0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ICS843002BY-31LF

ICS843002BY-31LF

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    TQFP-64

  • 描述:

    IC SYNTHESIZER LVPECL 64-TQFP

  • 数据手册
  • 价格&库存
ICS843002BY-31LF 数据手册
PRELIMINARY ICS843002-31 FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR GENERAL DESCRIPTION FEATURES The ICS843002-31 is a member of the ICS HiperClockS™ family of high performance clock HiPerClockS™ solutions from IDT. This monolithic device is a highperfor mance, PLL-based synchronous clock generator and jitter attenuation circuit. The ICS843002-31 contains two clock multiplication stages that are cascaded in series. The first stage is a VCXO-based PLL that is optimized to provide reference clock jitter attenuation, to be jitter tolerant, and to provide a stable reference clock for the second multiplication stage. The second stage is the proprietary IDT FemtoClock™circuit which is a high-frequency, subpicosecond clock multiplier. • Outputs: • Two high frequency differential LVPECL outputs Output frequency: up to 700MHz The VCXO PLL has an on-chip VCXO circuit that uses an external, inexpensive pullable crystal in the 17.5 to 25MHz range. The PLL includes 13 bit reference and feedback dividers suppor ting complex PLL multiplication ratios and input reference clock rates as low as 2.3kHz. External loop filter components are used (two resistors and two capacitors) to achieve the low loop bandwidth needed for jitter attenuation of a recovered data clock. • FemtoClock frequency multiplier supports rate of: 560MHz - 700MHz The FemtoClock circuit can multiply the VCXO crystal frequency by a factor of 28 or 32 (selectable) and provide a clock output of up to 700MHz. • 3.3V supply voltage • One LVCMOS/LVTTL VCXO PLL output with output enable • One Reference clock output with output enable • One LOCK detect output • Input mux supports 3 selectable inputs: one differential input pair and two LVCMOS/LVTTL input clocks • 13-bit VCXO PLL feedback and reference dividers provide wide range of frequency translation ratio options • ‘Lock Detect’ output reports lock status of VCXO PLL • VCXO PLL circuit provides jitter attenuation with loop bandwidth of 250Hz and below (user adjustable) • RMS phase jitter, random at 12kHz to 20MHz: 1 1 13 QA ÷1 QA ÷2 QA ÷4 QA ÷8 XOIN Output OFB Output MP Output Disabled Drive Low QB nQB MP REF_CLK OE_REF LOCK LOCK Detect NOTE 1: For application configuration (non-test/bypass modes). NOTE 2: Bold lines are primary clock paths (non-control/non-feedback lines). Not all control lines and signal paths are shown in this simplified block diagram. IDT ™ / ICS™ VCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 2 ICS843002CY-31 REV. C MAY 16, 2007 ICS843002-31 FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR SIMPLIFIED BLOCK DIAGRAM - CLOCK SIGNAL PATHS External Loop Filter Connection 17.5 - 25MHz CLK1 QA Output Divider NPA[2:0] XTAL_IN XTAL_OUT 01 VCXO PLL VCLK ÷1 ÷12 ÷16 Disabled Drive Low LF0 LF1 Input Divider XOIN[12:0] ÷1 to ÷8191 CLK2 00: 01: 10: 11: 1 1 Bypass nCLK0 BYPASS MODE VCXO PLL Output Divider NV[1:0] ISET Charge Pump Current CLK0 IN PRELIMINARY FemtoClock™ Frequency Multiplier NPA[2:0] 000: ÷1 001: ÷2 010: ÷4 011: ÷8 100: ÷12 101: ÷14 110: ÷16 111: Disabled Drive Low QA nQA 10 000: ÷1 001: ÷2 010: ÷4 QB nQB 011: ÷8 111: Disabled FemtoClock™ Feedback Divider VCXO PLL Feedback Divider XOFB[12:0] ÷1 to ÷8191 MP 0: ÷32 1: ÷28 110: MP 101: XOFB 100: XOIN NPB2 NPB1 NPB0 NOTE 1: Setting SEL1:SEL0 = 11 enables bypass mode. Only clock signals on the CLK0/nCLK0 input pair are routed to the device in bypass mode. NOTE 2: Bold lines show clock bypass paths. Not all control lines and signal paths are shown in this simplified block diagram. IDT ™ / ICS™ VCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 3 ICS843002CY-31 REV. C MAY 16, 2007 ICS843002-31 FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR PRELIMINARY TABLE 1. PIN DESCRIPTIONS (CONTINUED ON NEXT PAGE) Number Name Type Analog Input/Output Analog Input/Output Power 1, 2 LF1, LF0 3 ISET 4, 41, 48 VEE 5, 6 NV1, NV0 Input 7, 13 VCC Power 8 MR Input 9 CLK0 Input 10 nCLK0 Input 11 OE_REF Input 12 CLK1 Input Pullup/ Inver ting differential clock input. Pulldown VCC/2 bias voltage when left floating. Output enable control for reference clock output. When logic LOW, Pulldown the reference clock output is in high impedance. When logic HIGH, the output is enabled. LVCMOS/LVTTL interface levels. Pulldown Clock input. LVCMOS/LVTTL interface levels. 1 4, 1 5 SEL1, SEL0 Input Pulldown Input clock select. LVCMOS/LVTTL interface levels. 16 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 CLK2 Input Pulldown Clock input. LVCMOS/LVTTL interface levels. XOIN12:XOIN1 Input Pulldown 29 XOIN0 Input 30, 31, 32 33 34, 35, 36 NPA2, NPA1, NPA0 VCCA NPB2, NPB1, NPB0 Power 37 MP Input 38, VCCO_PECL Power Input Input Description Loop filter connection pins. Charge pump current setting pin. Negative supply pins. Normally connected to ground. VCXO PLL output divider control pins. Pullup LVCMOS/LVTTL interface levels. Core power supply pins. Master Reset. When HIGH, resets all internal dividers and Pulldown LVCMOS outputs are in high impedance. LVCMOS / LVTTL interface levels. Pulldown Non-inver ting differential clock input. VCXO PLL input divider control input. LVCMOS/LVTTL interface levels. VCXO PLL input divider control input. LVCMOS/LVTTL interface levels. LVPECL output divider control for QA/nQA outputs. Pulldown LVCMOS/LVTTL interface levels. Analog supply pin. LVPECL output divider control for QB/nQB outputs. Pulldown LVCMOS/LVTTL interface levels. FemtoClock™ circuit clock multiplication control input. Pulldown When HIGH, selects 28. When LOW, selects 32. LVCMOS/LVTTL interface levels. Output power supply pin for LVPECL clock outputs. Pullup 39, 40 QA, nQA Output Differential clock output pair. LVPECL interface levels. 42, 43 QB, nQB Output Differential clock output pair. LVPECL interface levels. 44 VCCO_CMOS Power Output power supply pin for LVCMOS outputs. 45 LOCK Output Lock detect output. LVCMOS/LVTTL interface levels. 46 VCLK Output VCXO PLL clock output. LVCMOS/LVTTL interface levels. 47 REF_CLK Output Reference clock output. LVCMOS/LVTTL interface levels. NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values. IDT ™ / ICS™ VCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 4 ICS843002CY-31 REV. C MAY 16, 2007 ICS843002-31 FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR PRELIMINARY TABLE 1. PIN DESCRIPTIONS (CONTINUED FROM PREVIOUS PAGE) Number 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59. 60 Name Type Description XOFB12:XOFB1 Input Pulldown 61 XOFB0 Input Pullup 62, 63 XTAL_OUT, XTAL_IN Input 64 VCCA_XO Power VCXO feedback divider control input. LVCMOS/LVTTL interface levels. VCXO feedback divider control input. LVCMOS/LVTTL interface levels. VCXO crystal oscillator interface. XTAL_IN is the input. XTAL_OUT is the output. Analog power supply pin for VCXO. NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values. TABLE 2. PIN CHARACTERISTICS Symbol Parameter CIN Input Capacitance CPD Power Dissipation Capacitance (per LVCMOS output) Test Conditions VCC, VCCA, VCCA_XO, VCCO_CMOS, VCCO_PECL = 3.465V Minimum Typical Maximum Units 4 pF TBD pF RPULLUP Input Pullup Resistor 51 kΩ RPULLDOWN Input Pulldown Resistor 51 kΩ ROUT Output Impedance 7 Ω IDT ™ / ICS™ VCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 5 ICS843002CY-31 REV. C MAY 16, 2007 ICS843002-31 FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR PRELIMINARY SECTION 1. FREQUENCY TRANSLATION ➥ Set the QB/nQB output divider control pins, NPB[2:0] = 010 for divide by 4. This sets the QB/nQB LVPECL output pair for 155.52MHz. The ICS843002-31 is a two stage device, a VCXO PLL stage followed by a low phase noise FemtoClock multiplier stage. The VCXO uses a pullable crystal to lock to the reference clock and can provide an output frequency up to 25MHz on the singleended VCLK output. For higher frequencies, the low phase noise FemtoClock can multiply the VCXO PLL output clock up to 700MHz on 2 differential LVPECL output pairs (QA/nQA, QB/ nQB). 2. T1 to T3. (1.544MHz to two 44.736MHz outputs) Since 44.736MHz is slightly higher than the maximum VCXO output frequency, the FemtoClock circuit will have to be used. ➥ Using a pullable 22.368MHz on XTAL_IN/XTAL_OUT, set the VCXO PLL feedback divider pins, XOFB[12:0] to 2796 and the input divider pins, XOIN[12:0] to 193. This multiplies the 1.544MHz reference to 22.368MHz (1.544MHz * 2796/193 = 22.368MHz). The VCXO PLL stage has a 13-bit input divider and a 13-bit feedback divider to generate large integer ratios needed for some frequency translation applications. When configuring the device is to use pullable crystals in the 17.5MHz – 25MHz range on the VCXO PLL stage, and ensure that the FemtoClock PLL is kept within its range of 560MHz to 700MHz. ➥ Set the FemtoClock multiplication control pin, MP, to 28 which sets the VCO at 626.304MHz. ➥ Set the QA/nQA output divider control pins, NPA[2:0] = 101 for divide by 14. This sets the QA/nQA LVPECL output pair for 44.736MHz. Below are 3 examples: 1. 8kHz to 622.08MHz and 155.52MHz ➥ Set the QB/nQB output divider control pins, NPB[2:0] = 000 for divide by 1. This sets the QB/nQB LVPECL output pair for 44.736MHz This frequency translation requires use of both the VCXO PLL and the FemtoClock circuit. The VCXO PLL can be used to multiply up to 19.44MHz for use as a reference clock for the FemtoClock which will do the multiplication from 19.44MHz to 622.08MHz. 3. T1 to E1. (1.544MHz to two 2.048MHz outputs) The 2.048MHz output frequency requirement is low enough that the FemtoClock circuit is not required. Only the VCXO stage is used for this frequency translation. ➥ Using a 19.44MHz pullable crystal on XTAL_IN/ XTAL_OUT, set the VCXO PLL feedback divider pins, XOFB[12:0], to 2430. This multiplies the 8kHz reference clock to 19.44MHz. ➥ Using a pullable 24.576MHz on XTAL_IN/XTAL_OUT, set the VCXO PLL feedback divider pins, XOFB[12:0] to 3072 and the input divider pins, XOIN[12:0] to 193. This multiplies the 1.544MHz reference to 2.048MHz (1.544MHz * 3072/193 = 24.576MHz). ➥ Set the FemtoClock multiplication control pin, MP, to 0 which sets the multiplication factor to 32. This sets the FemtoClock VCO to 622.08MHz. ➥ Set the QA/nQA output divider control pins, NPA[2:0] = 000 for divide by 1. This sets the QA/nQA LVPECL output pair for 622.08MHz. ➥ Set the VCXO PLL Output Divider control pins, NV[1:0] = 01 for /12. This divides the 24.576MHz VCXO PLL frequency down to 2.048MHz. SECTION 2. FREQUENCY CONFIGURATION The Frequency Configuration Table Examples (see the following pages) are intended to show the most common frequency translation requirements. It is sorted in order of descending input frequency. It is not intended to be an exhaustive configuration table because that would be impractical with almost 3 billion possible configurations. As far as configuration is concerned, frequencies 25MHz require the use of the downstream FemtoClock which can multiply the VCXO PLL output up to 700MHz. Complex integer ratios are handled with the VCXO PLL stage and the FemtoClock circuit can be configured to multiply the VCXO PLL output by 32 or 28. The following example will illustrate the configuration process. this means there are 2 viable VCXO PLL crystal choices which fall within its 17.5MHz – 15MHz range: 22.217143MHz (/28 feedback divider) or 19.44MHz (/32 feedback divider). Use of the /28 feedback divider for the FemtoClock multiplier will give slightly better phase noise, but in this case 22.217143/1.544 cannot be exactly achieved with the 13-bit input and feedback VCXO PLL dividers. Using the x32 setting of the FemtoClock allows a ratio of 19.44/1.544 = 2430/193 which is easily achievable. So the FemtoClock would be set for x32 and a 19.44MHz crystal would be used. The VCXO PLL input divider would be set for 193 and the VCXO PLL feedback divider would be set for 2430. To double check the solution, perform the following calculation: 1.544 * 2430 * 32/193 = 622.08MHz. Assume you have a 1.544MHz T1 clock which needs to be multiplied up to 622.08MHz (OC12). Obviously, the FemtoClock multiplier will be needed to achieve 622.08MHz. Since the FemtoClock has a selectable multiplication factor of 28 or 32, The 2nd FemtoClock multiplier output, QB/nQB, can be set to equal the QA/nQA output frequency or a fraction of its frequency. The following fractional values are available: /1, /2, /4, /8. IDT ™ / ICS™ VCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 6 ICS843002CY-31 REV. C MAY 16, 2007 IDT ™ / ICS™ VCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 7 311.04 155.52 77.76 311.04 311.04 311.04 34.368 32.064 2.048 1.544 155.52 77.76 51.84 38.88 19.44 311.04 311.04 311.04 311.04 155.52 155.52 155.52 155.52 155.52 155.52 FemtoClock Output VCXO Output FemtoClock Output FemtoClock Output FemtoClock Output FemtoClock Output VCXO Output VCXO Output VCXO Output VCXO Output FemtoClock Output 44.736 311.04 311.04 19.44 19.44 19.44 19.44 19.44 19.44 8 8 8 8 8 8 2430 405 24.704 1620 32.064 1620 3240 16 24.576 34.368 22.368 19.44 16 16 16 19.44 16 16 19.44 FemtoClock Output 16 16 19.44 19.44 19.44 19.44 4860 24.704 3240 3240 405 19.44 622.08 32 6480 24.576 32.064 34.368 VCXO Output 311.04 19.44 22.368 32 32 19.44 19.44 32 32 32 32 VCXO Input Divider 19.44 19.44 19.44 19.44 Required VCXO Crystal Frequency (MHz) FemtoClock Output 19.44 622.08 311.04 FemtoClock Output FemtoClock Output FemtoClock Output FemtoClock Output FemtoClock Output VCXO Output VCXO Output VCXO Output VCXO Output FemtoClock Output FemtoClock Output FemtoClock Output FemtoClock Output 311.04 38.88 1.544 622.08 311.04 2.048 51.84 32.064 622.08 622.08 311.04 34.368 622.08 VCXO Output 19.44 38.88 44.736 51.84 622.08 622.08 622.08 77.76 622.08 622.08 FemtoClock Output 155.52 622.08 FemtoClock Output FemtoClock Output 622.08 311.04 622.08 VCXO or FemtoClock Output 622.08 Output Frequency (MHz) Input Frequency (MHz) 1 1 1 1 1 1 193 32 167 179 233 1 1 1 1 1 1 1 1 193 16 167 179 233 1 1 1 1 1 1 1 VCXO Feedback Divider TABLE 3A. FREQUENCY CONFIGURATION EXAMPLES, CONTINUED ON NEXT PAGE N/A 32 N /A 32 32 32 32 N/A N/A N/A N/A 28 32 32 N/A 32 32 32 32 32 N/A N/A N/A N/A 28 N/A 32 32 32 32 32 32 FemtoClock ™ Multiplication Factor 1 N/A N/A N/A N/A 16 12 1 1 1 1 1 1 N/A N/ A N/A N/A N/A 16 12 1 1 N/A 1 N/A N/A N/A N/A N/A N/A VCXO Output Divider 16 622.08 2 N/A 622.08 N/A 12 8 4 N/A N/ A N/A N/A 14 1 1 N/ A 16 12 8 4 2 N/A 622.08 622.08 622.08 N/A N/A N/ A N/A 626.304 622.08 622.08 N/A 622.08 622.08 622.08 622.08 622.08 N/A N/A N/A N /A N/A N/A 14 N/A 16 12 8 4 2 1 FemtoClock Output Divider N/A 626.304 N/A 622.08 622.08 622.08 622.08 622.08 622.08 FemtoClock Output Frequency (MHz) 155.52 -> 311.04 (SONET) 155.52 -> 19.44 (SONET) 155.52 -> 38.88 (SONET) 155.52 -> 51.84 (OC3 to OC1) 155.52 -> 77.76 (SONET) 155.52 -> 155.52 (OC3) 311.04 -> 1.544 (SONET to T1/J1) 311.04 -> 2.048 (SONET to E1) 311.04 -> 32.064 (SONET to J3) 311.04 -> 34.368 (SONET to E3) 311.04 -> 44.736 (SONET to T3) 311.04 -> 622.08 (SONET) 311.04 -> 622.08 (SONET) 311.04 -> 19.44 (SONET) 311.04 -> 38.88 (SONET) 311.04 -> 51.84 (SONET) 311.04 -> 77.76 (SONET) 311.04 -> 155.52 (SONET) 311.04 -> 311.04 (SONET) 622.08 -> 1.544 (OC12 to T1/J1) 622.08 -> 2.048 (OC12 to E1) 622.08 -> 32.064 (OC12 to J3) 622.08 -> 34.368 (OC12 to E3) 622.08-> 44.736 (OC12 to T3) 622.08 -> 19.44 (SONET) 622.08 -> 38.88 (SONET) 622.08 -> 51.84 (OC12 to OC1) 622.08 -> 77.76 (SONET) 622.08 -> 155.52 (OC12 to OC3) 622.08 -> 311.04 (SONET) 622.08 -> 622.08 (OC12) Application ICS843002-31 FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR PRELIMINARY ICS843002CY-31 REV. C MAY 16, 2007 IDT ™ / ICS™ VCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 8 2.048 1.544 51.84 38.88 19.44 77.76 51.84 51.84 51.84 VCXO Output VCXO Output 311.04 622.08 44.736 34.368 32.064 2.048 1.544 44.736 51.84 51.84 51.84 51.84 51.84 51.84 51.84 44.736 FemtoClock Output VCXO Output VCXO Output FemtoClock Output 22.368 24.704 24.576 32.064 34.368 22.368 19.44 19.44 FemtoClock Output 19.44 19.44 19.44 19.44 19.44 24.704 24.576 32.064 34.368 22.368 19.44 19.44 19.44 19.44 19.44 19.44 19.44 2 405 135 270 270 540 8 8 8 8 8 8 8 1215 405 405 405 810 4 4 4 4 4 4 4 1215 405 24.576 24.704 810 810 1620 8 VCXO Input Divider 32.064 34.368 22.368 19.44 Required VCXO Crystal Frequency (MHz) FemtoClock Output FemtoClock Output 51.84 FemtoClock Output 77.76 155.52 51.84 VCXO Output FemtoClock Output FemtoClock Output VCXO Output VCXO Output VCXO Output 32.064 77.76 77.76 FemtoClock Output VCXO Output 44.736 77.76 FemtoClock Output FemtoClock Output FemtoClock Output VCXO Output 34.368 622.08 77.76 FemtoClock Output FemtoClock Output 77.76 155.52 311.04 77.76 19.44 77.76 77.76 51.84 38.88 77.76 77.76 VCXO Output FemtoClock Output 1.544 77.76 VCXO Output 77.76 2.048 155.52 VCXO Output VCXO Output FemtoClock Output FemtoClock Output VCXO or FemtoClock Output 155.52 34.368 32.064 44.736 155.52 155.52 622.08 155.52 155.52 Output Frequency (MHz) Input Frequency (MHz) 1 193 64 167 179 233 3 3 3 3 3 3 3 386 128 167 1 16 12 1 1 N/A N/ A N/A 28 N/A N/A N/A N/A 28 32 32 32 32 N/A N/A 32 32 N/A N/ A N/A N/A 28 32 32 32 N/A 32 32 32 N/A N/ A N/A N/A 28 32 FemtoClock ™ Multiplication Factor N /A 1 N/A N/A 16 12 1 1 N/A 233 179 N/A N/A N/A 1 N/A N/A N/A 16 12 1 1 N/A N/A VCXO Output Divider 1 1 1 1 1 1 1 193 64 167 179 233 1 VCXO Feedback Divider TABLE 3A. FREQUENCY CONFIGURATION EXAMPLES, CONTINUED ON NEXT PAGE 14 N/A N/A 626.304 N/ A N/ A N/ A 14 1 2 4 8 N/ A 16 12 N/ A N/ A N/ A N/A 14 1 2 4 N/A 16 12 8 N/A N/A 44.736 -> 44.736 (T3) 51.84 -> 1.544 (OC1 to T1/J1) 51.84 -> 2.048 (OC1 to E1) 51.84 -> 32.064 (OC1 to J3) 51.84 -> 34.368 (OC1 to E3) 51.84 -> 44.736 (OC1 to T3) 51.84 -> 622.08 (OC1 to OC12) 51.84 -> 311.04 (SONET) 51.84 -> 155.52 (OC1 to OC3) 51.84 -> 77.76 (SONET) 51.84 -> 19.44 (SONET) 51.84 -> 38.88 (SONET) 51.84 -> 51.84 (SONET) 77.76 -> 1.544 (SONET to T1/E1) 77.76 -> 2.048 (SONET to E1) 77.76 -> 32.064 (SONET to J3) 77.76 -> 34.368 (SONET to E3) 77.76 -> 44.736 (SONET to T3) 77.76 -> 622.08 (SONET) 77.76 -> 311.04 (SONET) 77.76 -> 155.52 (SONET) 77.76 -> 19.44 (SONET) 77.76 -> 38.88 (SONET) 77.76 -> 51.84 (SONET) 77.76 -> 77.76 (SONET) 155.52 -> 1.544 (OC3 to T1/J1) 155.52 -> 2.048 (OC3 to E1) 155.52 -> 32.064 (OC3 to J3) 155.52 -> 34.368 (OC3 to E3) N/A N/A 155.52 -> 44.736 (OC3 to T3) 155.52 -> 622.08 (OC3 to OC12) Application 14 1 FemtoClock Output Divider N/A N/A N/A 626.304 622.08 622.08 622.08 622.08 N/A 622.08 622.08 N/A N/A N/A N/A 626.304 622.08 622.08 622.08 N/A 622.08 622.08 622.08 N/A N/A N/A N/A 626.304 622.08 FemtoClock Output Frequency (MHz) ICS843002-31 FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR PRELIMINARY ICS843002CY-31 REV. C MAY 16, 2007 IDT ™ / ICS™ VCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 9 VCXO Output VCXO Output 44.736 34.368 32.064 2.048 38.88 38.88 38.88 VCXO Output VCXO Output 44.736 32.064 19.44 2.048 1.544 32.064 34.368 44.736 34.368 34.368 34.368 34.368 34.368 32.064 32.064 32.064 FemtoClock Output VCXO Output VCXO Output VCXO Output VCXO Output FemtoClock Output VCXO Output 1.544 34.368 38.88 34.368 VCXO Output VCXO Output FemtoClock Output FemtoClock Output FemtoClock Output 38.88 FemtoClock Output FemtoClock Output 622.08 77.76 38.88 VCXO Output 311.04 19.44 38.88 FemtoClock Output FemtoClock Output 38.88 38.88 38.88 38.88 622.08 44.736 FemtoClock Output 155.52 311.04 44.736 FemtoClock Output 22.368 34.368 32.064 24.704 24.576 19.44 334 167 1 537 179 71 6 179 358 22.368 32.064 1 1215 405 405 405 405 2 2 2 2 2 2 233 179 1 386 128 405 167 233 1 772 256 334 358 233 1 1 1 1 1 1 405 405 932 932 405 405 405 405 179 167 405 128 386 VCXO Feedback Divider 932 932 932 932 233 233 932 233 699 VCXO Input Divider 34.368 24.704 24.576 32.064 34.368 22.368 19.44 19.44 19.44 19.44 19.44 19.44 19.44 19.44 19.44 19.44 19.44 FemtoClock Output FemtoClock Output 19.44 34.368 32.064 19.44 24.576 24.704 Required VCXO Crystal Frequency (MHz) FemtoClock Output VCXO Output VCXO Output VCXO Output VCXO Output VCXO Output VCXO or FemtoClock Output 38.88 77.76 51.84 44.736 155.52 38.88 44.736 34.368 44.736 44.736 44.736 19.44 32.064 2.048 44.736 44.736 1.544 44.736 44.736 Output Frequency (MHz) Input Frequency (MHz) N/A 1 1 16 12 1 1 N/A 1 16 12 1 1 N/A N/A N/A N/A N/A 1 N/A N/A N/A N/A N/A N/A N/A 1 1 1 12 16 VCXO Output Divider TABLE 3A. FREQUENCY CONFIGURATION EXAMPLES, CONTINUED ON NEXT PAGE 28 N/A N/A N/A N/A N/A N/A 28 N/A N/A N/A N/A N/A 28 N/A 14 N/A N/A N/A N/A N/A N/A 14 N/A N/A N/A N/A N/A 14 1 2 4 8 N/A 16 1 2 4 8 12 16 N/A N/A N/A N/A N/A FemtoClock Output Divider 626.304 N/A N/A N/A N/A N/A 626.304 N/A N/A N/A N/A N/A 626.304 622.08 622.08 32 622.08 622.08 N/ A 622.08 622.08 622.08 622.08 622.08 622.08 622.08 N/ A N/ A N/ A N/A N/A FemtoClock Output Frequency (MHz) 32 32 32 N/A 32 32 32 32 32 32 32 N/A N/A N/A N/A N/A FemtoClock ™ Multiplication Factor 32.064 -> 44.736 (J3 to T3) 32.064 -> 34.368 (J3 to E3) 32.064 -> 32.064 (J3) 34.368 -> 1.544 (E3 to T1) 34.368 -> 2.048 (E3 to E1) 34.368 -> 19.44 (E3 to SONET) 34.368 -> 32.064 (E3 to J3) 34.368 > 44.736 (E3 to T3) 34.368 -> 34.368 (E3) 38.88 ->1.544 (SONET to DS1/J1) 38.88 -> 2.048 (SONET to E1) 38.88 -> 32.064 (SONET TO J3) 38.88 -> 34.368 (SONET to E3) 38.88 -> 44.736 (SONET to T3) 38.88 -> 622.08 (SONET to OC12) 38.88 -> 311.04 (SONET) 38.88 -> 155.52 (SONET to OC3) 38.88 -> 77.76 (SONET) 38.88 -> 19.44 (SONET) 38.88 -> 38.88 (SONET) 44.736 -> 622.08 (T3 to OC12) 44.736 -> 311.04 (T3 to SONET) 44.736 -> 155.52 (T3 to OC3) 44.736 -> 77.76 (T3 to SONET) 44.736 -> 51.84 (T3 to OC1) 44.736 -> 38.88 (T3 to SONET) 44.736 -> 34.368 (T3 to E3) 44.736 -> 32.064 (T3 to J3) 44.736 -> 19.44 (T3 to SONET) 44.736 -> 2.048 (T3 to E1) 44.736 -> 1.544 (T3 to T1/J1) Application ICS843002-31 FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR PRELIMINARY ICS843002CY-31 REV. C MAY 16, 2007 IDT ™ / ICS™ VCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 10 2.048 2.048 2.048 32.064 34.368 44.736 1.544 2.048 19.44 32.064 1.544 1.544 1.544 1.544 0.008 0.008 0.008 0.008 1.544 672.1627119 1.544 669.3265823 19.44 19.44 44.736 666.5142857 19.44 32.064 1.544 19.44 2.048 2.048 19.44 2.048 32.064 19.44 1.544 34.368 19.44 34.368 44.736 19.44 2.048 FemtoClock Output 622.08 19.44 2.048 FemtoClock Output 311.04 19.44 VCXO Output VCXO Output VCXO Output VCXO Output FemtoClock Output VCXO Output VCXO Output VCXO Output VCXO Output FemtoClock Output VCXO Output VCXO Output 32.064 19.44 24.576 24.704 22.368 34.368 32.064 24.576 24.704 22.368 32.064 34.368 24.704 24.576 VCXO Output VCXO Output 21.00508475 20.9164557 20.82857143 24.704 24.576 32.064 34.368 22.368 19.44 19.44 19.44 19.44 19.44 19.44 19.44 24.704 24.576 Required VCXO Crystal Frequency (MHz) FemtoClock Output VCXO Output VCXO Output VCXO Output VCXO Output FemtoClock Output FemtoClock Output FemtoClock Output FemtoClock Output FemtoClock Output 77.76 155.52 FemtoClock Output 19.44 51.84 19.44 VCXO Output FemtoClock Output 19.44 19.44 38.88 19.44 VCXO Output 1.544 32.064 19.44 VCXO Output 2.048 32.064 VCXO or FemtoClock Output Output Frequency (MHz) Input Frequency (MHz) 1 1 1 1 193 193 193 193 1 64 32 32 16 1 236 79 14 1215 405 405 405 405 1 1 1 1 1 1 1 501 167 VCXO Input Divider 4008 2430 3072 3088 2796 4296 4008 3072 16 699 501 537 193 12 255 85 15 1544 512 668 716 466 1 1 1 1 1 1 1 386 128 VCXO Feedback Divider 1 1 12 16 N/A 1 1 12 16 N/A 1 1 16 12 N/A N/A N/A 16 12 1 1 N/A N/A N/A N/A N/A N/A N/A 1 16 12 VCXO Output Divider TABLE 3A. FREQUENCY CONFIGURATION EXAMPLES, CONTINUED ON NEXT PAGE N/A N/A N/A N/A 28 N/A N/A N/A N/A 28 N/A N/A N/A N/A 32 32 32 N/A N/A N/A N/A 28 32 32 32 32 32 32 N/A N/A N/A FemtoClock ™ Multiplication Factor N/A N/A N/A N/A 626.304 N/A N/A N/A N/A 626.304 N/A N/A N/A N/A 672.1627119 669.3265823 666.5142857 N/A N/A N/A N/A 626.304 622.08 622.08 622.08 622.08 622.08 622.08 N/A N/A N/A FemtoClock Output Frequency (MHz) N/A N/A N/ A N/A 14 N/A N/A N/A N/A 14 N/A N/A N/A N/A 1 1 1 N/A N/A N/A N/A 14 1 2 4 8 12 16 N/A N/A N/A FemtoClock Output Divider 8KHz -> 32.064MHz (Frame Clock to J3) 8KHz -> 19.44MHz (Frame Clock to SONET) 8KHz -> 2.048MHz (Frame Clock to E1) 8KHz -> 1.544MHz (Frame Clock to T1) 1.544 -> 44.736 (T1/J1 to T3) 1.544 -> 34.368 (T1/J1 to E3) 1.544 -> 32.064 (T1/J1 to J3) 1.544 -> 2.048 (T1 to E1) 1.544 -> 1.54 (T1/J1) 2.048 -> 44.736 (E1 to T3) 2.048 -> 32.064 (E1 to J3) 2.048 -> 34.368 (E1 to E3) 2.048 -> 1.544 (E1 toT1/J1) 2.048 -> 2.048 (E1) 19.44 -> 672.1627119 (255/236 FEC) 19.44 -> 669.3265823 (255/237 FEC) 19.44 -> 666.5142857 (255/238 FEC) 19.44 -> 1.544 (SONET to T1/J1) 19.44 -> 2.048 (SONET to E1) 19.44 -> 32.064 (SONET to J3) 19.44 -> 34.368 (SONET to E3) 19.44 -> 44.736 (SONET to T3) 19.44 -> 622.08 (SONET to OC12) 19.44 -> 311.04 (SONET) 19.44 -> 155.52 (SONET to OC3) 19.44 -> 77.76 (SONET) 19.44 -> 51.84 (SONET to OC1) 19.44 -> 38.88 (SONET) 19.44 -> 19.44 (SONET) 32.064 -> 1.544 (J3 to T1) 32.064 -> 2.048 (J3 to E1) Application ICS843002-31 FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR PRELIMINARY ICS843002CY-31 REV. C MAY 16, 2007 155.52 311.04 622.08 0.008 0.008 0.008 38.88 77.76 44.736 0.008 0.008 34.368 0.008 0.008 Output Frequency (MHz) Input Frequency (MHz) FemtoClock Output FemtoClock Output FemtoClock Output FemtoClock Output FemtoClock Output FemtoClock Output VCXO Output VCXO or FemtoClock Output 19.44 19.44 19.44 19.44 19.44 22.368 34.368 Required VCXO Crystal Frequency (MHz) TABLE 3A. FREQUENCY CONFIGURATION EXAMPLES 1 1 1 1 1 1 1 VCXO Input Divider 2430 2430 2430 2430 2430 2796 4296 VCXO Feedback Divider N/ A N/A N/ A N/A N/ A 1 1 VCXO Output Divider 32 32 32 32 32 28 N/A FemtoClock ™ Multiplication Factor 622.08 622.08 622.08 622.08 622.08 626.304 N/A FemtoClock Output Frequency (MHz) 1 2 4 8 16 14 N/A FemtoClock Output Divider 8KHz -> 622.08MHz (Frame Clock to OC12) 8KHz -> 311.04MHz (Frame Clock to SONET) 8KHz ->155.52MHz (Frame Clock to OC3) 8KHz -> 77.76MHz (Frame Clock to SONET) 8KHz -> 38.88MHz (Frame Clock to SONET) 8KHz -> 44.736MHz (Frame Clock to T3) 8KHz -> 34.368MHz (Frame Clock to E3) Application ICS843002-31 FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR IDT ™ / ICS™ VCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 11 PRELIMINARY ICS843002CY-31 REV. C MAY 16, 2007 ICS843002-31 FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR PRELIMINARY ABSOLUTE MAXIMUM RATINGS Supply Voltage, VCC 4.6V NOTE: Stresses beyond those listed under Absolute Inputs, VI -0.5V to VCC + 0.5V Maximum Ratings may cause permanent damage to the Outputs, VO (LVCMOS) -0.5V to VCCO + 0.5V device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond Outputs, IO (LVPECL) Continuous Current Surge Current those listed in the DC Characteristics or AC Characteristics is not 50mA 100mA implied. Exposure to absolute maximum rating conditions for ex- Package Thermal Impedance, θJA 22.3°C/W (0 lfpm) Storage Temperature, TSTG tended periods may affect product reliability. -65°C to 150°C TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCA = VCCA_XO = VCCO_CMOS = VCCO_PECL = 3.3V±5%, TA = 0°C TO 70°C Symbol Parameter Test Conditions Minimum Typical Maximum Units VCC Core Supply Voltage 3.135 3.3 3.465 V VCCA, VCCA_XO Analog Supply Voltage 3.135 3.3 3.465 V VCCO_CMOS, VCCO_PECL Output Supply Voltage 3.135 3.3 3.465 V IEE Power Supply Current 395 mA ICCA Analog Supply Current 15 mA TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = VCCA = VCCA_XO = VCCO_CMOS = 3.3V±5%, TA = 0°C TO 70°C Symbol Parameter VIH Input High Voltage VIL Input Low Voltage MP, MR, OE_REF, SEL0, SEL1, XOIN[12:1], NPA[2:0], NPB[2:0], Input High Current CLK1, CLK2, XOFB[12:1] NV0, NV1, XOIN0, XOFB0 MP, MR, OE_REF, SEL0, SEL1, XOIN[12:1], NPA[2:0], NPB[2:0], Input CLK1, CLK2, XOFB[12:1] Low Current NV0, NV1, XOIN0, XOFB0 IIH IIL Test Conditions VOH Output High Voltage REF_CLK, VCLK, LOCK; NOTE 1 VOL Output Low Voltage REF_CLK, VCLK, LOCK; NOTE 1 Minimum Maximum Units 2 Typical VCC + 0.3 V -0.3 0.8 V VCC = VIN = 3.465V 150 µA VCC = VIN = 3.465V 5 µA VCC = 3.465V, VIN = 0V -5 µA VCC = 3.465V, VIN = 0V -150 µA 2.6 V 0.5 V NOTE 1: Outputs terminated with 50Ω to VCCO_CMOS/2. IDT ™ / ICS™ VCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 12 ICS843002CY-31 REV. C MAY 16, 2007 ICS843002-31 FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR PRELIMINARY TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VCC = VCCA = VCCA_XO = VCCO_CMOS = VCCO_PECL = 3.3V±5%, TA = 0°C TO 70°C Symbol Parameter Test Conditions IIH Input High Current IIL Input Low Current VPP Peak-to-Peak Input Voltage Minimum Typical Maximum Units CLK0 VIN = VCC = 3.465V 150 µA nCLK0 VIN = VCC = 3.465V 5 µA CLK0 VIN = 0V, VCC = 3.465V -150 µA nCLK0 VIN = 0V, VCC = 3.465V -5 µA 0.15 VCMR Common Mode Input Voltage; NOTE 1, 2 VEE + 0.5 NOTE 1: Common mode voltage is defined as VIH. NOTE 2: For single ended applications, the maximum input voltage for CLK0, nCLK0 is VCC + 0.3V. 1.3 V VCC - 0.85 V TABLE 4D. LVPECL DC CHARACTERISTICS, VCC = VCCA = VCCA_XO = VCCO_PECL = 3.3V±5%, TA = 0°C TO 70°C Symbol Parameter Maximum Units VOH Output High Voltage; NOTE 1 Test Conditions Minimum VCCO - 1.4 Typical VCCO - 0.9 V VOL Output Low Voltage; NOTE 1 VCCO - 2.0 VCCO - 1.7 VSWING Peak-to-Peak Output Voltage Swing 0.6 1.0 NOTE 1: Outputs terminated with 50 Ω to VCCO_PECL - 2V. See "Parameter Measurement Information" section, "3.3V Output Load Test Circuit". V V TABLE 5. CRYSTAL CHARACTERISTICS Symbol Parameter fN Nominal Frequency Test Conditions Minimum Typical Maximum 19.44 Units MHz fT Frequency Tolerance ±TBD ppm fS Frequency Stability ±TBD ppm CL Load Capacitance Operating Temperature Range CO Shunt Capacitance CO/C1 Pullability Ratio ESR Equivalent Series Resistance 0 70 12 4 220 Drive Level Mode of Operation IDT ™ / ICS™ VCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 13 °C pF pF 240 50 Ω 1 mW Fundamental ICS843002CY-31 REV. C MAY 16, 2007 ICS843002-31 FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR PRELIMINARY TABLE 6. AC CHARACTERISTICS, VCC = VCCA = VCCA_XO = VCCO_CMOS = VCCO_PECL = 3.3V±5%, TA = 0°C TO 70°C Symbol Parameter Test Conditions Maximum Units 35 700 MHz QB/nQB 4.375 700 MHz VCLK 1.1875 25 MHz 200 MHz QA/nQA fOUT Output Frequency Minimum Typical REF_CLK OC-48 mask (12kHz - 20MHz) 19.44MHz input, into CLK0 622.08MHz output; NOTE 1, 2 OC-12 mask (250kHz - 5MHz) 19.44MHz input, into CLK0 155.52MHz output; NOTE 1, 3 t(J) Timing Jitter OC-48 mask (12kHz - 20MHz) 8kHz input, into CLK2 622.08MHz output; NOTE 1, 2 OC-12 mask (250kHz - 5MHz) 8kHz input, into CLK2 155.52MHz output; NOTE 1, 3 tR / tF Output Rise/Fall Time odc Output Duty Cycle Random jitter 1.3 ps Deterministic jitter 0.75 ps Total jitter Random jitter Deterministic jitter Total jitter Random jitter Deterministic jitter 1.5 ps 3.5 mUI 1 ps 0.5 ps 1.1 ps 0.7 mUI 1 ps 0.3 ps 1.1 ps 2.7 mUI Random jitter 0.9 ps Deterministic jitter 0.19 ps 0.9 ps Total jitter Total jitter 20% to 80% 0.6 200 mUI 700 QA/QB @ 622.08MHz 50 VCLK, REF_CLK @ 19.44MHz 50 PLL Lock Time 100 tLOCK See Parameter Measurement Information section. NOTE 1: External crystal is 19.44MHz Eliptek ECX-5451. NOTE 2: Loop bandwidth (-3dB) = 180Hz; Loop Damping Factor = 5.3 (see Applications Section, Example Loop Filter Component Value, example case #4). NOTE 3: Loop bandwidth (-3dB) = 19Hz; Loop Damping Factor = 2.8 (see Applications Section, Example Loop Filter Component Value example case #2). IDT ™ / ICS™ VCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 14 ps % % ms ICS843002CY-31 REV. C MAY 16, 2007 ICS843002-31 FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR PRELIMINARY PARAMETER MEASUREMENT INFORMATION 2V 1.65V ± 5% VCC, VCCA, VCCA_XO, VCCO_PECL Qx SCOPE LVPECL nQx SCOPE VCC, VCCA, VCCA_XO, VCCO_CMOS LVCMOS Qx GND VEE -1.65V ± 5% -1.3V ± 0.165V 3.3V LVCMOS OUTPUT LOAD AC TEST CIRCUIT 3.3V LVPECL OUTPUT LOAD AC TEST CIRCUIT nQA V DDO VCLK QA 2 nQB V DDO REF_CLK QB 2 tsk(o) tsk(o) LVPECL OUTPUT SKEW 80% LVCMOS OUTPUT SKEW 80% 80% 80% tR tF VSW I N G Clock Outputs 20% 20% tR tF LVPECL OUTPUT RISE/FALL TIME IDT ™ / ICS™ VCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 15 Clock Outputs 20% 20% LVCMOS OUTPUT RISE/FALL TIME ICS843002CY-31 REV. C MAY 16, 2007 ICS843002-31 FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR PRELIMINARY Phase Noise Plot Noise Power nQA, nQB QA, QB Phase Noise Mask t PW t f1 Offset Frequency odc = f2 PERIOD t PW x 100% t PERIOD RMS Jitter = Area Under the Masked Phase Noise Plot LVPECL OUTPUT DUTY CYCLE/PULSE WIDTH/tPERIOD PHASE JITTER V CCO_LVCMOS VCLK, REF_CLK 2 t PW t odc = PERIOD t PW x 100% t PERIOD LVCMOS OUTPUT DUTY CYCLE/PULSE WIDTH/tPERIOD IDT ™ / ICS™ VCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 16 ICS843002CY-31 REV. C MAY 16, 2007 ICS843002-31 FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR PRELIMINARY APPLICATION INFORMATION DESCRIPTION OF THE PLL STAGES The ICS843002-31 is a two stage frequency multiplication device, a VCXO PLL followed by a low phase noise FemtoClock frequency multiplier. The VCXO uses an external pullable crystal which can be pulled ±100ppm by the VCXO PLL circuitry to phase lock it to the input reference frequency. The output frequency of the VCXO PLL is equal to that of the external pullable crystal, which is in the range of 17.5MHz to 25MHz. The loop bandwidth VCXO PLL is typically set in the range of 10-250Hz which provides attenuation of input reference clock jitter. Since the VCXO is a high-Q oscillator circuit, it has low intrinsic output jitter and phase noise. The VCXO PLL output clock is available from the VCLK pin. The FemtoClock frequency multiplier has an effective control bandwidth of about 800kHz which means it will track the VCXO PLL clock output. VCXO PLL LOOP RESPONSE CONSIDERATIONS Loop response characteristics of the VCXO PLL is affected by the setting of the VCXO feedback divider value (XOFB) and by the external loop filter components. A practical range of loop bandwidth for many applications is 25Hz to 1kHz. A bandwidth of less than 10Hz requires careful component selection and possible metal shielding to prevent clock output wander. A damping factor of 0.7 or greater should be used to ensure loop stability. When a passband peaking of 1), calculate the value of CP based on a CS value that would be used for a damping factor of 1. This will minimize baseband peaking and loop instability that can lead to output jitter. In the loop filter schematic diagram, capacitors are shown between pins 62 to ground and between pins 63 to ground. These are optional crystal load capacitors which can be used to center tune the external pullable crystal (the crystal frequency can only be lowered by adding capacitance, it cannot be raised). Note that the addition of external load capacitors will decrease the crystal pull range and the Kvco value. CP also dampens VCXO PLL input voltage modulation by the charge pump correction pulses. A CP value that is too low will result in increased output phase noise at the phase detector frequency due to this. In extreme cases where input jitter is high, charge pump current is high, and CP is too small, the VCXO PLL input voltage can hit the supply or ground rail resulting in nonlinear loop response. NOTES ON SETTING CHARGE PUMP CURRENT CHARGE PUMP CURRENT, EXAMPLE SETTINGS The recommended range for the charge pump current is 50μA to 500μA. Below 50μA, loop filter charge leakage, due to PCB or capacitor leakage, can become a problem. This loop filter leakage can cause locking problems, output clock cycle slips, or low frequency phase noise. As can be seen in the loop bandwidth and damping factor equations or by using the filter response software available from ICS, increasing charge pump current (ICP) increases both bandwidth and damping factor. RSET Charge Pump Current (ICP) 17.6K 62.5µA 8.8K 125µA 4.4K 250µA 2.2K 500µA ICP, Amps 1E-3 100E-6 10E-6 1k 10k RSET, Ω 100k FIGURE 2. CHARGE PUMP CURRENT VS. VALUE OF RSET (EXTERNAL RESISTOR) GRAPH IDT ™ / ICS™ VCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 18 ICS843002CY-31 REV. C MAY 16, 2007 ICS843002-31 FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR PRELIMINARY VCXO GAIN (KO) VS. XTAL FREQUENCY 9000 8000 K VCO 7000 (Hz/V) 6000 5000 4000 16 18 20 22 26 24 XTAL Frequency (MHz) EXAMPLE LOOP FILTER COMPONENT VALUE Example Case Number Device Configuration XTAL XOIN XOFB Frequency Divider Divider (MHz) 19.44 1 2430 Loop Filter Component Selection RSET RS CS CP Resistor Resistor Cap Cap (kΩ ) (kΩ ) (µF) (µF) 4.5 150 10 0.01 VCXO PLL Performance Loop BW Loop Passband (-3dB) Damping Peaking (MHz) Factor (dB) 18 5.8 0.1 1 Input Reference Clock 8kHz 2 8kHz 19.44 1 2430 0 4.5 150 2.2 0.01 19 2.8 0.3 3 19.44kHz 19.44 32 32 0 9.09 11 10 0.01 65 2.7 0.3 4 19.44MHz 19.44 8 8 0 9.09 11 10 0.01 180 5.3 0.1 MP Divider 0 IDT ™ / ICS™ VCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 19 ICS843002CY-31 REV. C MAY 16, 2007 ICS843002-31 FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR PRELIMINARY POWER SUPPLY FILTERING TECHNIQUES As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. The ICS843002-31 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. V CC, V CCA, V CCA_XO, and VCCO_X should be individually connected to the power supply plane through vias, and bypass capacitors should be used for each pin. To achieve optimum jitter performance, power supply isolation is required. Figure 3 illustrates how a 10Ω resistor along with a 10μF and a .01μF bypass capacitor should be connected to each VCCA pin. 3.3V VCC .01μF 10Ω VCCA .01μF 10μF FIGURE 3. POWER SUPPLY FILTERING DIFFERENTIAL CLOCK INPUT INTERFACE The CLK0 /nCLK0 accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. Both VSWING and VOH must meet the VPP and VCMR input requirements. Figures 4A to 4D show interface examples for the HiPerClockS CLK0/nCLK0 input driven by the most common driver types. The input interfaces suggested here are examples only. Please consult with the vendor of the driver component to confirm the driver termination requirements. For example in Figure 4A, the input termination applies for IDT HiPerClockS LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation. 3.3V 3.3V 3.3V 1.8V Zo = 50 Ohm CLK Zo = 50 Ohm CLK Zo = 50 Ohm nCLK Zo = 50 Ohm LVPECL nCLK HiPerClockS Input LVHSTL ICS HiPerClockS LVHSTL Driver R1 50 R1 50 HiPerClockS Input R2 50 R2 50 R3 50 FIGURE 4A. HIPERCLOCKS CLK/nCLK INPUT DRIVEN IDT HIPERCLOCKS LVHSTL DRIVER BY FIGURE 4B. HIPERCLOCKS CLK/nCLK INPUT DRIVEN 3.3V LVPECL DRIVER 3.3V 3.3V 3.3V 3.3V 3.3V R3 125 BY R4 125 Zo = 50 Ohm LVDS_Driv er Zo = 50 Ohm CLK CLK R1 100 Zo = 50 Ohm nCLK LVPECL R1 84 HiPerClockS Input nCLK Receiv er Zo = 50 Ohm R2 84 FIGURE 4C. HIPERCLOCKS CLK/nCLK INPUT DRIVEN 3.3V LVPECL DRIVER BY IDT ™ / ICS™ VCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 20 FIGURE 4D. HIPERCLOCKS CLK/nCLK INPUT DRIVEN 3.3V LVDS DRIVER BY ICS843002CY-31 REV. C MAY 16, 2007 ICS843002-31 FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR PRELIMINARY DIFFERENTIAL CLOCK INPUT CIRCUIT USING THE DIFFERENTIAL INTERFACE FOR SINGLE-ENDED CLOCKS The differential interface (CLK0/nCLK0) can be used as a third single-ended input to support an LVCMOS or LVTTL clock driver. The clock input is connected to the CLK0 input pin, and the nCLK0 pin is left unconnected. To help reduce interference with the internal VCO circuits, an external resistor can be placed in series with the clock signal near the CLK0 input pin. Series Termination Optional Series Filter Resistor Combined with the input pin capacitance, this resistor acts as a low pass signal filter. The typical value of this optional series filter resistor is 100Ω. This will lower both the amplitude and edge rate of the clock input signal. In the case of a very short clock trace a series termination register may not be needed. 3.3V 3.3V CLK0 CLK LVTTL or LVCMOS Logic Output 51k nCLK0 nCLK (no connection) 51k External Circuitry 51k Differential Input Stage Internal Device Circuitry FIGURE 5. SINGLE-ENDED CLOCK INPUT INTERFACE RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS INPUTS: CRYSTAL INPUT: For applications not requiring the use of the crystal oscillator input, both XTAL_IN and XTAL_OUT can be left floating. Though not required, but for additional protection, a 1kΩ resistor can be tied from XTAL_IN to ground. CLK INPUT: For applications not requiring the use of a clock input, it can be left floating. Though not required, but for additional protection, a 1kΩ resistor can be tied from the CLK input to ground. OUTPUTS: LVCMOS OUTPUT: All unused LVCMOS output can be left floating. We recommend that there is no trace attached. LVPECL OUTPUT All unused LVPECL outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated. CLK/nCLK INPUT: For applications not requiring the use of the differential input, both CLK and nCLK can be left floating. Though not required, but for additional protection, a 1kΩ resistor can be tied from CLK to ground. LVCMOS CONTROL PINS: All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A 1kΩ resistor can be used. IDT ™ / ICS™ VCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 21 ICS843002CY-31 REV. C MAY 16, 2007 ICS843002-31 FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR PRELIMINARY THERMAL RELEASE PATH The exposed metal pad provides heat transfer from the device to the P.C. board. The exposed metal pad is ground pad connected to ground plane through thermal via. The exposed pad on the device to the exposed metal pad on the PCB is contacted through solder as shown in Figure 6. For further information, please refer to the Application Note on Surface Mount Assembly of Amkor’s Thermally /Electrically Enhance Leadframe Base Package, Amkor Technology. EXPOSED PAD SOLDER M ASK SOLDER SIGNAL TRACE SIGNAL TRACE GROUND PLANE Expose Metal Pad THERM AL VIA (GROUND PAD) FIGURE 6. P.C. BOARD FOR EXPOSED PAD THERMAL RELEASE PATH EXAMPLE TERMINATION FOR 3.3V LVPECL OUTPUTS The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines. FOUT and nFOUT are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. Figures 7A and 7B show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations. 3.3V Zo = 50Ω 125Ω FOUT 125Ω FIN Zo = 50Ω Zo = 50Ω FOUT 50Ω RTT = 1 Z ((VOH + VOL) / (VCC – 2)) – 2 o FIN 50Ω VCC - 2V RTT FIGURE 7A. LVPECL OUTPUT TERMINATION IDT ™ / ICS™ VCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 22 Zo = 50Ω 84Ω 84Ω FIGURE 7B. LVPECL OUTPUT TERMINATION ICS843002CY-31 REV. C MAY 16, 2007 ICS843002-31 FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR PRELIMINARY POWER CONSIDERATIONS This section provides information on power dissipation and junction temperature for the ICS843002-31. Equations and example calculations are also provided. 1. Power Dissipation. The total power dissipation for the ICS843002-31 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results. NOTE: Please refer to Section 3 for details on calculating power dissipated in the load. • • Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 395mA = 1368.67mW Power (outputs)MAX = 30mW/Loaded Output pair If all outputs are loaded, the total power is 2 * 30mW = 60mW Total Power_MAX (3.465V, with all outputs switching) = 1368.67mW + 60mW = 1428.67mW 2. Junction Temperature. Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockSTM devices is 125°C. The equation for Tj is as follows: Tj = θJA * Pd_total + TA Tj = Junction Temperature θJA = Junction-to-Ambient Thermal Resistance Pd_total = Total Device Power Dissipation (example calculation is in section 1 above) TA = Ambient Temperature In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 17.2°C/W per Table 7 below. Therefore, Tj for an ambient temperature of 70°C with all outputs switching is: 70°C + 1.429W * 17.2°C/W = 94.6°C. This is well below the limit of 125°C. This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single layer or multi-layer). TABLE 7. THERMAL RESISTANCE θ JA FOR 64-PIN TQFP, E-PAD FORCED CONVECTION θJA by Velocity (Linear Feet per Minute) Multi-Layer PCB, JEDEC Standard Test Boards 0 200 500 22.3°C/W 17.2°C/W 15.1°C/W IDT ™ / ICS™ VCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 23 ICS843002CY-31 REV. C MAY 16, 2007 ICS843002-31 FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR PRELIMINARY 3. Calculations and Equations. The purpose of this section is to derive the power dissipated into the load. LVPECL output driver circuit and termination are shown in Figure 8. VCCO Q1 VOUT RL 50 VCCO - 2V FIGURE 8. LVPECL DRIVER CIRCUIT AND TERMINATION To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of V - 2V. CCO • For logic high, VOUT = VOH_MAX = VCCO_MAX – 0.9V (VCCO_MAX - VOH_MAX) = 0.9V • For logic low, VOUT = VOL_MAX = VCCO_MAX – 1.7V (VCCO_MAX - VOL_MAX) = 1.7V Pd_H is power dissipation when the output drives high. Pd_L is the power dissipation when the output drives low. Pd_H = [(VOH_MAX – (VCCO_MAX - 2V))/R ] * (VCCO_MAX - VOH_MAX) = [(2V - (VCCO_MAX - VOH_MAX))/R ] * (VCCO_MAX - VOH_MAX) = L L [(2V - 0.9V)/50Ω) * 0.9V = 19.8mW Pd_L = [(VOL_MAX – (VCCO_MAX - 2V))/R ] * (VCCO_MAX - VOL_MAX) = [(2V - (VCCO_MAX - VOL_MAX))/R ] * (VCCO_MAX - VOL_MAX) = L L [(2V - 1.7V)/50Ω) * 1.7V = 10.2mW Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW IDT ™ / ICS™ VCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 24 ICS843002CY-31 REV. C MAY 16, 2007 ICS843002-31 FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR PRELIMINARY RELIABILITY INFORMATION TABLE 7. θJAVS. AIR FLOW TABLE FOR 64 LEAD TQFP, E-PAD θJA vs. 0 Air Flow (Linear Feet per Minute) Multi-Layer PCB, JEDEC Standard Test Boards 0 200 500 22.3°C/W 17.2°C/W 15.1°C/W TRANSISTOR COUNT The transistor count for ICS843002-31 is: 10,095 IDT ™ / ICS™ VCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 25 ICS843002CY-31 REV. C MAY 16, 2007 ICS843002-31 FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR PACKAGE OUTLINE - Y SUFFIX FOR PRELIMINARY 64 LEAD TQFP, EPAD (32 pin package depicted to define Table 9 dimension symbols) TABLE 9. PACKAGE DIMENSIONS FOR 64 LEAD TQFP, EPAD JEDEC VARIATION ALL DIMENSIONS IN MILLIMETERS SYMBOL ACD-HD MINIMUM NOMINAL MAXIMUM 64 N A -- -- 1.20 A1 0.05 0.10 0.15 A2 0.95 1.0 1.05 b 0.17 0.22 0.27 c 0.09 -- 0.20 D 12.00 BASIC D1 10.00 BASIC D2 7.50 Ref. E 12.00 BASIC E1 10.00 BASIC E2 7.50 Ref. 0.50 BASIC e L 0.45 0.60 0.75 θ 0° -- 7° ccc -- -- 0.08 D3 & E3 4.5 5.0 5.5 Reference Document: JEDEC Publication 95, MS-026 IDT ™ / ICS™ VCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 26 ICS843002CY-31 REV. C MAY 16, 2007 ICS843002-31 FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR PRELIMINARY TABLE 10. ORDERING INFORMATION Part/Order Number Marking Package Shipping Packaging Temperature ICS843002CY-31 ICS843002CY31 64 Lead TQFP, EPAD tray 0°C to 70°C ICS843002CY-31T ICS843002CY31 64 Lead TQFP, EPAD 500 tape & reel 0°C to 70°C ICS843002CY-31LF TBD 64 Lead "Lead-Free" TQFP, EPAD tray 0°C to 70°C ICS843002CY-31LFT TBD 64 Lead "Lead-Free" TQFP, EPAD 500 tape & reel 0°C to 70°C NOTE: Par ts that are ordered with an "LF" suffix to the par t number are the Pb-Free configuration and are RoHS compliant. While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments. IDT ™ / ICS™ VCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 27 ICS843002CY-31 REV. C MAY 16, 2007 ICS843002-31 FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR PRELIMINARY Innovate with IDT and accelerate your future networks. Contact: www.IDT.com For Sales For Tech Support 800-345-7015 408-284-8200 Fax: 408-284-2775 netcom@idt.com 480-763-2056 Corporate Headquarters Asia Pacific and Japan Europe Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.) Integrated Device Technology Singapore (1997) Pte. Ltd. Reg. No. 199707558G 435 Orchard Road #20-03 Wisma Atria Singapore 238877 +65 6 887 5505 IDT Europe, Limited 321 Kingston Road Leatherhead, Surrey KT22 7TU England +44 (0) 1372 363 339 Fax: +44 (0) 1372 378851 © 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo, ICS and HiPerClockS are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA
ICS843002BY-31LF 价格&库存

很抱歉,暂时无法提供与“ICS843002BY-31LF”相匹配的价格&库存,您可以联系我们找货

免费人工找货