  • 1000+0.00427
  • 5000+0.00365
  • 10000+0.00328

库存:1954

BFC233820105
  •  国内价格
  • 5+2.40514
  • 20+2.19292
  • 100+1.9807
  • 500+1.76848
  • 1000+1.66945
  • 2000+1.59871

库存:60

RTT038203FTP
  •  国内价格
  • 100+0.0086
  • 500+0.00804
  • 2000+0.00748
  • 5000+0.00692
  • 10000+0.00636
  • 30000+0.00596

库存:34620