0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
8V49NS0412NLGI

8V49NS0412NLGI

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    VFQFN-64

  • 描述:

    IC CLOCK GENERATOR 64QFN

  • 数据手册
  • 价格&库存
8V49NS0412NLGI 数据手册
FemtoClock® NG Clock Generator with Four Dividers 8V49NS0412 Datasheet Description Features The 8V49NS0412 is a clock generator with four output dividers: three integers, and one that is either integer or fractional. When used with an external crystal, the 8V49NS0412 generates high-performance timing for the communications and datacom markets, especially for applications that demand extremely low phase noise, such as 10GE, 40GE, 100G, and 400GE. ▪ Eleven differential LVPECL and LVDS outputs with programmable voltage swings ▪ One LVCMOS output: Input reference can be passed to this output ▪ The clock input operates in full differential mode (LVDS, LVPECL) or single-ended LVCMOS mode ▪ Driven from a crystal or differential clock input ▪ 2.4–2.5GHz PLL frequency range supports Ethernet, SONET, and CPRI frequency plans ▪ Four Integer output dividers with a range of output divide ratios (see Table 5) ▪ One Fractional output divider can generate any desired output frequency ▪ Support of output power-down ▪ Excellent clock output phase noise: Offset Output Frequency Single-side Band Phase Noise 100kHz 156.25MHz -143dBc/Hz ▪ RMS phase noise, 12kHz to 20MHz integration range: 110fs (maximum) at 156.25MHz ▪ Selected configurations can be controlled via the control input pins without need for serial port access ▪ LVCMOS compatible I2C serial interface gives access to additional configuration by external processor or loading the configuration from an external I2C EEPROM, or in combination with the control input pins ▪ Single 3.3V supply voltage ▪ 64-VFQFN 9  9 mm, lead-free (RoHS 6) package ▪ -40°C to 85°C ambient operating temperature The 8V49NS0412 provides versatile frequency configurations and output formats, and is optimized to deliver excellent phase noise performance. The device delivers an optimum combination of high clock frequency and low phase noise performance, combined with high power supply noise rejection. The 8V49NS0412 supports two types of output levels: LVPECL or LVDS on eleven of its outputs. In addition, the device has a single LVCMOS output that can provide a generated clock, or act as a reference bypass output. The device can be configured to deliver specific configurations under pin control only, or additional configurations through an I2C serial interface by external processor, or an external I2C EEPROM to loading the configuration. Typical Applications ▪ ▪ ▪ ▪ 10G/40G/100/400G Ethernet Fiber optics Gigabit Ethernet, Terabit IP switches/routers CPRI Interfaces ©2021 Renesas Electronics Corporation 1 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Contents Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Principles of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Pin versus Register Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Input Clock Selection (REF_SEL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Prescaler and PLL Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 PLL Loop Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Output Divider Frequency Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Integer Output Dividers (Banks A, B, C, and D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Fractional Output Divider (Bank D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Output Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Pin Control of the Output Frequencies and Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Device Start-up and Reset Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Serial Control Port Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Serial Control Port Configuration Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 I2C Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 I2C Master Mode Operation and Device Start-up Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Phase Noise Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Recommendations for Unused Input and Output Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Overdriving the XTAL Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Wiring the Differential Input to Accept Single-Ended Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.3V Differential Clock Input Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 LVDS Driver Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Termination for 3.3V LVPECL Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 VFQFN EPAD Thermal Release Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Schematic and Layout Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Power Dissipation and Thermal Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Example 1. LVPECL, 750mV Output Swing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Example 2. LVDS, 350mV Output Swing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Reliability Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Package Outline Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Marking Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Errata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 ©2021 Renesas Electronics Corporation 2 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Block Diagram Figure 1: 8V49NS0412 Block Diagram REF_SEL LOCK Pulldown QA0 nQA0 Pulldown CLK PU/PD nCLK FDP and PS XTAL_IN 2400 – 2500MHz IntN PLL OSC QA1 IntN Div A nQA1 QA2 XTAL_OUT nQA2 QA3 nQA3 FIN[1:0] PU/PD NA[1:0] PU/PD NB[1:0] PU/PD NC[1:0] PU/PD ND[1:0] QB0 nQB0 Status and Control Registers QB1 PU/PD IntN Div B nQB1 QB2 nQB2 Power-up Reset SCLK SDATA QB3 nQB3 QC0 nQC0 Pullup Pullup I2C Master and Slave IntN Div C QC1 nQC1 IntN Div D QD0 FracN Div D FDIV nQD0 QD1 Transistor count: 132,756 ©2021 Renesas Electronics Corporation 3 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Pin Assignments REF_SEL VCC_CK nCLK CLK FIN[1] FIN[0] CAPXTAL OSCO OSCI VCCA_XT NA[0] RES SDATA SCLK VCC_SP  9 mm 64-Lead VFQFN Package — Top View LOCK Figure 2: Pin Assignments for 9 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 VCCOB 1 48 VCCOA QB0 2 47 QA0 nQB0 3 46 nQA0 QB1 4 45 QA1 nQB1 5 44 nQA1 QA2 QB2 6 43 nQB2 7 42 nQA2 41 QA3 40 nQA3 QB3 8 nQB3 9 VCCOB 10 39 VCCOA ND[0] 11 38 VCCOC ND[1] 12 37 QC0 VCCOD 13 36 nQC0 QD1 14 35 QC1 QD0 15 34 nQC1 nQD0 16 33 VCCOC 8V49NS0412 VCC_CP ICP nc VCCA LFF LFFR CAPREG CR VCCA_IN2 NA[1] CAPBIAS NC[1] VCCA_IN1 NB[1] NC[0] NB[0] 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Pin Descriptions Table 1. Pin Descriptions Number Name[a] Type 1 VCCOB Power 2 QB0 Output 3 nQB0 Output 4 QB1 Output 5 nQB1 Output 6 QB2 Output 7 nQB2 Output 8 QB3 Output 9 nQB3 Output 10 VCCOB Power 11 ND[0] Input [PU/PD] ©2021 Renesas Electronics Corporation Description Power supply voltage for output Bank B (3.3V). Differential clock output pair. LVPECL or LVDS with configurable amplitude. Differential clock output pair. LVPECL or LVDS with configurable amplitude. Differential clock output pair. LVPECL or LVDS with configurable amplitude. Differential clock output pair. LVPECL or LVDS with configurable amplitude. Power supply voltage for output Bank B (3.3V). Control input for output Bank D. 3-level signals (see Table 10). 4 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Table 1. Pin Descriptions (Cont.) Number Name[a] Type 12 ND[1] Input [PU/PD] 13 VCCOD Power Power supply voltage for output Bank D (3.3V). 14 QD1 Output Single-ended output clock. LVCMOS output levels. 15 QD0 Output 16 nQD0 Output 17 NB[0] Input [PU/PD] Control input for output Bank B. 3-level signals (see Table 8). 18 NB[1] Input [PU/PD] Control input for output Bank B. 3-level signals (see Table 8). 19 NC[0] Input [PU/PD] Control input for output Bank C. 3-level signals (see Table 9). 20 NC[1] Input [PU/PD] Control input for output Bank C. 3-level signals (see Table 9). 21 VCCA_IN1 Power 22 NA[1] Input [PU/PD] 23 CAPBIAS Analog Internal VCO bias decoupling capacitor. Use a 4.7µF capacitor between the CAPBIAS terminal and VEE. 24 VCCA_IN2 Power Analog power supply voltage for VCO (3.3V). 25 CR Analog Internal VCO regulator decoupling capacitor. Use a 1µF capacitor between the CR and the VCCA terminals. 26 CAP REG Analog Internal VCO regulator decoupling capacitor. Use a 4.7µF capacitor between the CAP REG terminal and VEE. 27 LFFR Analog Ground return path pin for the PLL loop filter. 28 LFF Output Loop filter/charge pump output for the FemtoClock NG PLL. Connect to the external loop filter. 29 VCCA Power Analog power supply voltage for VCO (3.3V). 30 nc - 31 VCC_CP Power Analog power supply voltage for PLL charge pump (3.3V). 32 ICP Analog Charge pump current input for PLL. Connect to LFF pin (28). 33 VCCOC Power Power supply voltage for output Bank C (3.3V). 34 nQC1 Output 35 QC1 Output 36 nQC0 Output 37 QC0 Output 38 VCCOC Power Power supply voltage for output Bank C (3.3V). 39 VCCOA Power Power supply voltage for output Bank A (3.3V). 40 nQA3 Output 41 QA3 Output 42 nQA2 Output 43 QA2 Output ©2021 Renesas Electronics Corporation Description Control input for output Bank D. 3-level signals (see Table 10). Differential clock output pair. LVPECL or LVDS with configurable amplitude. Analog power supply voltage for PLL (3.3V). Control input for output Bank A. 3-level signals (see Table 7). No connect. Do not use. Differential clock output pair. LVPECL or LVDS with configurable amplitude. Differential clock output pair. LVPECL or LVDS with configurable amplitude. Differential clock output pair. LVPECL or LVDS with configurable amplitude. Differential clock output pair. LVPECL or LVDS with configurable amplitude. 5 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Table 1. Pin Descriptions (Cont.) Number Name[a] Type 44 nQA1 Output 45 QA1 Output 46 nQA0 Output 47 QA0 Output 48 VCCOA Power Description Differential clock output pair. LVPECL or LVDS with configurable amplitude. Differential clock output pair. LVPECL or LVDS with configurable amplitude. Power supply voltage for output Bank A (3.3V). Selects input reference source. LVCMOS interface levels. 0  Crystal input on pins OSCI, OSCO (default) 1  Reference clock input on pins CLK, nCLK 49 REF_SEL Input [PD] 50 VCC_CK Power 51 nCLK Input [PU/PD] 52 CLK Input [PD] 53 FIN[1] Input [PU/PD] 54 FIN[0] Input [PU/PD] 55 CAP XTAL Analog 56 OSCO Output 57 OSCI Input 58 VCCA_XT Power Analog power supply voltage for the crystal oscillator (3.3V). 59 NA[0] Input [PU/PD] Control input for output Bank A. 3-level signals (see Table 7). 60 RES Analog Connect a 2.8k (1%) resistor to V EE for output current calibration. 61 SDATA I/O [PU] I2C data input/output: LVCMOS interface levels. Open-drain pin. 62 SCLK I/O [PU] I2C clock input/output. LVCMOS interface levels. Open-drain pin. 63 VCC_SP Power Power supply voltage for the I2C port (3.3V). Power supply voltage for input CLK, nCLK (3.3V). Inverting differential clock input. Internal resistor bias to VCC_CK/2. Non-inverting differential clock input. Control Inputs for input reference frequencies. 3-level signals (see Table 3). Crystal oscillator circuit decoupling capacitor. Use a 4.7µF capacitor between the CAP XTAL and the VEE terminals. Crystal oscillator interface. 64 LOCK Output Lock status output. LVCMOS interface levels. Logic Low  PLL not locked Logic High  PLL locked ePad VEE Power Negative supply. Exposed pad must be connected to ground. [a] Unless otherwise noted above, all Power and GND pins must be connected for proper device functionality. ©2021 Renesas Electronics Corporation 6 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Principles of Operation The 8V49NS0412 can be locked to either an input reference clock or a 10MHz to 50MHz fundamental-mode crystal, and generate a wide range of synchronized output clocks. Lock status can be monitored via the LOCK pin. The 8V49NS0412 accepts a differential or single-ended input clock ranging from 5MHz to 1GHz. It generates up to twelve output clocks with up to four different output frequencies, ranging from 10.91MHz to 2.5GHz. The device outputs are divided into four output banks. Each bank supports conversion of the input frequency to a different output frequency: one independent or integer related output frequency on Bank D (QD[0:1]) and three more integer related frequencies on Bank A (QA[0:3]), Bank B (QB[0:3]), and Bank C (QC[0:1]). All outputs within a bank will have the same frequency. The device is programmable through an I2C serial interface by an external processor, or loaded through an external I 2C EEPROM or control input pins. Pin versus Register Control The 8V49NS0412 can be configured via input control pins and/or over an I2C serial port. The pins/registers used to control each function are shown in Table 2. Each function is controlled at power-up via the control input pins. Access over the I2C serial port can change each function individually via register control. This allows for any mixture of register or pin control; however, any of the indicated functions can only be controlled by a register or by a pin at any given time, but not by both. Use of register control allows access to a wider range of configuration options, but values are lost on power-down. If the output bank or PLL is controlled by control input pins (at power-up or through Control Select bit), corresponding register values remain unchanged and have no impact on device functions. Table 2. Control of Specific Functions Function Control Select Bit Control Input Pins Register Fields Affected Prescaler and PLL Feedback Divider FIN_CTL FIN[1:0] PS[5:0], FDP, M[8:0] Bank A – Divider and Output Type NA_CTL NA[1:0] NA_DIV, PD_A, PD_QAx, STY_QAx, AMP_QAx[1:0] Bank B – Divider and Output Type NB_CTL NB[1:0] NB_DIV, PD_B, PD_QBx, STY_QBx, AMP_QBx[1:0] Bank C – Divider and Output Type NC_CTL NC[1:0] NC_DIV, PD_C, PD_QCx, STY_QCx, AMP_QCx[1:0] Bank D – Divider and Output Type ND_CTL ND[1:0] ND[5:0], ND_FINT[3:0], ND_FRAC[23:0], ND_DIVF[1:0], ND_SRC, ND_DIV, PD_D, PD_QDx, STY_QD0, AMP_QD0[1:0] Changes to the control pins while the part is active are allowed, but limited, and cannot be guaranteed a glitch-free output transition. During the state transition of the control pins, the output phase alignment (synchronization) may be lost and Bank D outputs in Fractional Mode (FOD) may be unavailable. If I2C registers are accessible, then assertion of the INIT_CLK bit or powering down and then powering up the part will restore phase alignment and activate the Fractional output frequency. Glitch-free operation can be performed by disabling the outputs using the I2C-accessible registers, then re-enabling once changes are completed. Any change to the output dividers performed over the I2C interface must be followed by an assertion of the INIT_CLK register bit to force the loading of the new divider values, as well as to synchronize the output dividers. ©2021 Renesas Electronics Corporation 7 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Input Clock Selection (REF_SEL) The 8V49NS0412 must be provided with an input reference frequency either from its crystal input pins (OSCI, OSCO), or its reference clock input pins (CLK, nCLK). The REF_SEL input pin controls which source is used. The crystal input on the 8V49NS0412 can be driven by a parallel-resonant, fundamental mode crystal with a frequency of 10MHz to 50MHz. The crystal input also supports being driven by a single-ended crystal oscillator or reference clock, but only a frequency from 10MHz to 50MHz may be used on these pins. The reference clock input accepts clocks with frequencies from 5MHz to 1GHz. The input can accept LVPECL, LVDS, LVHSTL, HCSL or LVCMOS inputs using 2.5V or 3.3V logic levels as shown in Applications Information. Prescaler and PLL Configuration When the input frequency (fIN), whether generated by a crystal or clock input is known, and the desired PLL operating frequency has been determined, several constraints need to be met: ▪ The Phase / Frequency Detector operating frequency (fPFD) must be within the specified limits shown in Table 31. This is controlled by selecting the doubler (FDP) or an appropriate prescaler (PS) value, but not both. If multiple values are possible, a higher fPFD will provide better phase noise performance. ▪ The VCO operating frequency (fVCO) must be within the specified limits shown in Table 31. This is controlled by selecting an appropriate PLL feedback divider (M) value. Note, it may be necessary to select a different prescaler value if the limits cannot be met by the available values of M. It may also be necessary to select an appropriate input frequency value. Several preset configurations can be selected directly from the FIN[1:0] control input pins. These configurations are based on a particular input frequency fIN and a particular f VCO (see Table 3). These selections apply whether the input frequency is provided from the crystal or reference clock inputs. Table 3. Input Selection Control FIN[1] FIN[0] fIN (MHz) fVCO (MHz) High High 38.88 2488.32 38.4 2457.6 [a] High Middle High Low 31.25 2500 Middle High 312.5 2500 Middle Middle 125 2500 Middle Low 156.25 2500 Low High 100 2500 Low Middle 25 2500 Low Low 50 2500 [a] A “middle” voltage level is defined in Table 24. Leaving the input pin open will also generate this level via a weak internal resistor network. Alternatively the user can directly access the registers for M, FDP, and PS over the serial interface for a wider range of options (see Table 4). Inputs do not support transmission of spread-spectrum clocking sources. Since this family of devices is intended for high-performance applications, it will assume input reference sources to have stabilities of +100ppm or greater. ©2021 Renesas Electronics Corporation 8 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Table 4. PLL Frequency Control Examples fIN (MHz) PS FDP fPFD (MHz) M PLL Operating Frequency (MHz) 25 1 2 50 50 2500 39.0625 1 2 78.125 32 2500 50 1 2 100 25 2500 100 1 1 100 25 2500 125 1 1 125 20 2500 156.25 1 1 156.25 16 2500 200 2 1 100 25 2500 250 2 1 125 20 2500 312.5 2 1 156.25 16 2500 400 4 1 100 25 2500 500 4 1 125 20 2500 625 4 1 156.25 16 2500 19.44 1 2 38.88 64 2488.32 38.88 1 2 77.76 32 2488.32 38.4 1 2 76.8 32 2457.6 PLL Loop Bandwidth The 8V49NS0412 PLL requires external loop components (resistor and capacitors) connecting in between the ICP and LFF pins. The PLL loop bandwidth generally depends on the loop components, charge pump current, PFD frequency, and VCO gain. Output Divider Frequency Sources Output dividers associated with Banks A, B, and C take their input frequency directly from the PLL. Bank D also has the option to bypass the input frequency (after mux) directly to the output. ©2021 Renesas Electronics Corporation 9 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Integer Output Dividers (Banks A, B, C, and D) The 8V49NS0412 supports four integer output dividers: one per output bank. Each integer output divider block independently supports one of several divide ratios as shown in their respective register descriptions (Table 14, Table 15, Table 16 or Table 17). Selected divide ratios can be chosen directly from the control input pins for that particular output bank. The remaining ratios can only be selected via the serial interface. Bank D can choose whether to use the integer divider or a separate fractional divider to generate the output frequency. Output frequency examples are shown in Table 5 for the minimum fVCO (2400MHz), the maximum fVCO (2500MHz), and two additional common VCO frequencies. With appropriate input frequencies and configuration selections, any fVCO and fOUT between the minimum and maximum can be generated. Table 5. Integer Output Divider Control Examples fOUT (MHz) Divide Ratio fVCO  2400MHz fVCO  2457.6MHz fVCO  2488.32MHz fVCO  2500MHz 1 2400 2457.6 2488.32 2500 2 1200 1228.8 1244.16 1250 4 600 614.4 622.08 625 5 480 491.52 497.664 500 6 400 409.6 414.72 416.667 8 300 307.2 311.04 312.5 9 266.667 273.07 276.48 277.78 10 240 245.76 248.832 250 12 200 204.8 207.36 208.333 16 150 153.6 155.52 156.25 18 133.333 136.533 138.24 138.889 20 120 122.88 124.416 125 25 96 98.3 99.53 100 32 75 76.8 77.76 78.125 36 66.667 68.267 69.12 69.444 40 60 61.44 62.208 62.5 50 48 49.152 49.766 50 64 37.5 38.4 38.88 39.063 72 33.333 34.133 34.56 34.722 80 30 30.72 31.104 31.25 100 24 24.576 24.883 25 128 18.75 19.2 19.44 19.531 160 15 15.36 15.552 15.625 200 12 12.29 12.44 12.5 220 10.91 11.17 11.31 11.36 ©2021 Renesas Electronics Corporation 10 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Fractional Output Divider (Bank D) For the fractional output divider in Bank D, the output divide ratio is given by: f VCO f OUT = ----------------------------------------------------------------------------2   FINT + FRAC ----------------   FDIV   24  2 Where, ▪ FINT  Integer Part: 5, 6, ...(24  1)  given by ND_FINT[3:0] ▪ FRAC  Fractional Part: 0, 1, 2, ...(224  1)  given by ND_FRAC[23:0] ▪ FDIV  Post-divider: 1, 2 or 4  given by ND_DIVF[1:0] This provides a frequency range of 20 to 250MHz Output Drivers Each of the four output banks are provided with pin or register-controlled output drivers. Differential outputs can be individually selected as LVDS, LVPECL, or POWERDOWN. When powered-down, both outputs of the differential output pair will drive a logic-high level, and the single-ended QD1 output will be in a High-Impedance state. The differential outputs can individually choose one of several different output voltage swings: 350mV, 500mV, or 750mV – measured single-ended. Note, under pin-control, all differential outputs within an output bank will assume the same configuration. Pin-control does not allow configuration of individual outputs within a bank. Pin Control of the Output Frequencies and Protocols For pin-control settings, see Table 6 to Table 10. All of the output frequencies assume fVCO  2500MHz. With different fVCO configurations, the pins can still be used to select the indicated divide ratios for each bank, but the f OUT will be different. The control pins do not affect the internal register values, but act directly on the output structures. Register values will not change to match the control input pin selections. Each output bank can be powered-up/down and enabled/disabled by register bits. In the disabled state, an output will drive a logic low level. The default state is all outputs enabled. Pin-control does not require register access to enable the outputs. Additionally, individual outputs within a bank can be powered up/down by register bits only. Table 6. Definition of Output Disabled / Power-Down[a] QMN[b] nQMN[c] QD1 DISABLED (register-control only) LOW HIGH LOW POWERDOWN (pin-control or register-control) HIGH HIGH High-Impedance Output Conditions [a] Do not terminate the differential outputs when DISABLED or POWER-DOWN. [b] QMN refers to output pins QA[0:3], QB[0:3], QC[0:1], and QD0. [c] nQMN refers to output pins nQA[0:3], nQB[0:3], nQC[0:1], and nQD0. ©2021 Renesas Electronics Corporation 11 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Table 7. Bank A Divider/Driver Pin-Control (3-level Control Signals) NA[1] NA[0] Output Type Divide Ratio fOUT (MHz) Low Low LVPECL[a] 16 156.25 Low Middle LVPECL 20 125 Low High LVPECL 25 100 Middle Low LVPECL 100 25 Middle Middle POWERDOWN[b]   16 156.25 LVDS [c] Middle High High Low LVDS 20 125 High Middle LVPECL 8 312.5 High High Loading the configuration from EEPROM[d] [a] Under pin control, all outputs of the bank are LVPECL using 750mV output swing. [b] No active receivers should be connected to QA outputs. [c] Under pin control, all outputs of the bank are LVDS using 350mV output swing. [d] When the configuration is loading from an external EEPROM (NA[1] and NA[0] pins are HIGH), pins NB[1] and NB[0] act as address pins for EEPROM (for more information, see I2C Master Mode Operation and Device Start-up Behavior). Table 8. Bank B Divider/Driver Pin-Control (3-level Control Signals)[a] NB[1] NB[0] Output Type Divide Ratio fOUT (MHz) Low Low LVPECL[b] 16 156.25 Low Middle LVPECL 20 125 Low High LVPECL 25 100 Middle Low LVPECL 100 25 Middle Middle POWERDOWN[c]   16 156.25 LVDS [d] Middle High High Low LVDS 20 125 High Middle LVPECL 8 312.5 High High LVPECL 50 50 [a] When the configuration is loading from an external EEPROM (NA[1] and NA[0] pins are HIGH), pins NB[1] and NB[0] act as address pins for EEPROM (for more information, see I2C Master Mode Operation and Device Start-up Behavior). [b] Under pin control, all outputs of the bank are LVPECL using 750mV output swing. [c] No active receivers should be connected to QB outputs. [d] Under pin control, all outputs of the bank are LVDS using 350mV output swing. ©2021 Renesas Electronics Corporation 12 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Table 9. Bank C Divider/Driver Pin-Control (3-level Control Signals) NC[1] NC[0] Output Type Divide Ratio fOUT (MHz) Low Low LVPECL[a] 8 312.5 Low Middle LVPECL 16 156.25 Low High LVPECL 20 125 Middle Low LVPECL 100 25 Middle Middle POWERDOWN[b]  [c] 20 125 LVDS 25 100 Middle LVPECL 50 50 High LVDS 16 156.25 Middle High High Low High High LVDS [a] Under pin control, all outputs of the bank are LVPECL using 750mV output swing. [b] No active receivers should be connected to QC outputs. [c] Under pin control, all outputs of the bank are LVDS using 350mV output swing. Table 10. Bank D Divider/Driver Pin-Control (3-level Control Signals) ND[1] ND[0] QD0 Output Type QD1 Output Type Divide Ratio fOUT (MHz) Low Low LVPECL[a] LVCMOS 18.75[b] 133.333 Low Middle LVPECL LVCMOS 37.5[b] 66.667 High-Impedance 11.76[b] 212.5 Reserved Reserved Reserved High-Impedance   Low High LVPECL Middle Low Reserved POWERDOWN [c] Middle Middle Middle High LVPECL LVCMOS 25 100 High Low LVPECL LVCMOS 100 25 High Middle LVPECL LVCMOS 20 125 High High LVPECL LVCMOS 1 fIN[d] [a] Under pin control, all outputs of the bank are LVPECL using 750mV output swing. [b] Generated from a fractional divider. [c] No active receivers should be connected to QD0 outputs. [d] Bypasses the input frequency directly to the output. ©2021 Renesas Electronics Corporation 13 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Device Start-up and Reset Behavior The 8V49NS0412 has an internal power-on reset (POR) circuit. The POR circuit will remain active for a maximum of 175msec after device power-up when recommended CR (pin 25) value (1.0uF) used. For faster power-up to Lock Time, a minimum CR value of 0.1uF can be used. While in the reset state (POR active), the device will operate as follows: 1. All registers will return to and be held in their default states as indicated in the applicable register description. 2. All internal state machines will be in their reset conditions. 3. The serial interface will not respond to read or write cycles. 4. Lock status will be cleared. Upon the internal POR circuit expiring, the device will exit reset and begin self-configuration. Self-configuration initiates the loading of appropriate values indicated by the control input pins, and the default values into the registers indicated in the register descriptions. When the NA[1] and NA[0] pins are set up to HIGH, the device will load the configuration from an external I2C EEPROM at a defined address (for more information, see I2C Master Mode Operation and Device Start-up Behavior). Once the full configuration has been loaded, the device will respond to accesses on the serial port and will attempt to lock the PLL to the input frequency, if available. Once the PLL is locked, all of the outputs will be synchronized. Serial Control Port Description Serial Control Port Configuration Description The 8V49NS0412 has a serial control port that can respond as a slave in an I2C compatible configuration at a base address of 1101100b, to allow access to any of the internal registers for device programming or examination of internal status. In addition, the device can become a master only in order to read the initial register configuration from a serial EEPROM on the I2C bus. I2C Mode Operation The I2C interface is designed to fully support v1.2 of the I2C Specification for Fast mode operation. The 8V49NS0412 acts as a slave device on the I2C bus at 400kHz using a fixed base address of 1101100b. The interface accepts byte-oriented block write and block read operations. One address byte specifies the register address of the byte position of the first register to write or read. Data bytes (registers) are accessed in sequential order from the lowest to the highest byte (most significant bit first). Read and write block transfers can be stopped after any complete byte transfer. For full electrical I2C compliance, it is recommended to use external pull-up resistors for SDATA and SCLK. The internal pull-up resistors have a size of 51k typical. ©2021 Renesas Electronics Corporation 14 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Figure 3: I2C Slave Read and Write Cycle Sequencing Current Read S Dev Addr + R A Data X A Data X +1 A A Data X + n A P Sequential Read S Dev Addr + W A Offset Addr X A A Offset Addr X A Sr Dev Addr + R A Data X Data X +1 A A Data X +1 A A Data X + n A P Sequential Write S Dev Addr + W From master to slave From slave to master Data X A A Data X + n A P Note: Data X refers to the data at Offset Addr X , Data X+1 refers to the data at Offset Addr +1, etc. S = Start Sr = Repeated start A = Acknowledge A = Not Acknowledge P = Stop I2C Master Mode Operation and Device Start-up Behavior The 8V49NS0412 can load the device configuration from an external EEPROM. During start-up if the configuration pins NA[1] and NA[0] are set to HIGH, or if after start-up they transition to HIGH, the 8V49NS0412 acts as a master on the I2C bus and initiates reading its configuration from an external I2C EEPROM device. Only a block read cycle is supported. The expected external EEPROM address is pin configurable and depends on the setting of the NB[1] and NB[0] pins. All the address pins of the external EEPROM device must be configured to match the expected EEPROM Address of the 8V49NS0412. The EEPROM address configuration of the 8V49NS0412 is displayed in Table 11. Table 11. Expected EEPROM Address Settings NB[1] NB[0] LOW LOW LOW MIDDLE MIDDLE LOW MIDDLE MIDDLE LOW HIGH MIDDLE HIGH HIGH LOW HIGH MIDDLE HIGH HIGH Expected EEPROM Address 0x50 0x52 0x54 0x56 The 8V49NS0412 loads 82 bytes of data from the external EEPROM device. The first 81 bytes of data contain the device configuration. The last byte (address 0x51) is the location of the CRC checksum. If the CRC is incorrect, the data still loads into the registers but a checksum error is flagged in bit 0 of the 'd59 status register. The speed of the Master I2C clock is from 200 to 400kHz. IDT recommends the use of an external EEPROM device with an appropriate speed to match the speed of the 8V49NS0412. ©2021 Renesas Electronics Corporation 15 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Bit 4 of the 'd59 status register is set to 1 if an EEPROM read is triggered based on the pin configuration until the end of this EEPROM read (then it will go back to 0). Bit 2 of the 'd59 status register is set to 1 after an EEPROM read based on the pin configuration has been completed. These two bits remain 0 for other pin configurations when an EEPROM read is never requested. As an I2C bus master, the 8V49NS0412 supports the following functions: ▪ ▪ ▪ ▪ ▪ ▪ 7-bit addressing mode Validation of the read block via CCITT-8 CRC check against the value stored in the last byte (0x51) of the EEPROM Support for 400kHz operation without speed negotiation Support for 1-byte addressing mode Fixed-period cycle response timer to prevent permanently hanging the I2C bus Read will abort with a status error (bit 1 = 1 in the 'd59 register) if one of the following conditions occurs: — Slave NACK — Arbitration fail — Collision during address phase — Slave response timeout The 8V49NS0412 does not support the following functions: ▪ I2C general call ▪ Slave clock stretching ▪ I2C start byte protocol ▪ EEPROM chaining ▪ CBUS compatibility ▪ Responding to its own slave address when acting as a master ©2021 Renesas Electronics Corporation 16 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Register Descriptions Table 12. Register Blocks Register Ranges Offset (Hex) Register Block Description 0008 Prescaler and PLL Control Registers 090F Reserved[a] 1017 Bank A Control Registers 181F Bank B Control Registers 2027 Bank C Control Registers 2831 Bank D Control Registers 3237 Reserved 383A Reserved 3B EEPROM Reading Status Register 3C Reserved 3D40 Device Control Registers 414B Reserved 4C4F Reserved 50FF Reserved [a] Reserved registers should not be written to and have indeterminate read values. ©2021 Renesas Electronics Corporation 17 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Table 13. Prescaler and PLL Control Register Bit Field Locations and Descriptions Prescaler and PLL Control Register Block Field Locations Address (Hex) D7 D6 00 Rsvd Rsvd D5 D4 D3 D2 D1 PS[5:0] 01 Rsvd 02 D0 FDP Rsvd FIN_CTL 03 OSC_LOW Rsvd 04 Rsvd M[8] 05 M[7:0] 06 Rsvd 07 Rsvd 08 Rsvd CP[4:0] Prescaler and PLL Control Register Block Field Descriptions Bit Field Name Field Type Default Value Description Prescaler  scales input frequency by the value: 00h  Reserved 01h–3Fh  Divide by the value used (e.g. 04  divide-by-4) Note: When FDP = 1, Prescalar values are ignored and have no impact on device functions. PS[5:0] R/W 000000b FDP R/W 1b Input frequency doubler: 0  Disabled 1  Enabled FIN_CTL R/W 0b Prescaler and PLL configuration control: 0  PS, FDP, and M settings determined by FIN[1:0] control pins 1  PS, FDP, and M settings determined by register settings over I2C OSC_LOW R/W 0b Crystal oscillator gain control selection: 0  Normal gain for crystal frequencies of 25MHz and up 1  Low gain for crystal frequencies less than 25MHz M[8:0] R/W 019h CP[4:0] R/W 11001b Rsvd R/W - ©2021 Renesas Electronics Corporation PLL Feedback divider ratio: 000h–003h  Reserved (do not use) 004h1FFh  Divide the value used (e.g. 04  divide-by-4) PLL Charge Pump Current control: ICP  200μA  (CP[4:0]  1) Maximum charge pump current is 6.4mA. Default setting is 5.2mA: ((25 1)  200μA). Reserved. Always write 0 to this bit location. Read values are not defined. 18 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Table 14. Bank A Control Register Bit Field Locations and Descriptions Bank A Control Register Block Field Locations Address (Hex) D7 10 D6 D5 D4 Rsvd D2 D1 D0 NA[5:0] 11 12 D3 Rsvd PD_A Rsvd 13 NA_CTL Rsvd 14 PD_QA0 Rsvd STY_QA0 AMP_QA0[1:0] 15 PD_QA1 Rsvd STY_QA1 AMP_QA1[1:0] 16 PD_QA2 Rsvd STY_QA2 AMP_QA2[1:0] 17 PD_QA3 Rsvd STY_QA3 AMP_QA3[1:0] Bank A Control Register Block Field Descriptions Bit Field Name[a] Field Type Default Value Description Divider ratio for Bank A: Any changes to this register do not take effect until the INIT_CLK register bit is toggled. NA[5:0] R/W ©2021 Renesas Electronics Corporation 0Dh 00 0000b  Reserved 00 0001b  1 00 0010b  2 00 0011b  3 00 0100b  4 00 0101b  5 00 0110b  6 00 0111b  8 00 1000b  9 00 1001b  10 00 1010b  12 00 1011b  14 00 1100b  15 00 1101b  16 00 1110b  18 00 1111b  20 01 0000b  21 01 0001b  22 01 0010b  24 01 0011b  25 01 0100b  27 01 0101b  ÷28 19 01 0110b  30 01 0111b  32 01 1000b  33 01 1001b  35 01 1010b  36 01 1011b  40 01 1100b  42 01 1101b  44 01 1110b  45 01 1111b  48 10 0000b  50 10 0001b  54 10 0010b  55 10 0011b  56 10 0100b  60 10 0101b  ÷64 10 0110b  ÷66 10 0111b  ÷70 10 1000b  ÷72 10 1001b  ÷80 10 1010b  ÷84 10 1011b  88 10 1100b  90 10 1101b  96 10 1110b  100 10 1111b  108 11 0000b  110 11 0001b  112 11 0010b  120 11 0011b  128 11 0100b  132 11 0101b  140 11 0110b  144 11 0111b  160 11 1000b  ÷176 11 1001b  ÷180 11 1010b  ÷200 11 1011b  ÷220 11 1100b  Reserved 11 1101b  Reserved 11 1110b  Reserved 11 1111b  Reserved R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Bank A Control Register Block Field Descriptions Bit Field Name[a] PD_A NA_CTL Field Type Default Value R/W R/W Description 0b Power-down Bank A: 0  Bank A and all QA outputs powered and operate normally 1  Bank A and all QA outputs powered down  no active receivers should be connected to QA outputs. When powering down the output bank, it is recommended to also write a 1 to the PD_QAx fields. 0b Bank A configuration control: 0  NA[5:0], PD_A, STY_Ax, and AMP_Ax[1:0] settings determined by NA[1:0] control pins 1  NA[5:0], PD_A, STY_Ax, and AMP_Ax[1:0] settings determined by register settings over I2C PD_QAx R/W 0b Power-down output QAx: 0  QAx output powered and operates normally 1 = QAx output powered-down - no active receivers should be connected to the QAx output. STY_QAx R/W 0b Output style for output QAx: 0  QAx is LVDS 1  QAx is LVPECL Output amplitude for output QAx (measured single-ended): 00  350mV 01  500mV 10  750mV 11  Reserved AMP_QAx[1:0] R/W 00b Rsvd R/W - Reserved. Always write 0 to this bit location. Read values are not defined. [a] Where x = 0, 1, 2, or 3. ©2021 Renesas Electronics Corporation 20 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Table 15. Bank B Control Register Bit Field Locations and Descriptions Bank B Control Register Block Field Locations Address (Hex) D7 18 D6 D5 D4 Rsvd D2 D1 D0 NB[5:0] 19 1A D3 Rsvd PD_B Rsvd 1B NB_CTL Rsvd 1C PD_QB0 Rsvd STY_QB0 AMP_QB0[1:0] 1D PD_QB1 Rsvd STY_QB1 AMP_QB1[1:0] 1E PD_QB2 Rsvd STY_QB2 AMP_QB2[1:0] 1F PD_QB3 Rsvd STY_QB3 AMP_QB3[1:0] Bank B Control Register Block Field Descriptions Bit Field Name[a] Field Type Default Value Description Divider ratio for Bank B: Any changes to this register do not take effect until the INIT_CLK register bit is toggled. NB[5:0] R/W ©2021 Renesas Electronics Corporation 0Dh 00 0000b  Reserved 00 0001b  ÷1 00 0010b  ÷2 00 0011b  ÷3 00 0100b  ÷4 00 0101b  ÷5 00 0110b  ÷6 00 0111b  ÷8 00 1000b  ÷9 00 1001b  ÷10 00 1010b  ÷12 00 1011b  ÷14 00 1100b  ÷15 00 1101b  ÷16 00 1110b  ÷18 00 1111b  ÷20 01 0000b  ÷21 01 0001b  ÷22 01 0010b  ÷24 01 0011b  ÷25 01 0100b  ÷27 01 0101b  ÷28 21 01 0110b  ÷30 01 0111b  ÷32 01 1000b  ÷33 01 1001b  ÷35 01 1010b  ÷36 01 1011b  ÷40 01 1100b  ÷42 01 1101b  ÷44 01 1110b  ÷45 01 1111b  ÷48 10 0000b  ÷50 10 0001b  ÷54 10 0010b  ÷55 10 0011b  ÷56 10 0100b  ÷60 10 0101b  ÷64 10 0110b  ÷66 10 0111b  ÷70 10 1000b  ÷72 10 1001b  ÷80 10 1010b  ÷84 10 1011b  ÷88 10 1100b  ÷90 10 1101b  ÷96 10 1110b  ÷100 10 1111b  ÷108 11 0000b  ÷110 11 0001b  ÷112 11 0010b  ÷120 11 0011b  ÷128 11 0100b  ÷132 11 0101b  ÷140 11 0110b  ÷144 11 0111b  ÷160 11 1000b  ÷176 11 1001b  ÷180 11 1010b  ÷200 11 1011b  ÷220 11 1100b  Reserved 11 1101b  Reserved 11 1110b  Reserved 11 1111b  Reserved R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Bank B Control Register Block Field Descriptions Bit Field Name[a] PD_B NB_CTL Field Type Default Value R/W R/W Description 0b Power-down Bank B: 0  Bank B and all QB outputs powered and operate normally 1  Bank B and all QB outputs powered down  no active receivers should be connected to QB outputs. When powering down the output bank, it is recommended to also write a 1 to the PD_QBx fields. 0b Bank B configuration control: 0  NB[5:0], PD_B, STY_Bx, and AMP_Bx[1:0] settings determined by NB[1:0] control pins 1  NB[5:0], PD_B, STY_Bx, and AMP_Bx[1:0] settings determined by register settings over I2C PD_QBx R/W 0b Power-down output QBx: 0  QBx output powered and operates normally. 1  QBx output powered down  no active receivers should be connected to the QBx output. STY_QBx R/W 0b Output style for output QBx: 0  QBx is LVDS 1  QBx is LVPECL Output amplitude for output QBx (measured single-ended): 00  350mV 01  500mV 10  750mV 11  Reserved AMP_QBx[1:0] R/W 00b Rsvd R/W - Reserved. Always write 0 to this bit location. Read values are not defined. [a] Where x = 0, 1, 2, or 3. ©2021 Renesas Electronics Corporation 22 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Table 16. Bank C Control Register Bit Field Locations and Descriptions Bank C Control Register Block Field Locations Address (Hex) D7 20 D6 D5 D4 Rsvd D2 D1 D0 NC[5:0] 21 22 D3 Rsvd PD_C Rsvd 23 NC_CTL Rsvd 24 PD_QC0 Rsvd STY_QC0 AMP_QC0[1:0] 25 PD_QC1 Rsvd STY_QC1 AMP_QC1[1:0] Bank C Control Register Block Field Descriptions Bit Field Name[a] Field Type Default Value Description Divider ratio for Bank C: Any changes to this register do not take effect until the INIT_CLK register bit is toggled. NC[5:0] PD_C R/W R/W ©2021 Renesas Electronics Corporation 0Dh 0b 00 0000b  Reserved 00 0001b  ÷1 00 0010b  ÷2 00 0011b  ÷3 00 0100b  ÷4 00 0101b  ÷5 00 0110b  ÷6 00 0111b  ÷8 00 1000b  ÷9 00 1001b  ÷10 00 1010b  ÷12 00 1011b  ÷14 00 1100b  ÷15 00 1101b  ÷16 00 1110b  ÷18 00 1111b  ÷20 01 0000b  ÷21 01 0001b  ÷22 01 0010b  ÷24 01 0011b  ÷25 01 0100b  ÷27 01 0101b  ÷28 01 0110b  ÷30 01 0111b  ÷32 01 1000b  ÷33 01 1001b  ÷35 01 1010b  ÷36 01 1011b  ÷40 01 1100b  ÷42 01 1101b  ÷44 01 1110b  ÷45 01 1111b  ÷48 10 0000b  ÷50 10 0001b  ÷54 10 0010b  ÷55 10 0011b  ÷56 10 0100b  ÷60 10 0101b  ÷64 10 0110b  ÷66 10 0111b  ÷70 10 1000b  ÷72 10 1001b  ÷80 10 1010b  ÷84 10 1011b  ÷88 10 1100b  ÷90 10 1101b  ÷96 10 1110b  ÷100 10 1111b  ÷108 11 0000b  ÷110 11 0001b  ÷112 11 0010b  ÷120 11 0011b  ÷128 11 0100b  ÷132 11 0101b  ÷140 11 0110b  ÷144 11 0111b  ÷160 11 1000b  ÷176 11 1001b  ÷180 11 1010b  ÷200 11 1011b  ÷220 11 1100b  Reserved 11 1101b  Reserved 11 1110b  Reserved 11 1111b  Reserved Power-down Bank C: 0  Bank C and all QC outputs powered and operate normally 1  Bank C and all QC outputs powered down  no active receivers should be connected to QC outputs. When powering down the output bank, it is recommended to also write a 1 to the PD_QCx fields. 23 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Bank C Control Register Block Field Descriptions Bit Field Name[a] NC_CTL PD_QCx STY_QCx Field Type Default Value R/W R/W R/W Description 0b Bank C configuration control: 0  NC[5:0], PD_C, STY_Cx, and AMP_Cx[1:0] settings determined by NC[1:0] control pins 1  NC[5:0], PD_C, STY_Cx, and AMP_Cx[1:0] settings determined by register settings over I2C 0b Power-down output QCx: 0  QCx output powered and operates normally. 1  QCx output powered down  no active receivers should be connected to the QCx output. 0b Output style for output QCx: 0  QCx is LVDS 1  QCx is LVPECL Output amplitude for output QCx (measured single-ended): 00  350mV 01  500mV 10  750mV 11  Reserved AMP_QCx[1:0] R/W 00b Rsvd R/W - Reserved. Always write 0 to this bit location. Read values are not defined. [a] Where x = 0 or 1. ©2021 Renesas Electronics Corporation 24 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Table 17. Bank D Control Register Bit Field Locations and Descriptions Bank D Control Register Block Field Locations Address (Hex) D7 D6 D5 D4 D3 28 ND_FRAC[7:0] 29 ND_FRAC[15:8] 2A ND_FRAC[23:16] 2B Rsvd 2C D1 D0 ND_FINT[3:0] Rsvd ND[5:0] 2D 2E D2 Rsvd ND_DIVF[1:0] PD_D ND_DIV Rsvd 2F ND_SRC ND_CTL Rsvd 30 PD_QD0 31 PD_QD1 Rsvd STY_QD0 AMP_QD0[1:0] Rsvd Bank D Control Register Block Field Descriptions Bit Field Name Field Type Default Value ND_FRAC[23:0] R/W 600000h ND_FINT[3:0] R/W 1001b ©2021 Renesas Electronics Corporation Description Fractional portion of divider ratio for fractional divider Bank D: Fraction used in divide ratio  ND_FRAC[23:0] / 224 Integer portion of divider ratio for fractional divider Bank D: 0h4h  Reserved 5hFh  Divide by the value used (e.g. 5  divide-by-5) 25 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Bank D Control Register Block Field Descriptions Bit Field Name Field Type Default Value Description Divider ratio for Bank D: Any changes to this register do not take effect until the INIT_CLK register bit is toggled. ND[5:0] R/W 0Dh 00 0000b  Reserved 00 0001b  1 00 0010b  2 00 0011b  3 00 0100b  4 00 0101b  5 00 0110b  6 00 0111b  8 00 1000b  9 00 1001b  10 00 1010b  12 00 1011b  14 00 1100b  15 00 1101b  16 00 1110b  18 00 1111b  20 01 0000b  21 01 0001b  22 01 0010b  24 01 0011b  25 01 0100b  27 01 0101b  28 01 0110b  30 01 0111b  32 01 1000b  33 01 1001b  35 01 1010b  36 01 1011b  40 01 1100b  42 01 1101b  44 01 1110b  45 01 1111b  48 10 0000b  50 10 0001b  54 10 0010b  55 10 0011b  56 10 0100b  60 10 0101b  64 10 0110b  66 10 0111b  70 10 1000b  72 10 1001b  80 10 1010b  84 10 1011b  88 10 1100b  90 10 1101b  96 10 1110b  100 10 1111b  108 11 0000b  110 11 0001b  112 11 0010b  120 11 0011b  128 11 0100b  132 11 0101b  140 11 0110b  144 11 0111b  160 11 1000b  176 11 1001b  180 11 1010b  200 11 1011b  220 11 1100b  Reserved 11 1101b  Reserved 11 1110b  Reserved 11 1111b  Reserved Note: QD1 CMOS output should be powered down for output frequencies greater than the maximum listed for it in Table 31. ND_DIVF[1:0] R/W 00b Post-divider ratio for fractional divider for Bank D: 00  1 01  2 10  4 11  Reserved ND_DIV R/W 0b Control which divider is used to provide output frequency for Bank D: 0  Integer divider D (ND configures this) 1  Fractional mode (ND_FINT, ND_FRAC, and ND_DIVF configure this) 0b Output source selection for Bank D: 0  Bank D is driven from the integer or fractional divider as selected by ND_DIV 1  Bank D is driven from the input reference (after the mux) ND_SRC R/W ©2021 Renesas Electronics Corporation 26 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Bank D Control Register Block Field Descriptions Bit Field Name PD_D ND_CTL Field Type Default Value R/W R/W Description 0b Power-down Bank D: 0  Bank D and all QD outputs powered and operate normally 1  Bank D and all QD outputs powered down  no active receivers should be connected to QD0 output. QD1 output is in High-Impedance. When powering down the output bank, it is recommended to also write a 1 to the PD_QDx fields. 0b Bank D configuration control: 0  ND[5:0], ND_FRAC[23:0], ND_FINT[3:0], ND_DIVF[1:0], ND_DIV, ND_SRC, PD_D, PD_QD1, STY_D0, and AMP_D0[1:0] settings determined by ND[1:0] control pins 1  ND[5:0], ND_FRAC[23:0], ND_FINT[3:0], ND_DIVF[1:0], ND_DIV, ND_SRC, PD_D, PD_QD1, STY_D0, and AMP_D0[1:0] settings determined by register settings over I2C PD_QDx R/W 0b Power-down output QDx: 0  QD[0:1] outputs powered and operate normally. 1  QD0 output powered down  no active receivers should be connected to the QD0 output, QD1 output is in High-Impedance. STY_QD0 R/W 0b Output style for output QD0: 0  QD0 is LVDS 1  QD0 is LVPECL Output amplitude for output QD0 (measured single-ended): 00  350mV 01  500mV 10  750mV 11  Reserved AMP_QD0[1:0] R/W 00b Rsvd R/W - ©2021 Renesas Electronics Corporation Reserved. Always write 0 to this bit location. Read values are not defined. 27 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Table 18. EEPROM Reading Status Register Bit Field Locations and Descriptions Device Control Register Block Field Locations Address (Hex) D7 3B D6 D5 Rsvd D4 D3 D2 D1 D0 EE_ACT Rsvd EE_DONE EE_ABORT EE_CHK EEPROM Reading Status Register Field Descriptions Bit Field Name Field Type Default Value EE_ACT R - 0 = EEPROM reading completed or has not started / been requested yet 1 = EEPROM reading is active EE_DONE R - 0 = EEPROM reading was never requested / did not complete 1 = EEPROM reading completed EE_ABORT R - 0 = EEPROM reading did not abort 1 = EEPROM reading aborted EE_CHK R - 0 = No checksum error was detected 1 = Checksum error was detected Rsvd R - Reserved. Always write 0 to this bit location. Read values are not defined. ©2021 Renesas Electronics Corporation Description 28 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Table 19. Device Control Register Bit Field Locations and Descriptions Device Control Register Block Field Locations Address (Hex) D7 D6 D5 3D INIT_CLK Rsvd 3E RELOCK Rsvd 3F PB_CAL Rsvd 40 D4 Rsvd D3 EN_A D2 D1 D0 EN_B EN_C EN_D Device Control Register Block Field Descriptions Bit Field Name Field Type Default Value INIT_CLK W/O[a] 0b Writing a 1 to this bit location will cause output dividers to be synchronized. This must be done every time a divider value is changed. This bit will auto-clear. RELOCK W/O[a] 0b Writing a 1 to this bit location will cause the PLL to re-lock. This bit will auto-clear. PB_CAL [a] 0b Precision Bias Calibration: Setting this bit to 1 will start the calibration of an internal precision bias current source. The bias current is used as reference for outputs configured as LVDS and for as reference for the charge pump currents. This bit will auto-clear. 1b Output Enable control for Bank A: 0  Bank A outputs QA[0:3] disabled to logic-low state (QAx  0, nQAx  1) 1  Bank A outputs QA[0:3] enabled EN_A W/O R/W Description EN_B R/W 1b Output Enable control for Bank B: 0  Bank B outputs QB[0:3] disabled to logic-low state (QBx  0, nQBx  1) 1  Bank B outputs QB[0:3] enabled EN_C R/W 1b Output Enable control for Bank C: 0  Bank C outputs QC[0:1] disabled to logic-low state (QCx  0, nQCx  1) 1  Bank C outputs QC[0:1] enabled Output Enable control for Bank D: 0  Bank D outputs QD[0:1] disabled to logic-low state (QD0  0, nQD0  1, QD1  0) 1  Bank D outputs QD[0:1] enabled Note: If Bank D is powered down via the PD_D bit or the QD1 output is powered down by the PD_QD1 bit, then QD1 will be in High-Impedance regardless of the state of this bit. EN_D R/W 1b Rsvd R/W - Reserved. Always write 0 to this bit location. Read values are not defined. [a] These bits are read as 0. When a 1 is written to them, it will have the indicated effect and then self-clear back to 0. ©2021 Renesas Electronics Corporation 29 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Absolute Maximum Ratings Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of the product at these conditions or any conditions beyond those listed in the DC Electrical Characteristics or AC Electrical Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability. Table 20. Absolute Maximum Ratings Item Rating Supply Voltage, V CC 3.6V Inputs, VI OSCI Other Inputs -0.9V to 3.6V -0.5V to 3.6V Outputs, VO (LVCMOS) -0.5V to 3.6V Outputs, IO (LVPECL) Continuous Current Surge Current 50mA 100mA Outputs, IO (LVDS) Continuous Current Surge Current 50mA 100mA Maximum Junction Temperature, tJMAX 125C Storage Temperature, T STG -65C to 150C Table 21. Input Characteristics Symbol Parameter Test Conditions Minimum Typical Maximum Units CIN Input Capacitance[a] 3.5 pF RPULLDOWN Input Pulldown Resistor 51 k RPULLUP Input Pullup Resistor 51 k [a] This specification does not apply to OSCI and OSCO pins. Table 22. Output Characteristics Symbol ROUT Parameter Output Impedance LOCK QD1 Test Conditions VCC[a]  3.3V Minimum Typical Maximum Units 20  30  [a] VCC denotes VCC_SP, VCCOD. ©2021 Renesas Electronics Corporation 30 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet DC Electrical Characteristics Table 23. Power Supply DC Characteristics, VCC_x[a]  VCCOX[b]  3.3V ±5%, TA  -40°C to 85°C, VEE  0V Symbol Minimum Typical Maximum Units Core Supply Voltage 3.135 3.3 3.465 V VCCA_X[c] Analog Supply Voltage 3.135 3.3 3.465 V VCCOX Output Supply Voltage 3.135 3.3 3.465 V Core Supply Current 83 100 mA Analog Supply Current 138 165 mA 350mV, all outputs enabled and terminated[g] 130 160 mA 500mV, all outputs enabled and terminated [h] 143 175 mA 750mV, all outputs enabled and terminated [i] 165 200 mA 350mV, all outputs enabled and terminated [j] 83 96 mA 500mV, all outputs enabled and terminated[j] 100 120 mA [j] 129 152 mA 350mV, divider and buffers disabled and unterminated 1 2 mA 500mV, divider and buffers disabled and unterminated 1 2 mA 750mV, divider and buffers disabled and unterminated 1 2 mA 350mV, all outputs enabled and terminated[g] 130 160 mA 500mV, all outputs enabled and terminated [h] 143 175 mA 750mV, all outputs enabled and terminated [i] 165 200 mA VCC_X ICC_X [d] ICCA_X [e] Parameter Test Conditions LVPECL ICCOA [f] Bank A Output Supply Current LVDS 750mV, all outputs enabled and terminated LVPECL or LVDS LVPECL 350mV, all outputs enabled and terminated[j] ICCOB [f] Bank B Output Supply Current LVDS LVPECL or LVDS ©2021 Renesas Electronics Corporation 83 96 mA 500mV, all outputs enabled and terminated [j] 100 120 mA 750mV, all outputs enabled and terminated [j] 129 152 mA 350mV, divider and buffers disabled and unterminated 1 2 mA 500mV, divider and buffers disabled and unterminated 1 2 mA 750mV, divider and buffers disabled and unterminated 1 2 mA 31 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Table 23. Power Supply DC Characteristics, VCC_x[a]  VCCOX[b]  3.3V ±5%, TA  -40°C to 85°C, VEE  0V Symbol Parameter Test Conditions Typical Maximum Units terminated[g] 80 98 mA 500mV, all outputs enabled and terminated[h] 87 105 mA 750mV, all outputs enabled and terminated [i] 98 120 mA 350mV, all outputs enabled and terminated [j] 53 65 mA terminated[j] 64 75 mA 750mV, all outputs enabled and terminated[j] 76 92 mA 350mV, divider and buffers disabled and unterminated 1 2 500mV, divider and buffers disabled and unterminated 1 2 750mV, divider and buffers disabled and unterminated 1 2 350mV, all outputs enabled and terminated[g] 82 100 mA 500mV, all outputs enabled and terminated [h] 84 105 mA 750mV, all outputs enabled and terminated [i] 90 112 mA 350mV, all outputs enabled and terminated [j] 72 86 mA 500mV, all outputs enabled and terminated[j] 76 92 mA [j] 84 100 mA 350mV, divider and buffers disabled and unterminated 3 4 500mV, divider and buffers disabled and unterminated 3 4 750mV, divider and buffers disabled and unterminated 3 4 350mV, outputs enabled and terminated[g] 422 495 mA 500mV, outputs enabled and terminated [h] 430 506 mA 750mV, outputs enabled and terminated [i] 446 523 mA 350mV, divider and buffers disabled and unterminated 220 262 500mV, divider and buffers disabled and unterminated 220 262 750mV, divider and buffers disabled and unterminated 220 262 350mV, all outputs enabled and LVPECL ICCOC[f] Bank C Output Supply Current LVDS LVPECL or LVDS LVPECL ICCOD [f] Bank D Output Supply Current LVDS 750mV, all outputs enabled and terminated LVPECL or LVDS LVPECL IEE[f] 500mV, all outputs enabled and Minimum Power Supply Current for VEE LVPECL mA mA mA mA mA mA mA mA mA [a] VCC_x denotes VCC_CP, VCC_CK, VCC_SP. [b] VCCOX denotes V CCOA, VCCOB, VCCOC, VCCOD. [c] VCCA_X denotes V CCA_IN1, VCCA_IN2, VCCA, VCCA_XT. [d] ICC_X denotes ICC_CP, ICC_CK, ICC_SP. [e] ICCA_X denotes ICCA_IN1, ICCA_IN2, ICCA, ICCA_XT. [f] Internal maximum dynamic switching current is included. [g] Differential outputs terminated with 50 to VCCOX  1.6V. QD1 output terminated with 50to VCCOD/2. ©2021 Renesas Electronics Corporation 32 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet [h] Differential outputs terminated with 50 to VCCOX  1.75V. QD1 output terminated with 50to VCCOD/2. [i] Differential outputs terminated with 50 to VCCOX  2V. QD1 output terminated with 50to VCCOD/2. [j] Differential outputs terminated with 100 across Q and nQ. QD1 output terminated with 50to VCCOD/2. Table 24. LVCMOS DC Characteristics for 3-level Pins, VCC_X[a] Symbol Parameter VIH Input High Voltage VIM Input Middle Voltage VIL Input Low Voltage IIH Input High Current IIM Input Middle Current IIL Input Low Current  VCCOX[b]  3.3V±5%, TA  -40°C to 85°C, VEE  0V Test Conditions Minimum Typical 0.7  VCC[c] FIN[1:0], NA[1:0], NB[1:0], NC[1:0], ND[1:0] 0.4 3.465 V 0.6  VCC −0.3 0.3  VCC [c] V [c] V 150 [c] VIN  VCC /2 VCC Units  VCC[c] VCC[c]  VIN  3.465V [c]  Maximum µA ±1 3.465V, VIN  0V µA −150 µA [a] VCC_X denotes VCC_CP, VCC_CK, VCC_SP. [b] VCCOX denotes V CCOA, VCCOB, VCCOC, VCCOD. [c] VCC denotes VCCA_IN1, VCC_CK. Table 25. LVCMOS DC Characteristics for 2-level Pins, VCC_X[a] Symbol Parameter VIH Input High Voltage VIL Input Low Voltage IIH Input High Current IIL Input Low Current VOH VOL  VCCOX[b]  3.3V±5%, TA  -40°C to 85°C, VEE  0V Test Conditions Minimum 0.7  VCC REF_SEL −0.3 SDATA, SCLK SCLK, SDATA −0.3 VCC [c]  Maximum Units 3.465 V 0.3  VCC[c] V 0.15  VCC V [c] 5 µA VIN  3.465V 150 µA VCC REF_SEL VCC [c]  Output High Voltage LOCK IOH  −4mA Output Low Voltage SDATA, SCLK, LOCK IOL  4mA SCLK, SDATA Typical VIN  3.465V [c]  REF_SEL [c] VCC[c] 3.465V, VIN  0V 3.465V, VIN  0V −150 µA −5 µA 2.2 V 0.45 V [a] VCC_X denotes VCC_CP, VCC_CK, VCC_SP. [b] VCCOX denotes V CCOA, VCCOB, VCCOC, VCCOD. [c] VCC denotes VCC_SP, VCC_CK. ©2021 Renesas Electronics Corporation 33 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Table 26. Differential Input DC Characteristics, VCC_X[a]  VCCOX[b]  3.3V ±5%, TA  -40°C to 85°C, VEE  0V Symbol IIH Parameter Input High Current Test Conditions Minimum Typical Maximum Units 150 µA CLK_IN, nCLK_IN VCC[c]  VIN  3.465V CLK_IN VCC[c]  3.465V, VIN  0V −5 µA nCLK_IN VCC[c]  3.465V, VIN  0V −150 µA IIL Input Low Current VPP Peak-to-Peak Voltage[d], [e] CLK_IN, nCLK_IN 0.2 1.4 V VCMR Common Mode Input Voltage[d] [e] CLK_IN, nCLK_IN VEE  1.1 VCC[c]  0.3 V [a] VCC_X denotes VCC_CP, VCC_CK, VCC_SP. [b] VCCOX denotes V CCOA, VCCOB, VCCOC, VCCOD. [c] VCC denotes VCC_CK. [d] Common mode voltage is defined as the cross point. [e] Input voltage cannot be less than VEE  300mV or more than VCC. Table 27. LVPECL Output DC Characteristics (Qmn[a]), VCC_X[b] Symbol VOH VOL VSWING Parameter Output High Voltage[d] Output Low Voltage[d] Single-ended Peak-to-Peak Output Voltage Swing  VCCOX[c]  3.3V±5%, TA  -40°C to 85°C, VEE  0V Test Conditions Minimum Typical Maximum 350mV Amplitude setting VCCOX  1.1 VCCOX  0.8 500mV Amplitude setting VCCOX  1.1 VCCOX  0.8 750mV Amplitude setting VCCOX  1.1 VCCOX  0.8 350mV Amplitude setting VCCOX  1.5 VCCOX  1.1 500mV Amplitude setting VCCOX  1.6 VCCOX  1.3 750mV Amplitude setting VCCOX  1.8 VCCOX  1.5 350mV Amplitude setting 280 350 420 500mV Amplitude setting 430 500 570 750mV Amplitude setting 630 700 770 Units V V mV [a] Qmn denotes the differential outputs QA[0:3], QB[0:3], QC[0:1], and QD0. [b] VCC_X denotes VCC_CP, VCC_CK, VCC_SP. [c] VCCOX denotes V CCOA, VCCOB, VCCOC, VCCOD. [d] Outputs terminated with 50 to VCCOX  2V for 750mV amplitude setting, VCCOX  1.75V for 500mV amplitude setting, and VCCOX  1.6V for 350mV amplitude setting. ©2021 Renesas Electronics Corporation 34 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Table 28. LVDS Output DC Characteristics (Qmn[a]), VCC_X[b]  VCCOX[c]  3.3V ±5%, TA  -40°C to 85°C, VEE  0V Symbol VOD VOD VOS VOS Parameter Differential Output Voltage Test Conditions Minimum Typical Maximum 350mV Amplitude setting 0.27 0.32 0.37 500mV Amplitude setting 0.39 0.46 0.53 750mV Amplitude setting 0.62 0.69 0.76 VOD Magnitude Change Offset Voltage 50 [d],[e],[f] [g] , 350mV Amplitude setting 1.9 2.3 2.7 500mV Amplitude setting 1.8 2.2 2.6 750mV Amplitude setting 1.7 2.1 2.5 VOS Magnitude Change Units V mV V 50 mV Maximum Units [a] Qmn denotes the differential outputs QA[0:3], QB[0:3], QC[0:1], and QD0. [b] VCC_X denotes VCC_CP, VCC_CK, VCC_SP. [c] VCCOX denotes V CCOA, VCCOB, VCCOC, VCCOD. [d] No external DC pulldown resistor. [e] Loading condition is with 100 across the differential output. [f] Offset voltage (VOS) changes with amplitude setting. [g] It does not conform to standard LVDS VOS values. Table 29. LVCMOS DC Characteristics for QD1 Output, VCC_x[a] = VCCOD = 3.3V ±5% Symbol Parameter Test Conditions VOH Output High Voltage QD1, IOH = -8mA VOL Output Low Voltage QD1, IOL = 8mA Minimum Typical 2.6 V 0.5 V Maximum Units 50 MHz [a] VCC_x denotes VCC_CP, VCC_CK, VCC_SP. Table 30. Crystal Characteristics Parameter Test Conditions Minimum Mode of Oscillation Fundamental Frequency Equivalent Series Resistance (ESR) Load Capacitance (CL) Shunt Capacitance 10  32 MHz 30  32 MHz 50 50MHz Crystal 8 < 12 25MHz Crystal 12 < 22  pF  32 MHz 3 pF  32 MHz 7 pF Maximum Crystal Drive Level 200 Frequency Stability (Total) ©2021 Renesas Electronics Corporation Typical −100 35 W 100 ppm R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet AC Electrical Characteristics Table 31. AC Characteristics,[a] VCC_X[b]  VCCOX[c]  3.3V 5%, TA  -40°C to 85°C, VEE  0V Symbol Parameter fVCO VCO Frequency fPFD Phase / Frequency Detector Frequency Test Conditions QA[0:3], nQA[0:3] QB[0:3], nQB[0:3] QC[0:1], nQC[0:1] fOUT Output Frequency QD0, nQD0 QD1 Integer divider selected Fractional divider selected Integer divider selected Fractional divider selected Minimum Typical Maximum Units 2400 2500 MHz 5 200 MHz 10.91 2500 MHz 10.91 2500 MHz 20 250 MHz 10.91 250 MHz 20 250 MHz Bank A tsk(b) Bank Skew[d], [e], [f] Bank B 45 Same frequency and output type 45 Bank C tR / t F odc Output Rise/Fall Time Output Duty Cycle[g] tSTARTUP PLL Lock 20 QA[0:3],nQA[0:3] QB[0:3], nQB[0:3] QC[0:1], nQC[0:1] QD0, nQD0 20% to 80% 100 200 QD1 20% to 80% 700 1100 QA[0:3], nQA[0:3] QB[0:3], nQB[0:3] QC[0:1], nQC[0:1], QD0, nQD0 FOUT  1250MHz 45 50 55 % FOUT > 1250MHz 40 50 60 % FOUT < 156.25MHz 45 50 55 % FOUT  156.25MHz 40 50 60 % QD1 tLOCK ps Time[h] PLL Power up to Lock Time[i] 10 ps ms CR = 0.1µF, 50MHz Crystal 32 40 CR = 0.1µF, 25MHz Crystal 41 50 CR = 1µF, 50MHz Crystal 117 170 CR = 1µF, 25MHz Crystal 129 180 ms [a] Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions. [b] VCC_X denotes VCC_CP, VCC_CK, VCC_SP. [c] VCCOX denotes V CCOA, VCCOB, VCCOC, VCCOD. [d] Defined as skew among outputs at the same supply voltage and with equal load conditions. Measured at the output differential crosspoints. [e] This parameter is defined in accordance with JEDEC Standard 65. [f] This parameter is guaranteed by characterization. Not tested in production. [g] Duty cycle of PLL bypassed signals (input reference clock or crystal input) is not adjusted by the device. ©2021 Renesas Electronics Corporation 36 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet [h] PLL Lock Time is defined as time from input clock availability to frequency locked output. The following loop filter component values may be used: RZ  150Ω, CZ  0.1μF, C P  30pF. See Applications Information. [i] PLL Power up to Lock Time is defined as time from 80% power supply (< 500µs ramp rate) to frequency locked output. By design, the output is active only when the PLL is locked. Characterized with the following loop filter component values: RZ  150Ω, CZ  4.7μF, and CP  30pF. Table 32. Qmn[a] and QD1 Phase Noise and Jitter Characteristics, VCC_X[b]  VCCOX[c]  3.3V  5%, TA  -40°C to 85°C[d][e][f][g][h][i] Symbol tjit(Ø) Parameter Test Conditions Minimum Typical Maximum Units 110 fs RMS Phase Jitter Random Qmn = 156.25MHz Integration range: 12kHz  20MHz 80 RMS Phase Jitter Random Qmn  125MHz Integration range: 12kHz  20MHz 85 fs RMS Phase Jitter Random Qmn  100MHz Integration range: 12kHz  20MHz 92 fs RMS Phase Jitter Random Qmn  25MHz Integration range: 12kHz  5MHz 115 fs RMS Phase Jitter Random QD0 = 212.5MHz (fractional)[j] Integration range: 12kHz  20MHz 132 fs RMS Phase Jitter Random QD1 = 125MHz Integration range: 12kHz  20MHz 170 fs QAn  156.25MHz Integration range: 12kHz  20MHz 95 fs QBn  100MHz Integration range: 12kHz  20MHz 140 fs QCn  25MHz Integration range: 12kHz  5MHz 115 fs QD0  212.5MHz (fractional) Integration range: 12kHz  20MHz 133 fs RMS Phase Jitter Random[k] N(10) Single-Side Band Noise Power, 10Hz from Carrier Qmn  156.25MHz −71 dBc/Hz N(100) Single-Side Band Noise Power, 100Hz from Carrier Qmn  156.25MHz −113 dBc/Hz N(1k) Single-Side Band Noise Power, 1kHz from Carrier Qmn  156.25MHz −136 dBc/Hz N(10k) Single-Side Band Noise Power, 10kHz from Carrier Qmn  156.25MHz −137.6 dBc/Hz N(100k) Single-Side Band Noise Power, 100kHz from Carrier Qmn  156.25MHz −143.4 dBc/Hz N(1M) Single-Side Band Noise Power, 1MHz from Carrier Qmn  156.25MHz −156 dBc/Hz N(10M) Single-Side Band Noise Power, 10MHz from Carrier Qmn  156.25MHz −162 dBc/Hz N() Noise Floor (30MHz from Carrier) Qmn  156.25MHz −162 dBc/Hz [a] Qmn denotes the differential outputs QA[0:3], QB[0:3], QC[0:1] or QD0. [b] VCC_X denotes VCC_CP, VCC_CK, VCC_SP. [c] VCCOX denotes V CCOA, VCCOB, VCCOC, VCCOD. ©2021 Renesas Electronics Corporation 37 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet [d] Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions. [e] All outputs enabled and configured for the same output frequency unless otherwise noted. [f] Characterized using a 50MHz Crystal unless otherwise noted. [g] VCCA requires a voltage regulator. Voltage supplied to VCCA should be derived from a regulator with a typical power supply rejection ratio of 80dB at 1kHz and ultra-low noise generation with a typical value of 3nV/Hz at 10kHz and 7nV/Hz at 1kHz. [h] Characterized with 750mV output voltage swing configuration for all differential outputs. [i] The following loop filter component values were used: RZ  150, CZ  0.1µF, CP  200pF. PLL Charge Pump Current Control set at 5.2mA. [j] QAx  156.25MHz, QBx  156.25MHz, QCx  156.25MHz, QD1 = OFF. [k] QAx  156.25MHz, QBx  100MHz, QCx  25MHz, QD0  212.5MHz (fractional), QD1 = OFF. Phase Noise Plots Noise PowerdBc Hz Figure 4: Typical Phase Noise at 312.5MHz (QB1) Offset Frequency (Hz) ©2021 Renesas Electronics Corporation 38 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Noise PowerdBc Hz Figure 5: Typical Phase Noise at 156.25MHz (QB1) Offset Frequency (Hz) ©2021 Renesas Electronics Corporation 39 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Noise PowerdBc Hz Figure 6: Typical Phase Noise at 125MHz (QB1)[1] Offset Frequency (Hz) [1] Measured using a 50MHz, 12pF crystal as input reference. ©2021 Renesas Electronics Corporation 40 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Applications Information Recommendations for Unused Input and Output Pins Inputs LVCMOS Control Pins All control pins have internal pull-up and/or pull-down resistors; additional resistance is not required but can be added for additional protection. A 1k resistor can be used. Outputs LVPECL Outputs All unused LVPECL outputs must be left floating. IDT recommends that there is no trace attached. LVDS Outputs All unused LVDS output pairs can be either left floating or terminated with 100 across. If left floating, there should be no trace attached. LVCMOS Outputs QD1 output can be left floating if unused. There should be no trace attached. Overdriving the XTAL Interface The OSCI input can be overdriven by an LVCMOS driver or by one side of a differential driver through an AC coupling capacitor. The OSCO pin can be left floating. The amplitude of the input signal should be between 500mV and 1.2V and the slew rate should not be less than 0.2V/ns. For 3.3V LVCMOS inputs, the amplitude must be reduced from full swing to at least half the swing in order to prevent signal interference with the power rail and to reduce internal noise. Figure 7 shows an example of the interface diagram for a high-speed 3.3V LVCMOS driver. This configuration requires that the sum of the output impedance of the driver (Ro) and the series resistance (Rs) equals 90. In addition, matched termination at the crystal input will further attenuate the signal. This can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most 50 applications, R1 and R2 can be 100. This can also be accomplished by removing R1 and changing R2 to 50. The values of the resistors can be increased to reduce the loading for a slower and weaker LVCMOS driver. Figure 7: General Diagram for LVCMOS Driver to XTAL Input Interface OSCO VCC R1 100 Ro RS C1 Zo = 50Ω OSCI 0.1μF Ro + Rs ȍ LVCMOS_Driver R2 100 Figure 8 shows an example of the interface diagram for an LVPECL driver. This is a standard LVPECL termination with one side of the driver feeding the OSCI input. It is recommended that all components in the schematics be placed in the layout. Though some components may not be used, they can be used for debugging purposes. The datasheet specifications are characterized and guaranteed by using a quartz crystal as the input. ©2021 Renesas Electronics Corporation 41 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Figure 8: General Diagram for LVPECL Driver to XTAL Input Interface OSCO C2 Zo = 50Ω OSCI 0.1μF Zo = 50Ω LVPECL_Driver R1 50 R2 50 R3 50 Wiring the Differential Input to Accept Single-Ended Levels Figure 9 shows how a differential input can be wired to accept single-ended levels. The reference voltage V 1 = VCC/2 is generated by the bias resistors, R1 and R2. The bypass capacitor (C1) is used to help filter noise on the DC bias. This bias circuit should be located as close to the input pin as possible. The ratio of R1 and R2 may need to be adjusted to position the V1 in the center of the input voltage swing. For example, if the input clock is driven from a single-ended 2.5V LVCMOS driver and the DC offset (or swing center) of this signal is 1.25V, then adjust the R1 and R2 values to set V1 at 1.25V. The values below are when both the single-ended swing and VCC are at the same voltage. This configuration requires that the sum of the output impedance of the driver (Ro) and the series resistance (Rs) equals the transmission line impedance. Figure 9. Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels In addition, matched termination at the input will attenuate the signal in half. This can be done in one of two ways. First, R3 and R4 in parallel should equal the transmission line impedance. For most 50 applications, R3 and R4 can be 100. The resistor values can be increased to reduce the loading for a slower and weaker LVCMOS driver. When using single-ended signaling, the noise rejection benefits for differential signaling are reduced. Even though the differential input can handle full rail LVCMOS signaling, it is recommended to reduce the amplitude while maintaining an edge rate faster than 1V/ns. The datasheet specifies a lower differential amplitude, however, this only applies to differential signals. For single-ended applications, the swing can be larger, however, VIL cannot be less than -0.3V, and VIH cannot be more than VCC + 0.3V. Though some of the recommended components may not be used, the pads should be placed in the layout. They can be used for debugging purposes. The datasheet specifications are characterized and guaranteed by using a differential signal. ©2021 Renesas Electronics Corporation 42 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet 3.3V Differential Clock Input Interface CLK, nCLK accepts LVDS, LVPECL and other differential signals. Both VSWING and VOX must meet the VPP and VCMR input requirements. Figure 10 to Figure 12 show interface examples for the CLK, nCLK input driven by the most common driver types. The input interfaces suggested here are some examples of direct-coupled termination. Figure 10. CLK/nCLK Input Driven by a 3.3V LVPECL Driver Figure 11. CLK/nCLK Input Driven by a 3.3V LVPECL Driver Figure 12. CLK/nCLK Input Driven by a 3.3V LVDS Driver ©2021 Renesas Electronics Corporation 43 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet LVDS Driver Termination For a general LVDS interface, the recommended value for the termination impedance (ZT) is between 90 and 132. The actual value should be selected to match the differential impedance (Z0) of your transmission line. A typical point-to-point LVDS design uses a 100 parallel resistor at the receiver and a 100 differential transmission-line environment. In order to avoid transmission-line reflection issues, the components should be surface mounted and must be placed as close to the receiver as possible. IDT offers a full line of LVDS compliant devices with two types of output structures: current source and voltage source. The standard termination schematic as shown in Figure 13 can be used with either type of output structure. Figure 14, which can also be used with both output types, is an optional termination with center tap capacitance to help filter common mode noise. The capacitor value should be approximately 50pF. If using a non-standard termination, it is recommended to contact IDT and confirm if the output structure is current source or voltage source type. In addition, since these outputs are LVDS compatible, the input receiver’s amplitude and common-mode input range should be verified for compatibility with the output. Figure 13: Standard LVDS Termination Figure 14: Optional LVDS Termination For more information on the recommended termination schemes, see Figure 15 to Figure 17. ©2021 Renesas Electronics Corporation 44 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Figure 15: DC Termination for LVDS Outputs 3.3V 3.3V Z0 = 50Ω 100Ω Input high impedance Z0 = 50Ω 8V9N302 8V49NS0412 Receiver Figure 16: AC Termination for LVDS Outputs 8V49NS0412 Figure 17. AC Termination for LVDS Outputs Used with an Input Clock Receiver with Internal 50 Terminations and DC Bias 3.3V 3.3V 0.1μF Z0 = 50Ω 0.1μF Z0 = 50Ω 8V9N32 8V49NS0412 ©2021 Renesas Electronics Corporation Internal 50Ω terminations Receiver 45 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Termination for 3.3V LVPECL Outputs The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts are recommended only as guidelines. The differential outputs generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50 transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. Figure 18 and Figure 19 show two different termination schemes that are recommended only as guidelines. Other suitable clock termination schemes may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations. Figure 18: 3.3V LVPECL Output Termination Figure 19: 3.3V LVPECL Output Termination R3 125Ω 3.3V R4 125Ω 3.3V 3.3V Zo = 50Ω + _ Input Zo = 50Ω R1 84Ω R2 84Ω Figure 18 and Figure 19 show two different LVPECL termination schemes for 750mV amplitude setting which are recommended only as guidelines. Recommended values of R1/R2/R3/R4 for LVPECL termination (Figure 19; Thevenin Equivalent) for 350mV and 500mV amplitude settings can be found in the following table. Table 33. LVPECL Output Termination, VCCOX = 3.3V ±5% Test Conditions Bias Voltage R1 R2 R3 R4 350mV Amplitude Setting VCCOX – 1.6V 105 105 97.6 97.6 500mV Amplitude Setting VCCOX – 1.75V 95.3 95.3 107 107 750mV Amplitude Setting VCCOX – 2.0V 84 84 125 125 ©2021 Renesas Electronics Corporation 46 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet VFQFN EPAD Thermal Release Path In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in Figure 20. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts. While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as “heat pipes”. The number of vias (i.e. “heat pipes”) are application specific and dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. Note: These recommendations are to be used as a guideline only. For more information, see the Application Note on the Surface Mount Assembly of Amkor’s Thermally/ Electrically Enhance Lead-frame Base Package, Amkor Technology. Figure 20: P.C. Assembly for Exposed Pad Thermal Release Path  Side View (Drawing not to scale) PIN PIN PAD SOLDER EXPOSED HEAT SLUG GROUND PLANE THERMAL VIA ©2021 Renesas Electronics Corporation 47 SOLDER LAND PATTERN (GROUND PAD) PIN PIN PAD R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Schematic and Layout Recommendations Figure 21 shows an example 8V49NS0412 application schematic operating the device at VCC  3.3V. This example focuses on functional connections and is not configuration specific. Refer to the pin description and functional tables in the datasheet to ensure that the logic control inputs are properly set for the application. Figure 21: 8V49NS0412 Application Schematic VCC_SP OSCI C114 2 R87 2.67k 2.67k CLK0 J98 1 50MHz 12p 3.2x2.5mm SMD 4 C111 6.8p R89 1.0u R47 CLK 49.9 C113 1.0u nCLK nCLK CLK X4 VCC_SP 3 J97 nCLK0 R48 R49 2.67K 2.67K OSCO R50 49.9 C110 10p R23 475 FIN1 FIN0 REF_SEL OSCO LD1 OSCI LOCK J96 VCCA_J NP R132 VCC_3v3 VCC_SP J46 NP FB1 VCCA_J VCCA_IN1 VCCA_J 0 BLM18BB221SN1D C29 C28 C27 0.1u C31 0.1u 10uF R41 4.7K C33 R42 4.7K VCCA_XT C3 NP (0.1u) C34 0.1u 10uF C4 NP (0.1u) 10uF R84 C5 4.7u SDA J86 VCCA_IN2 VCC_3v3 SCL BLM18BB221SN1D C46 0.1u C47 NA0 VCC_CK 0 C48 0.1u 10uF VCCOA 4.7K C193 To load EEPROM at power-up, pull up NA0 and NA1 with 4.7K to VCC and 2.2uF to GND R51 2.8K 1% 2.2uF C11 0.1u J51 NP VCCA VCCOB 65 FB5 U1 BLM18BB221SN1D C60 0.1u 10uF C13 0.1u J54 NP C71 C17 0.1u C72 0.1u 10uF 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 QB0 nQB0 QB1 nQB1 QB2 nQB2 QB3 nQB3 VCCOB VCCA_XT BLM18BB221SN1D C70 0.1u 10uF C62 0.1u 10UF FB7 C69 C61 ePAD C59 ND0 ND1 QD1 QD0 nQD0 J94 VCCO_J NP R133 J48 NP FB2 VCCOB-1 QB0 nQB0 QB1 nQB1 QB2 nQB2 QB3 nQB3 VCCOB-10 ND0 ND1 VCCOD-13 QD1 QD0 nQD0 VCCOA-48 QA0 nQA0 QA1 nQA1 QA2 nQA2 QA3 nQA3 VCCOA-39 VCCOC-38 QC0 nQC0 QC1 nQC1 VCCOC-33 C22 0.1u VCCOA IDT8V49NS0412 BLM18BB221SN1D C38 C39 10uF 10UF 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 VCCO_J 0 C36 C35 0.1u 10UF VCCOA C15 0.1u 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 QA0 nQA0 QA1 nQA1 QA2 nQA2 QA3 nQA3 VCCOC C19 0.1u QC0 nQC0 QC1 nQC1 VCCOC NB0 NB1 NC0 NC1 VCCA_IN1 NA1 CAP_BIAS VCCA_IN2 CR CAP_REG LFFR LFF VCCA nc-30 VCC_CP ICP VCCOD VCC_3v3 C9 0.1u 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 10uF R146 LOCK VCC_SP SCLK SDATA RES NA0 VCCA_XT OSCI OSCO CAP_XTAL FIN0 FIN1 CLK nCLK VCC_CK REF_SEL C45 C7 0.1u 0 R39 NP FB3 VCCA_IN1 C24 0.1u Loop Filter - Use pads which permit rework for different component values. C37 0.1u J50 NP FB4 C41 0.1u VCCOB R58 0 R59 C42 4.7u BLM18BB221SN1D C50 C43 NP VCCA_IN2 10uF C49 0.1u R60 150 NP C51 C44 200p 10UF C52 0.1u J52 NP FB6 C54 0.1u VCCOC C55 4.7u BLM18BB221SN1D C64 C65 10uF 10UF C56 1.0u R114 VCCA C63 0.1u R61 NP 1 J55 NP FB8 C58 0.1u C115 22u VCCOD VCC_CP BLM18BB221SN1D C73 0.1u C74 C75 10uF 10UF C68 0.1u R62 NP C66 NP (4.7uF) J95 VCC_3v3 VCC_J NP R134 VCC_J FB9 J62 NP VCC_CP VCC_J NB0 VCC_3v3 NB1 0 BLM18BB221SN1D C76 C89 C88 0.1u 10uF C77 0.1u C78 10uF C79 0.1u NC0 C80 0.1u R147 4.7K 10uF FB10 VCC_CK NC1 NA1 To load EEPROM at power-up, pull up NA0 and NA1 with 4.7K to VCC and 2.2uF to GND J69 NP C192 2.2uF BLM18BB221SN1D C90 10uF C91 0.1u 10uF FB11 BLM18BB221SN1D C95 10uF C92 C96 0.1u ©2021 Renesas Electronics Corporation C93 0.1u C94 0.1u J74 NP VCC_SP C97 10UF C98 0.1u C99 0.1u 48 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet To demonstrate the range of output stage configurations possible, the application schematic assumes that the 8V49NS0412 is programmed over I2C. For alternative DC coupled LVPECL options, please see IDT Application Note, AN-828; for AC coupling options, use IDT Application Note, AN-844. For a 12pF parallel resonant crystal, tuning capacitors C145 and C146 are recommended for frequency accuracy. Depending on the parasitic of the PCB layout, these values may require a slight adjustment to optimize the frequency accuracy. Crystals with other load capacitance specifications can be used. This will require adjusting C145 and C146. For this device, the crystal tuning capacitors are required for proper operation. Crystal layout is very important to minimize capacitive coupling between the crystal pads and leads and other metal in the circuit board. Capacitive coupling to other conductors has two adverse effects: it reduces the oscillator frequency leaving less tuning margin and noise coupling from power planes, and logic transitions on signal traces can pull the phase of the crystal resonance, inducing jitter. Routing I 2C under the crystal is a common layout error, based on the assumption that it is a low frequency signal and will not affect the crystal oscillation. In fact, I2C transition times are short enough to capacitively couple into the crystal-oscillator loop if they are routed close enough to the crystal traces. In layout, all capacitive coupling to the crystal from any signal trace is to be minimized, that is to the OSCI and OSCO pins, traces to the crystal pads, the crystal pads, and the tuning capacitors. Using a crystal on the top layer as an example, void all signal and power layers under the crystal connections between the top layer and the ground plane used by the 8V49NS0412. Then calculate the parasitic capacity to the ground and determine if it is large enough to preclude tuning the oscillator. If the coupling is excessive, particularly if the first layer under the crystal is a ground plane, a layout option is to void the ground plane and all deeper layers until the next ground plane is reached. The ground connection of the tuning capacitors should first be made between the capacitors on the top layer, then a single ground via is dropped to connect the tuning cap ground to the ground plane as close to the 8V49NS0412 as possible as shown in the schematic. As with any high-speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The 8V49NS0412 provides separate power supplies to isolate any high switching noise from coupling into the internal PLL. In order to achieve the best possible filtering, it is recommended that the placement of the filter components be on the device side of the PCB as close to the power pins as possible. The ferrite bead and the 0.1uF capacitor in each power pin filter should always be placed on the device side of the board. The other components can be on the opposite side of the PCB if space on the top side is limited. Pull-up and pull-down resistors to set configuration pins can all be placed on the PCB side opposite the device side to free up the device side area if necessary. Power supply filter recommendations are a general guideline to be used for reducing external noise from coupling into the devices. Depending on the application, the filter may need to be adjusted to get a lower cutoff frequency to adequately attenuate low-frequency noise. Additionally, good general design practices for power plane voltage stability suggest adding bulk capacitance in the local area of all devices. For additional layout recommendations and guidelines, contact clocks@idt.com. ©2021 Renesas Electronics Corporation 49 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Power Dissipation and Thermal Considerations The 8V49NS0412 is a multi-functional, high-speed device that targets a wide variety of clock frequencies and applications. Since this device is highly programmable with a broad range of features and functionality, the power consumption will vary as each of these features and functions is enabled. The device is designed and characterized to operate within the ambient industrial temperature range of -40°C to 85°C. The ambient temperature represents the temperature around the device, not the junction temperature. When using the device in extreme cases, such as maximum operating frequency and high ambient temperature, external air flow may be required in order to ensure a safe and reliable junction temperature. Extreme care must be taken to avoid exceeding 125°C junction temperature. The following power calculation examples were generated using a maximum ambient temperature and supply voltage. For many applications, the power consumption will be much lower. Contact IDT technical support for any concerns on calculating the power dissipation for your own specific configuration. Example 1. LVPECL, 750mV Output Swing This section provides information on power dissipation and junction temperature when the device differential outputs are configured for LVPECL level, 750mV output swing. Equations and example calculations are also provided. Table 34. Power Calculations Configuration #1 Output Output Style Output Swing QA0 LVPECL 750mV QA1 LVPECL 750mV QA2 LVPECL 750mV QA3 LVPECL 750mV QB0 LVPECL 750mV QB1 LVPECL 750mV QB2 LVPECL 750mV QB3 LVPECL 750mV QC0 LVPECL 750mV QC1 LVPECL 750mV QD0 LVPECL 750mV QD1 LVCMOS N/A 1. Power Dissipation The total power dissipation is the sum of the core power plus the power dissipated due to output loading. The following is the power dissipation for VCC  3.465V, which gives worst case results. ▪ Power(core)MAX  VCC_MAX  IEE_MAX[1]  3.465V  523mA  1812.2mW ▪ Power(LVPECL outputs)MAX  34.2mW/Loaded Output pair. See Junction Temperature. If all outputs are loaded, the total power is 11  34.2mW  376.2mW ▪ Total PowerMAX  Power(core)  Power (LVPECL outputs)  Power (LVCMOS output)  1812.1mW  376.2mW  2188.3mW  2.1883W [1] Maximum QD1 output switching current is included. ©2021 Renesas Electronics Corporation 50 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet 2. Junction Temperature Junction temperature, TJ, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, TJ, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C. The equation for TJ is as follows: T J  TA  PD х JA: TJ  Junction Temperature TA  Ambient Temperature PD  Power Dissipation (W) in desired operating configuration JA  Junction-to-Ambient Thermal Resistance In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance must be used. Assuming no air flow and a multi-layer board, the appropriate value is 15.6°C/W per Table 36. Therefore, assuming TA  85°C and all outputs switching, TJ will be: 85°C  2.1883W  15.6°C/W  119.1°C. This is below the limit of 125°C. This calculation is only an example. TJ will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (multi-layer). 3. Power Dissipation due to output loading This section calculates the power dissipation for the LVPECL output pair. LVPECL output driver circuit and termination are shown in Figure 22. Figure 22. LVPECL Driver Circuit and Termination VCCO Q1 VOUT RL 50 VCCO - 2V To calculate worst case power dissipation at the output(s), use the following equations which assume a 50 load, and a termination voltage of VCCOX  2V. These are typical calculations. ▪ For logic high, V OUT  VOH_MAX  VCCOX_MAX  0.8V (VCCOX_MAX  VOH_MAX)  0.8V ▪ For logic low, VOUT  VOL_MAX  VCCOX_MAX  1.5V (VCCOX_MAX  VOL_MAX)  1.5V ©2021 Renesas Electronics Corporation 51 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Pd_H is the power dissipation when the output drives high. Pd_L is the power dissipation when the output drives low. Pd_H  [(VOH_MAX  (VCCOX_MAX  2V))/RL] х (VCCOX_MAX  VOH_MAX)  [(2V  (VCCOX_MAX  VOH_MAX))/R L] х (VCCOX_MAX  VOH_MAX)  [(2V  0.8V)/50] х 0.8V  19.2mW Pd_L  [(VOL_MAX  (VCCOX_MAX  2V))/RL]  (VCCOX_MAX  VOL_MAX)  [(2V  (VCCOX_MAX  VOL_MAX))/RL] х (VCCOX_MAX  VOL_MAX)  [(2V  1.5V)/50] х 1.5V  15mW Total Power Dissipation per output pair  Pd_H  Pd_L  34.2mW Example 2. LVDS, 350mV Output Swing This section provides information on power dissipation and junction temperature when the device differential outputs are configured for LVDS levels, 350mV output swing. Equations and example calculations are also provided. Table 35. Power Calculations Configuration #2 Output Output Style Output Swing QA0 LVDS 350mV QA1 LVDS 350mV QA2 LVDS 350mV QA3 LVDS 350mV QB0 LVDS 350mV QB1 LVDS 350mV QB2 LVDS 350mV QB3 LVDS 350mV QC0 LVDS 350mV QC1 LVDS 350mV QD0 LVDS 350mV QD1 LVCMOS N/A 1. Power Dissipation The total power dissipation is the sum of the core power plus the power dissipation due to output loading. The following is the power dissipation for VCCX  VCCA_X  VCCOX = 3.465V, which gives worst case results. ▪ PowerMAX  VCCX_MAX х ICCX_MAX  VCCA_X_MAX х ICCA_X_MAX  VCCOX_MAX х ICCOX_MAX  3.465V х 100mA  3.465V х 165mA  3.465V (96mA  96mA  65mA  86mA)  346.5mW  571.1mW  1188.5mW  2106.7mW  2.107W ©2021 Renesas Electronics Corporation 52 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet 2. Junction Temperature Junction temperature, TJ, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, TJ, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C. The equation for TJ is as follows: T J  TA  PD х JA: TJ  Junction Temperature TA  Ambient Temperature PD  Power Dissipation (W) in desired operating configuration JA  Junction-to-Ambient Thermal Resistance In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance must be used. Assuming no air flow and a multi-layer board, the appropriate value is 15.6°C/W per Table 36. Therefore, assuming TA  85°C and all outputs switching, TJ will be: 85°C  2.107W х 15.6°C/W = 117.9°C. This is below the limit of 125°C. This calculation is only an example. TJ will vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (multi-layer). Reliability Information Table 36. Thermal Resistance for 64-VFQFN Package Symbol Thermal Parameter Condition Value Unit JA[a] Junction-to-Ambient No air flow 15.6 °C/W JC Junction-to-Case 15.3 °C/W JB Junction-to-Board 0.6 °C/W [a] Theta JA ( JA) values calculated using an 8-layer PCB (114.3mm х 101.6mm), with 2oz. (70µm) copper plating on all 8 layers, with ePad connected to 4 ground planes. Package Outline Drawings The package outline drawings are appended at the end of this document and are accessible from the link below. The package information is the most current data available. www.idt.com/document/psc/64-vfqfpn-package-outline-drawing-90-x-90-x-09-mm-body-05mm-pitch-epad-60-x-60-mm-nlg64p5 ©2021 Renesas Electronics Corporation 53 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Marking Diagram ▪ ▪ ▪ ▪ Line 1 indicates the part number prefix. Line 2 indicates the part number. Line 3 indicates the part number suffix. Line 4: ▪ “#” is the stepping. ▪ “YY” is the last two digits of the year. ▪ “WW” is the work week number that the part was assembled. ▪ “$” is the mark code. ▪ LOT is the sequential lot code; COO indicates country of origin. Ordering Information Part/Order Number Marking Package Shipping Packaging Temperature 8V49NS0412NLGI IDT8V49NS0412NLGI 64-VFQFN 9  9 mm, Lead-free Tray -40°C to 85°C 8V49NS0412NLGI8 IDT8V49NS0412NLGI 64-VFQFN 9  9 mm, Lead-free Tape and Reel -40°C to 85°C Errata The 8V49NS0412 does not load a configuration correctly from an external I 2C EEPROM device when the power supply ramps fast (< 10ms from 0V to VCC). Recommendations Do not connect an external EEPROM device to the I2C bus. IDT also recommends not to connect or switch NA[1] and NA[0] pins to High / Power Supply (VCC) at any time. A new device, the 8V49NS1412, eliminates the configuration loading issue from an external I2C EEPROM and is recommended for new designs. ©2021 Renesas Electronics Corporation 54 R31DS0021EU0800 April 28, 2021 8V49NS0412 Datasheet Revision History Date Description of Change April 28, 2021 Updated OSCI input voltage rating in Absolute Maximum Ratings table from -0.5V to 3.6V to -0.9V to 3.6V. July 28, 2020 Added note [a] to Table 1. September 3, 2019 Added the tSTARTUP symbol to Table 31. April 23, 2019 ▪ Updated Overdriving the XTAL Interface. ▪ Added a paragraph and item list after Table 33. May 14, 2018 Added Figure 4. March 21, 2018 February 16, 2018 October 6, 2017 Added Errata. Updated load capacitance in Table 30 (Crystal Characteristics). Initial release. ©2021 Renesas Electronics Corporation 55 R31DS0021EU0800 April 28, 2021 64-VFQFPN, Package Outline Drawing 9.0 x 9.0 x 0.9 mm Body, 0.5mm Pitch, Epad 6.0 x 6.0 mm NLG64P5, PSC-4147-05, Rev 04, Page 1 64-VFQFPN, Package Outline Drawing 9.0 x 9.0 x 0.9 mm Body, 0.5mm Pitch, Epad 6.0 x 6.0 mm NLG64P5 , PSC-4147-05, Rev 04, Page 2 Package Revision History Description Date Created Rev No. Feb 16, 2018 Rev 03 New Format April 19, 2018 Rev 04 Add Chamfer on Corner Leads IMPORTANT NOTICE AND DISCLAIMER RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products. (Rev.1.0 Mar 2020) Corporate Headquarters Contact Information TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/ Trademarks Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. © 2020 Renesas Electronics Corporation. All rights reserved.
8V49NS0412NLGI 价格&库存

很抱歉,暂时无法提供与“8V49NS0412NLGI”相匹配的价格&库存,您可以联系我们找货

免费人工找货