0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
9DBV0741AKILF

9DBV0741AKILF

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    VFQFN-40

  • 描述:

    MULTIMKT-TIMING

  • 数据手册
  • 价格&库存
9DBV0741AKILF 数据手册
9DBV05x1/9DBV07x1/ 9DBV09x1 Datasheet 5 to 9-Output 1.8V Low-Power Buffers for PCIe Gen1–5 Description Features The 9DBV05x1/9DBV07x1/9DBV09x1 fanout buffers are low-power, high-performance fanout buffers in Renesas' Full Featured PCIe family. The buffers have 5, 7 or 9 outputs with each output having an OE# to support the PCIe CLKREQ# function. The devices have 3 selectable SMBus addresses. ▪ 5–9 Low-Power HCSL (LP-HCSL) outputs PCIe Clocking Architectures ▪ Easy AC-coupling to other logic families, see application note ▪ Common Clocked (CC) ▪ Independent Reference (IR) with and without spread spectrum ▪ ▪ ▪ ▪ ▪ • 100Ω outputs eliminate 4 resistors per output pair (9DBVxx41) • 33Ω outputs eliminate 2 resistors per output pair allowing use in both 85Ω and 100Ω systems (9DBVxx31) AN-891 (SRIS, SRNS) Typical Applications ▪ ▪ ▪ ▪ ▪ Servers/High-performance Computing nVME Storage Networking Accelerators Industrial Control Spread spectrum compatible OE# pins support PCIe CLKREQ# function 3 selectable SMBus addresses 3.3V tolerant SMBus interface SMBus-selectable features allow optimization to customer requirements: • Individual slew rate control for each output • Differential output amplitude • Device contains default configuration; SMBus interface not required for device operation ▪ -40°C to +85°C operating temperature range ▪ Packages: See Ordering Information for more details Key Specifications ▪ PCIe Gen5 CC additive phase jitter < 40fs RMS ▪ 12kHz–20MHz additive phase jitter = 165fs RMS at 156.25MHz (typical) ▪ Output-to-output skew < 50ps ▪ Power consumption as low as 41mW (typical) ▪ 1MHz to 200MHz operating frequency Block Diagram VDDDIG1.8 VDDR1.8 VDDIO 7 and 9 output parts only CLK_IN# DIFn# CLK_IN DIFn vSADR_tri SMBus Engine SMBCLK 5, 7 or 9 outputs Factory Configuration SMBDAT DIF0# ^CKPWRGD_PD# vOE[n:0]# DIF0 n+1 Control Logic GNDR ©2020 Renesas Electronics Corporation Resis tors are integrated on 9DBVxx4x EPAD/GND 1 GNDDIG June 30, 2020 9DBV05x1/9DBV07x1/9DBV09x1 Datasheet Contents Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 PCIe Clocking Architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Key Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9DBV05x1 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9DBV07x1 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 9DBV09x1 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Test Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 General SMBus Serial Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 How to Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 How to Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Package Outline Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Marking Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 9DBV05x1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 9DBV07x1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 9DBV09x1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 ©2020 Renesas Electronics Corporation 2 June 30, 2020 9DBV05x1/9DBV07x1/9DBV09x1 Datasheet Pin Assignments 9DBV05x1 Pin Assignment GND VDDO1.8 DIF3 vOE3# DIF3# GND vSADR_tri ^CKPWRGD_PD# Figure 1. Pin Assignment for 5 × 5 mm 32-VFQFPN Package – Top View 32 31 30 29 28 27 26 25 vOE4# 1 DIF4 2 DIF4# 3 9DBV05x1 Connect EPAD to GND VDDR1.8 4 CLK_IN 5 CLK_IN# 6 GNDR 7 GNDDIG 8 24 vOE2# 23 DIF2# 22 DIF2 21 VDDO1.8 20 GND 19 DIF1# 18 DIF1 17 vOE1# GND VDDO1.8 DIF0# vOE0# DIF0 SCLK_3.3 SDATA_3.3 VDDDIG1.8 9 10 11 12 13 14 15 16 32-VFQFPN, 5 x 5 mm, 0.5mm pitch ^ prefix indicates internal 120kOhm pull-up resistor ^v prefix indicates internal 120kOhm pull-up and pull-down resistor (biased to VDD/2) v prefix indicates internal 120kOhm pull-down resistor ©2020 Renesas Electronics Corporation 3 June 30, 2020 9DBV05x1/9DBV07x1/9DBV09x1 Datasheet 9DBV07x1 Pin Assignment VDDO1.8 VDDIO DIF4 DIF4# vOE4# DIF5 DIF5# vOE5# VDDIO ^CKPWRGD_PD# Figure 2. Pin Assignment for 5 × 5 mm 40-VFQFPN Package – Top View 40 39 38 37 36 35 34 33 32 31 vSADR_tri vOE6# DIF6 DIF6# VDDR1.8 CLK_IN CLK_IN# GNDDIG SCLK_3.3 SDATA_3.3 1 2 3 4 5 6 7 8 9 10 30 29 28 27 26 25 24 23 22 21 9DBV07x1 Connect EPAD to GND NC vOE3# DIF3# DIF3 VDDIO VDDO1.8 vOE2# DIF2# DIF2 vOE1# NC DIF1# DIF1 VDDIO VDDO1.8 DIF0# DIF0 vOE0# VDDIO VDDDIG1.8 11 12 13 14 15 16 17 18 19 20 40-VFQFPN, 5 x 5 mm 0.4mm pitch ^ prefix indicates internal pull-up resistor v prefix indicates internal pull-down resistor ©2020 Renesas Electronics Corporation 4 June 30, 2020 9DBV05x1/9DBV07x1/9DBV09x1 Datasheet 9DBV09x1 Pin Assignment vOE5# VDDIO GND DIF6 DIF6# vOE6# DIF7 DIF7# 37 vOE7# 48 47 46 45 44 43 42 41 40 39 38 VDDIO VDDO1.8 ^CKPWRGD_PD# Figure 3. Pin Assignment for 6 × 6 mm 48-VFQFPN Package – Top View vSADR_tri 1 36 DIF5# vOE8# 2 35 DIF5 DIF8 3 34 vOE4# DIF8# 4 33 DIF4# VDDR1.8 5 32 DIF4 9DBV09x1 Connect EPAD to ground CLK_IN 6 CLK_IN# 7 31 VDDIO 30 VDDO1.8 GNDR 8 29 GND GNDDIG 9 28 vOE3# SCLK_3.3 10 27 DIF3# SDATA_3.3 11 26 DIF3 VDDDIG1.8 12 25 vOE2# 24 DIF2# DIF2 GND VDDIO VDDO1.8 DIF1# DIF1 vOE1# DIF0# DIF0 vOE0# VDDIO 13 14 15 16 17 18 19 20 21 22 23 48-VFQFPN, 6 x 6 mm, 0.4mm pitch v prefix indicates internal 120kOhm pull-down resistor ^ prefix indicates internal 120kOhm pull-up resistor ^v prefix indicates internal 120kOhm pull-up and pull-down resistor (biased to VDD/2) ©2020 Renesas Electronics Corporation 5 June 30, 2020 9DBV05x1/9DBV07x1/9DBV09x1 Datasheet Pin Descriptions Table 1. Pin Descriptions Description 9DBV09xx 9DBV07xx 9DBV05xx Pin No. Pin No. Pin No. Name Type ^CKPWRGD_PD# Input Input notifies device to sample latched inputs and start up on first high assertion. Low enters Power Down Mode, subsequent high assertions exit Power Down Mode. This pin has internal pull-up resistor. 48 40 31 CLK_IN Input True input for differential reference clock. 6 6 5 CLK_IN# Input Complementary input for differential reference clock. 7 7 6 DIF0 Output Differential true clock output. 15 14 13 DIF0# Output Differential complementary clock output. 16 15 14 DIF1 Output Differential true clock output. 18 18 18 DIF1# Output Differential complementary clock output. 19 19 19 DIF2 Output Differential true clock output. 23 22 22 DIF2# Output Differential complementary clock output. 24 23 23 DIF3 Output Differential true clock output. 26 27 27 DIF3# Output Differential complementary clock output. 27 28 28 DIF4 Output Differential true clock output. 32 33 2 DIF4# Output Differential complementary clock output. 33 34 3 DIF5 Output Differential true clock output. 35 36 — DIF5# Output Differential complementary clock output. 36 37 — DIF6 Output Differential true clock output. 41 3 — DIF6# Output Differential complementary clock output. 42 4 — DIF7 Output Differential true clock output. 44 — — DIF7# Output Differential complementary clock output. 45 — — DIF8 Output Differential true clock output. 3 — — DIF8# Output Differential complementary clock output. 4 — — EPAD GND Connect epad to ground. 49 41 33 GND GND Ground pin. 22, 29, 40 41 15, 20, 26, 30 GNDDIG GND Ground pin for digital circuitry. 9 41 8 GNDR GND Analog ground pin for the differential input (receiver). 8 41 7 No connect. — 20,30 — Input Clock pin of SMBus circuitry, 3.3V tolerant. 10 30 10 SDATA_3.3 I/O Data pin for SMBus circuitry, 3.3V tolerant. 11 9 11 VDDDIG1.8 Power 1.8V digital power (dirty power). 12 11 9 VDDIO Power Power supply for differential outputs. 13, 21, 31, 12, 17, 26, 39, 47 32, 39 VDDO1.8 Power Power supply for outputs. Nominally 1.8V. 20, 30, 38 16, 25, 31 16, 21, 25 NC SCLK_3.3 — ©2020 Renesas Electronics Corporation 6 — June 30, 2020 9DBV05x1/9DBV07x1/9DBV09x1 Datasheet Table 1. Pin Descriptions (Cont.) Name 9DBV09xx 9DBV07xx 9DBV05xx Pin No. Pin No. Pin No. Type Description VDDR1.8 Power Power supply for differential input clock (receiver). This VDD should be treated as an analog power rail and filtered appropriately. Nominally 1.8V. 5 5 4 vOE0# Input Active low input for enabling output 0. This pin has an internal pull-down. 1 = disable output, 0 = enable output. 14 13 12 vOE1# Input Active low input for enabling output 1. This pin has an internal pull-down. 1 = disable output, 0 = enable output. 17 21 17 vOE2# Input Active low input for enabling output 2. This pin has an internal pull-down. 1 = disable output, 0 = enable output. 25 24 24 vOE3# Input Active low input for enabling output 3. This pin has an internal pull-down. 1 = disable output, 0 = enable output. 28 29 29 vOE4# Input Active low input for enabling output 4. This pin has an internal pull-down. 1 = disable output, 0 = enable output. 34 35 1 vOE5# Input Active low input for enabling output 5. This pin has an internal pull-down. 1 = disable output, 0 = enable output. 37 38 — vOE6# Input Active low input for enabling output 6. This pin has an internal pull-down. 1 = disable output, 0 = enable output. 43 2 — vOE7# Input Active low input for enabling output 7. This pin has an internal pull-down. 1 = disable output, 0 = enable output. 46 — — vOE8# Input Active low input for enabling output 8. This pin has an internal pull-down. 1 = disable output, 0 = enable output. 2 — — 1 1 32 vSADR_tri Latched Tri-level latch to select SMBus Address. It has an internal pull-down In resistor. See SMBus Address Selection table. ©2020 Renesas Electronics Corporation 7 June 30, 2020 9DBV05x1/9DBV07x1/9DBV09x1 Datasheet Absolute Maximum Ratings Stresses above the ratings listed below can cause permanent damage to the 9DBV05x1/9DBV07x1/9DBV09x1. These ratings, which are standard values for Renesas commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range. Table 2. Absolute Maximum Ratings Parameter Symbol Supply Voltage VDDx Input Voltage VIN Input High Voltage, SMBus VIHSMB Storage Temperature Ts Junction Temperature Tj Input ESD Protection ESD prot 1 2 3 Conditions Applies to VDD, VDDA and VDDIO. Minimum Typical Maximum Units Notes -0.5 2.5 V 1,2 -0.5 VDD + 0.5 V 1,3 3.6 V 1 150 °C 1 125 °C 1 V 1 SMBus clock and data pins. -65 Human Body Model 2000 Guaranteed by design and characterization, not 100% tested in production. Operation under these conditions is neither implied nor guaranteed. Not to exceed 2.5V. Thermal Characteristics Table 3. Thermal Characteristics Parameter 9DBV09x1 Thermal Resistance 9DBV07x1 Thermal Resistance Symbol Conditions Package Typical Values Units Notes θJC Junction to case. 33 °C/W 1 θJb Junction to base. 2 °C/W 1 θJA0 Junction to air, still air. 37 °C/W 1 θJA1 Junction to air, 1 m/s air flow. 30 °C/W 1 θJA3 Junction to air, 3 m/s air flow. 27 °C/W 1 θJA5 Junction to air, 5 m/s air flow. 26 °C/W 1 θJC Junction to case. 42 °C/W 1 θJb Junction to base. 2 °C/W 1 θJA0 Junction to air, still air. 39 °C/W 1 θJA1 Junction to air, 1 m/s air flow. 33 °C/W 1 θJA3 Junction to air, 3 m/s air flow. 28 °C/W 1 θJA5 Junction to air, 5 m/s air flow. 27 °C/W 1 ©2020 Renesas Electronics Corporation NDG48 NDG40 8 June 30, 2020 9DBV05x1/9DBV07x1/9DBV09x1 Datasheet Table 3. Thermal Characteristics (Cont.) Parameter Symbol 9DBV05x1 Thermal Resistance 1 Conditions Package Typical Values Units Notes θJC Junction to case. 42 °C/W 1 θJb Junction to base. 2 °C/W 1 θJA0 Junction to air, still air. 39 °C/W 1 θJA1 Junction to air, 1 m/s air flow. 33 °C/W 1 θJA3 Junction to air, 3 m/s air flow. 28 °C/W 1 θJA5 Junction to air, 5 m/s air flow. 27 °C/W 1 NLG32 EPAD soldered to ground. Electrical Characteristics TA = TCOM or TIND. Supply voltages per normal operation conditions; see Test Loads for loading conditions. Table 4. Clock Input Parameters Parameter Symbol 2 Minimum Typical Maximum VCROSS Crossover voltage. 150 Input Swing – DIF_IN VSWING Differential value. 300 Input Slew Rate – DIF_IN dv/dt Measured differentially. 0.4 Input Leakage Current IIN VIN = VDD , VIN = GND. Input Duty Cycle dtin Input Jitter – Cycle to Cycle JDIFIn Input Crossover Voltage – DIF_IN 1 Conditions 900 Units Notes mV 1 mV 1 8 V/ns 1,2 -5 5 μA Measurement from differential waveform. 40 60 % 1 Differential measurement. 0 125 ps 1 Guaranteed by design and characterization, not 100% tested in production. Slew rate measured through ±75mV window centered around differential zero. Table 5. Input/Supply/Common Parameters–Normal Operating Conditions Parameter Symbol Supply Voltage VDDx Supply voltage for core and analog. Output Supply Voltage VDDIO Supply voltage for DIF outputs, if present. Ambient Operating Temperature TAMB Input High Voltage VIH Single-ended inputs, except SMBus Input Mid Voltage VIM Single-ended tri-level inputs ('_tri' suffix). Input Low Voltage VIL Single-ended inputs, except SMBus. IIN Single-ended inputs, VIN = GND, VIN = VDD. IINP Single-ended inputs. VIN = 0 V; inputs with internal pull-up resistors. VIN = VDD; inputs with internal pull-down resistors. Input Current ©2020 Renesas Electronics Corporation Conditions Commercial range (TCOM). Industrial range (TIND). 9 Minimum Typical Maximum Units Notes 1.7 1.8 1.9 V 0.9975 1.05 - 1.8 1.9 V 0 25 70 °C -40 25 85 °C 0.75 VDD VDD + 0.3 V 0.4 VDD 0.6 VDD V -0.3 0.25 VDD V -5 5 μA -200 200 μA June 30, 2020 9DBV05x1/9DBV07x1/9DBV09x1 Datasheet Table 5. Input/Supply/Common Parameters–Normal Operating Conditions (Cont.) Parameter Symbol Input Frequency FIN Pin Inductance Lpin CIN Capacitance Conditions Minimum 1 Logic inputs, except DIF_IN. CINDIF_IN DIF_IN differential clock inputs. Typical Maximum Units Notes 200 MHz 7 nH 1 1.5 5 pF 1 1.5 2.7 pF 1, 6 COUT Output pin capacitance. 6 pF 1 Clk Stabilization TSTAB From VDD power-up and after input clock stabilization or deassertion of PD# to 1st clock. 1 ms 1, 2 Input SS Modulation Frequency PCIe fMODINPCIe Input SS Modulation Frequency non-PCIe Allowable frequency for PCIe applications (Triangular modulation). 30 33 kHz fMODIN Allowable frequency for non-PCIe applications (Triangular modulation). 0 66 kHz OE# Latency tLATOE# DIF start after OE# assertion. DIF stop after OE# deassertion. 1 3 clocks 1,3 Tdrive_PD# tDRVPD DIF output enable after PD# deassertion. 300 μs 1,3 Tfall tF Fall time of single-ended control inputs. 5 ns 2 Trise tR Rise time of single-ended control inputs. 5 ns 2 SMBus Input Low Voltage VILSMB VDDSMB = 3.3V, see note 4 for VDDSMB < 3.3V. 0.8 V 4 SMBus Input High Voltage VIHSMB VDDSMB = 3.3V, see note 5 for VDDSMB < 3.3V. 3.3 V 5 SMBus Output Low Voltage VOLSMB At I PULLUP. 0.4 V SMBus Sink Current IPULLUP At V OL. Nominal Bus Voltage VDDSMB SCLK/SDATA Rise Time tRSMB SCLK/SDATA Fall Time SMBus Operating Frequency 1 2 3 4 5 6 7 2.1 4 1.7 mA 3.6 V (Max VIL - 0.15V) to (Min VIH + 0.15V). 1000 ns 1 tFSMB (Min VIH + 0.15V) to (Max VIL - 0.15V). 300 ns 1 fSMB SMBus operating frequency. 400 kHz 7 Guaranteed by design and characterization, not 100% tested in production. Control input must be monotonic from 20% to 80% of input swing. Time from deassertion until outputs are > 200mV. For VDDSMB < 3.3V, VILSMB < = 0.35VDDSMB. For VDDSMB < 3.3V, VILSMB < = 0.65VDDSMB. DIF_IN input. The differential input clock must be running for the SMBus to be active. ©2020 Renesas Electronics Corporation 10 June 30, 2020 9DBV05x1/9DBV07x1/9DBV09x1 Datasheet Table 6. Current Consumption – 9DBV09x1 Parameter Operating Supply Current Power Down Current 1 Symbol Typical Maximum Units VDDR at 100MHz. 3 5 mA VDDIG, all outputs at 100MHz. 6 10 mA VDDO1.8 + V DDIO, all outputs at 100MHz. 35 40 mA IDDRPD VDDR, CKPWRGD_PD# = 0. 0.4 1 mA 1 IDDDIGPD VDDIG, CKPWRGD_PD# = 0. 0.6 1 mA 1 0.002 0.1 mA 1 Typical Maximum Units Notes VDDR at 100MHz. 3 5 mA VDDIG, all outputs at 100MHz. 5 8 mA VDDO1.8 + V DDIO, all outputs at 100MHz. 26 32 mA IDDRPD VDDR, CKPWRGD_PD# = 0. 0.4 1 mA 1 IDDDIGPD VDDIG, CKPWRGD_PD# = 0. 0.5 1 mA 1 0.0005 0.10 mA 1 Typical Maximum Units Notes 2 3 mA VDDIG, all outputs at 100MHz. 0.2 0.5 mA VDDO1.8, all outputs at 100MHz. 23 27 mA IDDR IDDDIG IDDO IDDOPD Conditions Minimum VDDO1.8 + V DDIO, CKPWRGD_PD# = 0. Notes Input clock stopped. Table 7. Current Consumption – 9DBV07x1 Parameter Operating Supply Current Power Down Current 1 Symbol IDDR IDDDIG IDDO IDDOPD Conditions Minimum VDDO1.8 + V DDIO, CKPWRGD_PD# = 0. Input clock stopped. Table 8. Current Consumption – 9DBV05x1 Parameter Operating Supply Current Power Down Current 1 Symbol IDDR IDDDIG IDDO Conditions Minimum VDDR at 100MHz. IDDRPD VDDR, CKPWRGD_PD# = 0. 0.001 0.1 mA 1 IDDDIGPD VDDIG, CKPWRGD_PD# = 0. 0.2 0.3 mA 1 VDDO1.8, CKPWRGD_PD# = 0. 0.4 0.8 mA 1 IDDOPD Input clock stopped. ©2020 Renesas Electronics Corporation 11 June 30, 2020 9DBV05x1/9DBV07x1/9DBV09x1 Datasheet Table 9. Output Duty Cycle, Jitter, Skew and PLL Characteristics Parameter Symbol Duty Cycle Distortion tDCD Skew, Input to Output tpdBYP VT = 50%. Skew, Output to Output tsk3 Jitter, Cycle to Cycle tjcyc-cyc 1 2 3 4 Conditions Minimum Typical Maximum Units Measured differentially at 100MHz. Notes -1 0 1 % 1,3 1800 2421 3000 ps 1 VT = 50%. 29 60 ps 1, 4 Additive jitter. 1.1 5 ps 1,2 Guaranteed by design and characterization, not 100% tested in production. Measured from differential waveform. Duty cycle distortion is the difference in duty cycle between the output and the input clock All outputs at default slew rate. Table 10. LP-HCSL Outputs Parameter Slew Rate Symbol dV/dt Conditions Minimum Typical Maximum Scope averaging on, fast slew rate setting. 1.6 2.9 4.3 Scope averaging on, slow slew rate setting. 1.2 Slew Rate Matching ΔdV/dt Single-ended measurement. Maximum Voltage Vmax Minimum Voltage Vmin Measurement on single-ended signal using absolute value (scope averaging off). Crossing Voltage (abs) Crossing Voltage (var) 1 2 Δ-Vcross V/ns 1,2,3 V/ns 1,2,3 % 1,4,7 1–4 2.0 3.3 6 18 20 694 804 976.8 660–1150 -108 -18 303 405 507 250–550 mV 1,5,7 12 50 140 mV 1,6,7 Scope averaging off. -300 mV 7,8 7,8 Guaranteed by design and characterization, not 100% tested in production. CL = 2pF with RS = 33Ω for Zo = 50Ω (100Ω differential trace impedance) Measured from differential waveform. 3 Slew 4 Vcross_abs Scope averaging off. Specification Units Notes Limits rate is measured through the Vswing voltage range centered around differential 0 V. This results in a ±150mV window around differential 0V. Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a ±75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. 5 Vcross 6 7 8 is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling). The total variation of all Vcross measurements in any particular system. Note that this is a subset of Vcross_min/max (Vcross absolute) allowed. The intent is to limit Vcross induced modulation by setting Δ-Vcross to be smaller than Vcross absolute. At default SMBus settings. 660mV VHIGH is the minimum when VDDIO is >= 1.05V ±5%. If VDDIO is < 1.05V ±5%, the minimum VHIGH will be VDDIOmin - 250mV. For example, for VDDIO = 0.9V ±5%, VHIGHmin will be 860mV - 250mV = 610mV. Includes previously separate values of +300mV overshoot and -300mV of undershoot. ©2020 Renesas Electronics Corporation 12 June 30, 2020 9DBV05x1/9DBV07x1/9DBV09x1 Datasheet Table 11. Additive PCIe Phase Jitter for Fanout Buffer Mode Parameter Symbol tjphPCIeG1-CC Conditions Minimum Typical Maximum Limits Notes 1.7 3.0 86 ps (p-p) 1,2 PCIe Gen 2 Hi Band (5.0 GT/s) 0.033 0.049 3 ps (RMS) 1,2 PCIe Gen 2 Lo Band (5.0 GT/s) 0.122 0.199 3.1 ps (RMS) 1,2 tjphPCIeG3-CC PCIe Gen 3 (8.0 GT/s) 0.059 0.098 1 ps (RMS) 1,2 tjphPCIeG4-CC PCIe Gen 4 (16.0 GT/s) 0.059 0.098 0.5 ps (RMS) 1,2,3,4 tjphPCIeG5-CC PCIe Gen 5 (32.0 GT/s) 0.023 0.038 0.15 ps (RMS) 1,2,3,5 0.175 0.275 ps (RMS) 1,2,6 Additive PCIe Phase Jitter, tjphPCIeG2-SRIS PCIe Gen 2 (5.0 GT/s) Fanout Buffer Mode7 tjphPCIeG3-SRIS PCIe Gen 3 (8.0 GT/s) (SRIS Architecture) tjphPCIeG4-SRIS PCIe Gen 4 (16.0 GT/s) 0.156 0.247 ps (RMS) 1,2,6 0.041 0.064 ps (RMS) 1,2,6 0.043 0.066 ps (RMS) 1,2,6 tjphPCIeG5-SRIS PCIe Gen 5 (32.0 GT/s) 0.036 0.059 ps (RMS) 1,2,6 Additive PCIe Phase Jitter, Fanout Buffer Mode7 (Common Clocked Architecture) tjphPCIeG2-CC PCIe Gen 1 (2.5 GT/s) Units tjphPCIeG1-SRIS PCIe Gen 1 (2.5 GT/s) N/A 1 The Refclk jitter is measured after applying the filter functions found in PCI Express Base Specification 5.0, Revision 1.0. See the Test Loads section 2 3 4 5 6 7 of the data sheet for the exact measurement setup. The total Ref Clk jitter limits for each data rate are listed for convenience. The worst case results for each data rate are summarized in this table. If oscilloscope data is used, equipment noise is removed from all results. Jitter measurements shall be made with a capture of at least 100,000 clock cycles captured by a real-time oscilloscope (RTO) with a sample rate of 20 GS/s or greater. Broadband oscilloscope noise must be minimized in the measurement. The measured PP jitter is used (no extrapolation) for RTO measurements. Alternately, jitter measurements may be used with a Phase Noise Analyzer (PNA) extending (flat) and integrating and folding the frequency content up to an offset from the carrier frequency of at least 200MHz (at 300MHz absolute frequency) below the Nyquist frequency. For PNA measurements for the 2.5 GT/s data rate, the RMS jitter is converted to peak-to-peak jitter using a multiplication factor of 8.83. In the case where real-time oscilloscope and PNA measurements have both been done and produce different results, the RTO result must be used. SSC spurs from the fundamental and harmonics are removed up to a cutoff frequency of 2 MHz taking care to minimize removal of any non-SSC content. Note that 0.7ps RMS is to be used in channel simulations to account for additional noise in a real system. Note that 0.25ps RMS is to be used in channel simulations to account for additional noise in a real system. The PCI Express Base Specification 5.0, Revision 1.0 provides the filters necessary to calculate SRIS jitter values, however, it does not provide specification limits, hence the n/a in the Limit column. SRIS values are informative only. In general, a clock operating in an SRIS system must be twice as good as a clock operating in a Common Clock system. For RMS values, twice as good is equivalent to dividing the CC value by √2. An additional consideration is the value for which to divide by √2. The conservative approach is to divide the ref clock jitter limit, and the case can be made for dividing the channel simulation values by √2, if the ref clock is close to the Tx clock input. An example for Gen4 is as follows. A “rule-of-thumb” SRIS limit would be either 0.5ps RMS/√2 = 0.35ps RMS if the clock chip is far from the clock input, or 0.7ps RMS/√2 = 0.5ps RMS if the clock chip is near the clock input. Additive jitter for RMS values is calculated by solving for “b” where b = √(c2 - a2) and “a” is rms input jitter and “c” is rms output jitter. ©2020 Renesas Electronics Corporation 13 June 30, 2020 9DBV05x1/9DBV07x1/9DBV09x1 Datasheet Table 12. Phase Jitter Parameters – 12kHz to 20MHz Parameter Symbol Conditions 12kHz–20MHz Additive Phase Jitter, Fanout Buffer Mode tjph12k-20MFOB Fanout Buffer Mode, SSC OFF, 100MHz 1 2 3 Minimum Typical Maximum Specification Limits 156 N/A Units Notes fs (RMS) 1,2,3 Applies to all differential outputs, guaranteed by design and characterization. See Test Loads for measurement setup details. 12kHz to 20MHz brick wall filter. For RMS values, additive jitter is calculated by solving for “b” where b = √(c2 - a2), “a” is rms input jitter and “c” is rms total jitter. Power Management Table 13. Power Management CKPWRGD_PD# CLK_IN SMBus EN bit OE[x]# Pin DIF[x] 0 X X X Low/Low 1 Running 0 X Low/Low 1 Running 1 0 Low/Low 1 Running 1 1 Running Test Loads Figure 4. Test Load for AC/DC Measurements CL CK+ CKIN+ Clock Source L CK+ Zo (differential) DUT CK- CKIN- Test Points for High Impedance Probe CK- CL Table 14. Parameters for AC/DC Measurements Clock Source Device Under Test (DUT) Rs (Ω) Differential Zo (Ω) L (cm) CL (pF) SMA100B 9DBVxx3x 33 External 100 12.7 2 SMA100B 9DBVxx3x 24 External 85 12.7 2 SMA100B 9DBVxx4x Internal 100 12.7 2 ©2020 Renesas Electronics Corporation 14 Parameters Measured AC/DC parameters June 30, 2020 9DBV05x1/9DBV07x1/9DBV09x1 Datasheet Figure 5. Test Load for Phase Jitter Measurements using Phase Noise Analyzer PNA Coax Cables L CK+ CKIN+ Clock Source CK+ Zo (differential) DUT CK- CKIN- Balun 0.1uF CK- 50 SMA Connectors Table 15. Parameters for Phase Jitter Measurements using Phase Noise Analyzer Clock Source Device Under Test (DUT) Rs (Ω) Differential Zo (Ω) L (cm) CL (pF) SMA100B 9DBVxx3x 33 External 100 12.7 2 SMA100B 9DBVxx3x 24 External 85 12.7 2 SMA100B 9DBVxx4x Internal 100 12.7 2 ©2020 Renesas Electronics Corporation 15 Parameters Measured PCIe June 30, 2020 9DBV05x1/9DBV07x1/9DBV09x1 Datasheet General SMBus Serial Interface Information How to Write How to Read ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ Controller (host) sends a start bit Controller (host) sends the write address Renesas clock will acknowledge Controller (host) sends the beginning byte location = N Renesas clock will acknowledge Controller (host) sends the byte count = X Renesas clock will acknowledge Controller (host) starts sending Byte N through Byte N+X-1 Renesas clock will acknowledge each byte one at a time Controller (host) sends a stop bit Index Block Write Operation Controller (Host) T Renesas (Slave/Receiver) Controller (host) will send a start bit Controller (host) sends the write address Renesas clock will acknowledge Controller (host) sends the beginning byte location = N Renesas clock will acknowledge Controller (host) will send a separate start bit Controller (host) sends the read address Renesas clock will acknowledge Renesas clock will send the data byte count = X Renesas clock sends Byte N+X-1 Renesas clock sends Byte 0 through Byte X (if X(H) was written to Byte 8) ▪ Controller (host) will need to acknowledge each byte ▪ Controller (host) will send a not acknowledge bit ▪ Controller (host) will send a stop bit starT bit Slave Address WR WRite ACK Index Block Read Operation Beginning Byte = N ACK T Data Byte Count = X ACK WR Beginning Byte N Renesas ACK ACK X Byte O O O Controller (Host) starT bit Slave Address WRite Beginning Byte = N ACK O O O RT RD Byte N + X - 1 Repeat starT Slave Address ReaD ACK ACK P stoP bit Data Byte Count=X ACK Beginning Byte N O O O X Byte ACK O O O Byte N + X - 1 N P ©2020 Renesas Electronics Corporation 16 Not acknowledge stoP bit June 30, 2020 9DBV05x1/9DBV07x1/9DBV09x1 Datasheet Table 16. SMBus Address Selection State of SADR_tri on first application of CKPWRGD_PD# SADR Address + Read/Write Bit 0 1101011 X M 1101100 X 1 1101101 X Table 17. Byte 0: Output Enable Register 1 Byte 0 Bit7 Bit6 Bit5 Bit4 Bit3 Control Function Output Enable Type R/W 0 Low/Low 1 OE# Pin Control Bit2 Bit1 Bit0 9DBV09xx Name DIF7_en DIF6_en DIF5_en DIF4_en DIF3_en DIF2_en DIF1_en DIF0_en 9DBV09xx Default 1 1 1 1 1 1 1 1 9DBV07xx Name DIF5_en DIF4_en Reserved DIF3_en DIF2_en DIF1_en Reserved DIF0_en 9DBV07xx Default 1 1 1 1 1 1 1 1 9DBV05xx Name Reserved DIF3_en DIF2_en Reserved DIF1_en Reserved DIF0_en Reserved 9DBV05xx Default 1 1 1 1 1 1 1 1 ©2020 Renesas Electronics Corporation 17 June 30, 2020 9DBV05x1/9DBV07x1/9DBV09x1 Datasheet Table 18. Byte 1: Output and Amplitude Control Register Byte 1 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Control Function Output _enable Type RW RW RW 0 Low/Low 00 = 0.6V 01 = 0.7V 1 OE# Pin Control 10= 0.8V 11 = 0.9V 9DBV09xx Name DIF8_en Amplitude(1) Default is 1 Amplitude(0) Default is 0 Bit2 Bit1 Bit0 9DBV09xx Default 9DBV07xx Name Reserved Default is 0 Reserved Default is 1 1 Controls Output Amplitude Reserved Default is 1 Reserved Default is 1 Reserved Default is 0 DIF6_en 9DBV07xx Default 1 9DBV05xx Name DIF4_en 9DBV05xx Default 1 Table 19. Byte 2: Slew Rate Control Register Byte 2 Bit7 Bit6 Bit5 Bit4 Bit3 Control Function Slew Rate Adjustment Type RW 0 Slow Setting 1 Fast Setting 9DBV09xx Name Slewrate DIF7 Slewrate DIF6 Slewrate DIF5 Slewrate DIF4 Slewrate DIF3 Slewrate DIF2 Slewrate DIF1 Slewrate DIF0 9DBV09xx Default 1 1 1 1 1 1 1 1 9DBV07xx Name Slewrate DIF5 Slewrate DIF4 Reserved Slewrate DIF3 Slewrate DIF2 Slewrate DIF1 Reserved Slewrate DIF0 9DBV07xx Default 1 1 1 1 1 1 1 1 9DBV05xx Name Reserved Slewrate DIF3 Slewrate DIF2 Reserved Slewrate DIF1 Reserved Slewrate DIF0 Reserved 9DBV05xx Default 1 1 1 1 1 1 1 1 ©2020 Renesas Electronics Corporation 18 June 30, 2020 9DBV05x1/9DBV07x1/9DBV09x1 Datasheet Table 20. Byte 3: Slew Rate Control Register Byte 3 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Control Function Slew Rate Adjustment Type RW 0 Slow Setting 1 Fast Setting 9DBV09xx Name Slewrate DIF8 9DBV09xx Default 9DBV07xx Name Reserved Default is 1 Reserved Default is 1 Reserved Default is 0 Reserved Default is 0 Reserved Default is 0 Reserved Default is 1 Reserved Default is 1 1 Slewrate DIF6 9DBV07xx Default 1 9DBV05xx Name Slewrate DIF4 9DBV05xx Default 1 Byte 4: Reserved Register – default is 0hFF Table 21. Byte 5: Revision and Vendor ID Register Byte 5 Bit7 Bit6 Control Function Type Bit5 Bit4 Bit3 Bit2 Revision ID R R R R A rev = 0010 1 Bit0 R R Vendor ID R 0 Bit1 R IDT/Renesas = 0001 Name RID3 RID2 RID1 RID0 VID3 VID2 VID1 VID0 Default 0 0 0 0 0 0 0 1 ©2020 Renesas Electronics Corporation 19 June 30, 2020 9DBV05x1/9DBV07x1/9DBV09x1 Datasheet Table 22. Byte 6: Device ID Register Byte 6 Bit7 Control Function Type 0 1 Name Bit6 Bit5 Bit4 Bit3 Device Type R Bit1 Bit0 R R R DevID 2 DevID 1 DevID 0 Bit2 Bit1 Device ID R R R R 00 = FG, 01 = ZDB 10 = Mux, 11 = Fanout Buffer Device Type 1 Bit2 Device Type 0 Device ID DevID 5 DevID 4 DevID 3 9DBV09xx 0hC9 9DBV07xx 0hC7 9DBV05xx 0hC5 Table 23. Byte 7: Byte Count Register Byte 7 Bit7 Bit6 Bit5 Control Function Type 0 Bit4 Bit3 Writing to this register configures how many bytes will be read back on a block read. Reserved Reserved Reserved RW RW RW RW RW Default value is 0b01000 1 Name Default Bit0 0 0 ©2020 Renesas Electronics Corporation 0 BC4 BC3 BC2 BC1 BC0 0 1 0 0 0 20 June 30, 2020 9DBV05x1/9DBV07x1/9DBV09x1 Datasheet Package Outline Drawings The package outline drawings are appended at the end of this document and are accessible from the link below. The package information is the most current data available. 9DBV05x1: www.idt.com/document/psc/32-vfqfpn-package-outline-drawing-50-x-50-x-090-mm-body-epad-315-x-315-mm-nlg32p1 9DBV07x1: www.idt.com/document/psc/ndndg40-package-outline-50-x-50-mm-bodyepad-350mm-sq-040-mm-pitch-qfn 9DBV09x1: www.idt.com/document/psc/48-vfqfpn-package-outline-drawing-60-x-60-x-090-mm-body-epad-41-x-41-mm-040mm-pitch-ndg48p1 Marking Diagrams 9DBV05x1 ▪ Lines 1 and 2: truncated part number (“I” denotes industrial temperature range) ▪ Line 3: “YYWW” is the last two digits of the year and the work week the part was assembled. ▪ Line 4: “COO” denotes country of origin. ▪ Line 5: “LOT” denotes the lot number. ©2020 Renesas Electronics Corporation 21 June 30, 2020 9DBV05x1/9DBV07x1/9DBV09x1 Datasheet 9DBV07x1 ▪ Lines 1 and 2: truncated part number (“I” denotes industrial temperature range) ▪ Line 3: “YYWW” is the last two digits of the year and the work week the part was assembled. ▪ Line 4: “COO” denotes country of origin. ▪ Line 5: “LOT” denotes the lot number. 9DBV09x1 ▪ Lines 1 and 2: truncated part number (“I” denotes industrial temperature range) ▪ Line 3: “YYWW” is the last two digits of the year and the work week the part was assembled. ▪ Line 4: “COO” denotes country of origin. ▪ Line 5: “LOT” denotes the lot number. ©2020 Renesas Electronics Corporation 22 June 30, 2020 9DBV05x1/9DBV07x1/9DBV09x1 Datasheet Ordering Information Table 24. Ordering Information Number of Output Clock Outputs Impedance Orderable Part Number Temperature Range Package Part Number Suffix and Shipping Method 9DBV0531AKILF 33 9DBV0531AKILFT 5 100 9DBV0541AKILF 5 × 5 × 0.5 mm 32-VFQFPN 9DBV0541AKILFT 9DBV0731AKILF 33 9DBV0731AKILFT 7 100 9DBV0741AKILF None = Trays 5 × 5 × 0.4 mm 40-VFQFPN -40°C to +85°C “T” = Tape and Reel, Pin 1 Orientation: EIA-481C (see Table 25 for more details) 9DBV0741AKILFT 9DBV0931AKILF 33 9DBV0931AKILFT 9 100 9DBV0941AKILF 6 × 6 × 0.4 mm 48-VFQFPN 9DBV0941AKILFT 9DBV0531AKLF 33 9DBV0531AKLFT 5 100 9DBV0541AKLF 5 × 5 × 0.5 mm 32-VFQFPN 9DBV0541AKLFT 9DBV0731AKLF 33 9DBV0731AKLFT 7 100 9DBV0741AKLF None = Trays 5 × 5 × 0.4 mm 40-VFQFPN 0°C to +70°C 9DBV0741AKLFT “T” = Tape and Reel, Pin 1 Orientation: EIA-481C (see Table 25 for more details) 9DBV0931AKLF 33 9DBV0931AKLFT 9 100 9DBV0941AKLF 6 × 6 × 0.4 mm 48-VFQFPN 9DBV0941AKLFT “A” is the device revision designator (will not correlate with the datasheet revision). “LF” denotes Pb-free configuration, RoHS compliant; “T” denotes the orderable suffix for Tape and Reel. Table 25. Pin 1 Orientation in Tape and Reel Packaging Part Number Suffix Pin 1 Orientation Illustration Correct Pin 1 ORIENTATION T CARRIER TAPE TOPSIDE (Round Sprocket Holes) Quadrant 1 (EIA-481-C) USER DIRECTION OF FEED ©2020 Renesas Electronics Corporation 23 June 30, 2020 9DBV05x1/9DBV07x1/9DBV09x1 Datasheet Revision History Revision Date June 30, 2020 Description of Change ▪ Merged duplicate pin names in table 1 into single rows and combined pin numbers into a single row for the duplicate pin names. Rows merged were VDDIO, VDDO1.8, and GND. ▪ Removed duplicate table subtitle “TA = TCOM or TIND. Supply voltages per normal operation conditions; see Test Loads for loading conditions” from Tables 10, 11 and 12. This phrase is at the beginning of the Electrical Characteristics section and applies to all electrical tables. ▪ Corrected PCIe SRIS maximum values in Table 11. They were shifted down by one cell. February 13, 2020 ▪ Corrected 9DBV05xx pin number typos in pin description table. ▪ Rebranded datasheet. October 22, 2019 Combined 9DBV0531_0541, 9DBV0731_741, and 9DBV0931_941 datasheets into one single document. March 10, 2017 Last revision date of the 9DBV0531 datasheet. May 30, 2017 Last revision date of the 9DBV0541 datasheet. March 10, 2017 Last revision date of the 9DBV0731 datasheet. March 10, 2017 Last revision date of the 9DBV0741 datasheet. March 14, 2017 Last revision date of the 9DBV0931 datasheet. March 14, 2017 Last revision date of the 9DBV0941 datasheet. ©2020 Renesas Electronics Corporation 24 June 30, 2020 32-VFQFPN, Package Outline Drawing 5.0 x 5.0 x 0.90 mm Body, Epad 3.15 x 3.15 mm. NLG32P1, PSC-4171-01, Rev 02, Page 1 32-VFQFPN, Package Outline Drawing 5.0 x 5.0 x 0.90 mm Body, Epad 3.15 x 3.15 mm. NLG32P1, PSC-4171-01, Rev 02, Page 2 Package Revision History Description Date Created Rev No. April 12, 2018 Rev 02 New Format Feb 8, 2016 Rev 01 Added "k: Value 48-VFQFPN Package Outline Drawing 6.0 x 6.0 x 0.90 mm Body, Epad 4.1x 4.1 mm, 0.40mm Pitch NDG48P1, PSC-4212-01, Rev 01, Page 1 © Integrated Device Technology, Inc. 48-VFQFPN Package Outline Drawing 6.0 x 6.0 x 0.90 mm Body, Epad 4.1 x 4.1 mm, 0.40mm Pitch NDG48P1, PSC-4212-01, Rev 01, Page 2 Package Revision History © Integrated Device Technology, Inc. Description Date Created Rev No. Aug16, 2018 Rev 01 New Format Change QFN to VFQFPN, Recalculate Land Pattern May 6, 2016 Rev 00 Add Chamfer IMPORTANT NOTICE AND DISCLAIMER RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products. (Rev.1.0 Mar 2020) Corporate Headquarters Contact Information TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/ Trademarks Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. © 2020 Renesas Electronics Corporation. All rights reserved.
9DBV0741AKILF 价格&库存

很抱歉,暂时无法提供与“9DBV0741AKILF”相匹配的价格&库存,您可以联系我们找货

免费人工找货