0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
A6986F

A6986F

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    TSSOP16

  • 描述:

    IC REG BUCK ADJ 2A 16HTSSOP

  • 数据手册
  • 价格&库存
A6986F 数据手册
A6986F Automotive 38 V, 1.5 A synchronous step-down switching regulator with 30 μA quiescent current Datasheet - production data Description HTSSOP16 (RTH = 40 °C/W) Features  AEC-Q100 qualified  1.5 A DC output current  4 V to 38 V operating input voltage  Low consumption mode or low noise mode  30 µA IQ at light-load (LCM VOUT = 3.3 V)  8 µA IQ-SHTDWN  Adjustable fSW (250 kHz - 2 MHz)  Fixed output voltage (3.3 V and 5 V) or adjustable from 0.85 V to VIN  Embedded output voltage supervisor  Synchronization  Adjustable soft-start time The A6986F automotive grade device is a stepdown monolithic switching regulator able to deliver up to 1.5 A DC. The output voltage adjustability ranges from 0.85 V to VIN. The 100% duty cycle capability and the wide input voltage range meet the cold crank and load dump specifications for automotive systems. The “Low Consumption Mode” (LCM) is designed for applications active during car parking, so it maximizes the efficiency at light-load with controlled output voltage ripple. The “Low Noise Mode” (LNM) makes the switching frequency constant and minimizes the output voltage ripple overload current range, meeting the low noise application specification like car audio. The output voltage supervisor manages the reset phase for any digital load (µC, FPGA). The RST open collector output can also implement output voltage sequencing during the power-up phase. The synchronous rectification, designed for high efficiency at medium - heavy load, and the high switching frequency capability make the size of the application compact. Pulse by pulse current sensing on both power elements implements an effective constant current protection.  Internal current limiting  Overvoltage protection  Output voltage sequencing  Peak current mode architecture  RDSON HS = 180 m, RDSON LS = 150 m  Thermal shutdown Applications  Designed for automotive systems  Battery powered applications  Car body applications (LCM)  Car audio and low noise applications (LNM) August 2020 This is information on a product in full production. DocID027739 Rev 6 1/79 www.st.com Contents A6986F Contents 1 Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Pin settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.5 ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4 Datasheet parameters over the temperature range . . . . . . . . . . . . . . . 13 5 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.1 Power supply and voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Switchover feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.2 Voltages monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.3 Soft-start and inhibit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.3.1 Ratiometric startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.3.2 Output voltage sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.4 Error amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.5 Output voltage line regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.6 Output voltage load regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.7 High-side switch resistance vs. input voltage . . . . . . . . . . . . . . . . . . . . . . 26 5.8 Light-load operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.9 5.10 5.8.1 Low noise mode (LNM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.8.2 Low consumption mode (LCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.8.3 Quiescent current in LCM with switchover . . . . . . . . . . . . . . . . . . . . . . . 34 Switchover feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.9.1 LCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.9.2 LNM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Overcurrent protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 OCP and switchover feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2/79 DocID027739 Rev 6 A6986F 6 7 Contents 5.11 Overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.12 Thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Closing the loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6.1 GCO(s) control to output transfer function . . . . . . . . . . . . . . . . . . . . . . . . 42 6.2 Error amplifier compensation network . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6.3 Voltage divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 6.4 Total loop gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.5 Compensation network design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Application notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 7.1 Output voltage adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 7.2 Switching frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 7.3 MLF pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 7.4 Voltage supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 7.5 Synchronization (LNM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 7.6 Design of the power components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7.6.1 Input capacitor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7.6.2 Inductor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 7.6.3 Output capacitor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 8 Application board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 9 Efficiency curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 10 EMC testing results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 11 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 11.1 HTSSOP16 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 12 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 13 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 DocID027739 Rev 6 3/79 79 Application schematic 1 A6986F Application schematic Figure 1. Application schematic 5 7*/ 7*/ 345 7#*"4 1(/% 183(/% (/% 1(/% .-' 7065 -9 -9 "' 7$$ O' O' O' 44*/) '# %&-": $0.1 '48 4(/% &1 4:/$) Q' 4JHOBM(/% (/% 183(/% ". 4/79 DocID027739 Rev 6 A6986F Pin settings 2 Pin settings 2.1 Pin connection Figure 2. Pin connection (top view) 2.2 345   7#*"4 7$$   7*/ 44*/)   -9 4:/$)*4,*1   -9 '48   1(/% &9104&% 1"%50 4(/% 1(/% .-'   1(/% $0.1   4(/% %&-":   7065 Pin description Table 1. Pin description No. Pin Description 1 RST The RST open collector output is driven low when the output voltage is out of regulation. The RST is released after an adjustable time DELAY once the output voltage is over the active delay threshold. 2 VCC Connect a ceramic capacitor (≥ 470 nF) to filter internal voltage reference. This pin supplies the embedded analog circuitry. 3 SS/INH An open collector stage can disable the device clamping this pin to GND (INH mode). An internal current generator (4 A typ.) charges the external capacitor to implement the soft-start. 4 SYNCH/ ISKP The pin features Master / Slave synchronization in LNM (see Section 5.8.1 on page 26) and skip current level selection in LCM (see Section 5.8.2 on page 27). In LNM, leave this pin floating when not used. 5 FSW A pull up resistor (E24 series only) to VCC or pull down to GND selects the switching frequency. Pinstrapping is active only before the soft-start phase to minimize the IC consumption. 6 MLF A pull up resistor (E24 series only) to VCC or pull down to GND selects the low noise mode/low consumption mode and the active RST threshold. Pinstrapping is active only before the soft-start phase to minimize the IC consumption. 7 COMP Output of the error amplifier. The designed compensation network is connected at this pin. 8 DELAY An external capacitor connected at this pin sets the time DELAY to assert the rising edge of the RST o.c. after the output voltage is over the reset threshold. If this pin is left floating, RST is like a Power Good. 9 VOUT Output voltage sensing 10 SGND Signal GND DocID027739 Rev 6 5/79 79 Pin settings A6986F Table 1. Pin description (continued) No. Pin 11 PGND Power GND 12 PGND Power GND 13 LX Switching node 14 LX Switching node 15 VIN DC input voltage 16 VBIAS Typically connected to the regulated output voltage. An external voltage reference can be used to supply part of the analog circuitry to increase the efficiency at light-load. Connect to GND if not used. - E. p. Exposed pad must be connected to SGND, PGND 2.3 Description Maximum ratings Stressing the device above the rating listed in Table 2: Absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability. Table 2. Absolute maximum ratings Symbol Min. Max. Unit VIN -0.3 40 V DELAY -0.3 VCC + 0.3 V PGND SGND - 0.3 SGND + 0.3 V SGND - - V VCC -0.3 (VIN + 0.3) or (max. 4) V SS / INH -0.3 VIN + 0.3 V -0.3 VCC + 0.3 V -0.3 VCC + 0.3 V VOUT -0.3 10 V FSW -0.3 VCC + 0.3 V SYNCH -0.3 VIN + 0.3 V VBIAS -0.3 (VIN + 0.3) or (max. 6) V RST -0.3 VIN + 0.3 V LX -0.3 VIN + 0.3 V MLF COMP Description See Table 1 TJ Operating temperature range -40 150 °C TSTG Storage temperature range - -65 to 150 °C TLEAD Lead temperature (soldering 10 sec.) - 260 °C IHS, ILS High-side / low-side switch current - 2 A 6/79 DocID027739 Rev 6 A6986F 2.4 Pin settings Thermal data Table 3. Thermal data Symbol 2.5 Parameter Value Unit Rth JA Thermal resistance junction ambient (device soldered on the STMicroelectronics demonstration board) 40 °C/W Rth JC Thermal resistance junction to exposed pad for board design (not suggested to estimate TJ from power losses). 5 °C/W ESD protection Table 4. ESD protection Symbol ESD Test condition Value Unit HBM 2 kV MM 200 CDM non-corner pins 500 CDM corner pins 750 DocID027739 Rev 6 V 7/79 79 Electrical characteristics 3 A6986F Electrical characteristics TJ = -40 to 135 °C, VIN = 12 V unless otherwise specified. Table 5. Electrical characteristics Symbol Parameter Test condition Note Min. Typ. Max. VIN Operating input voltage range - - 4 - 38 VINH VCC UVLO rising threshold - - 2.7 - 3.5 VINL VCC UVLO falling threshold - - 2.4 - 3.5 Duty cycle < 20% - 2.3 - - Duty cycle = 100% closed loop operation - 1.8 - - IPK IVY Peak current limit A - 2.4 - - LCM, VSYNCH = GND 0.2 0.4 0.6 LCM, VSYNCH = VCC (2) - 0.2 - - LNM or VOUT overvoltage - 0.5 1 2 - RDSON HS High-side RDSON ISW = 1 A - - 0.18 0.360 Low-side RDSON ISW = 1 A - - 0.15 0.300 ISKIPL IVY_SNK RDSON LS Programmable skip current limit Reverse current limit - V (1) ISKIPH Valley current limit Unit fSW Selected switching frequency FSW pinstrapping before SS - IFSW FSW biasing current SS ended - MLF pinstrapping before SS - Low noise mode / LCM/LNM Low consumption mode selection IMLF D TON MIN MLF biasing current SS ended  See Table 6: fSW selection - 0 500 nA See Table 7 on page 11, Table 8 on page 12, Table 9 on page 12 - - 0 500 nA 0 - 100 % ns Duty cycle - (2) Minimum On time - - - 80 - VBIAS = GND (no switchover) - 2.9 3.3 3.6 VBIAS = 5 V (switchover) - 2.9 3.3 3.6 Switch internal supply from VIN to VBIAS - 2.85 - 3.2 Switch internal supply from VBIAS to VIN - 2.78 - 3.15 VCC regulator VCC SWO 8/79 LDO output voltage VBIAS threshold (3 V< VBIAS < 5.5 V) DocID027739 Rev 6 V A6986F Electrical characteristics Table 5. Electrical characteristics (continued) Symbol Parameter Test condition Note Min. Typ. Max. Unit A Power consumption ISHTDWN Shutdown current from VIN VSS/INH = GND LCM - SWO VREF < VFB < VOVP (SLEEP) VBIAS = 3.3 V IQ OPVIN Quiescent current from VIN IQ OPVBIAS Quiescent current from VBIAS LCM - NO SWO VREF < VFB < VOVP (SLEEP) VBIAS = GND - 4 8 15 (3) 4 10 15 A (3) 35 70 120 LNM - SWO VFB = GND (NO SLEEP) VBIAS = 3.3 V - 0.5 1.5 5 LNM - NO SWO VFB = GND (NO SLEEP) VBIAS = GND - 2 2.8 6 (3) 25 50 115 A - 0.5 1.2 5 mA SS rising - 200 460 700 - - - 100 140 (2) - 1 - LCM - SWO VREF < VFB < VOVP (SLEEP) VBIAS = 3.3 V LNM - SWO VFB = GND (NO SLEEP) VBIAS = 3.3 V mA Soft-start VINH VSS threshold VINH HYST VSS hysteresis ISS CH CSS charging current VSS < VINH OR t < TSS SETUP OR VEA+ > VFB t > TSS SETUP AND VEA+ < VFB VSS START SSGAIN mV A (2) - 4 - Start of internal error amplifier ramp - 0.995 1.1 1.150 V SS/INH to internal error amplifier gain - - - 3 - - 3.3 V (A6986F3V3) - 3.25 3.3 3.35 5 V (A6986F5V) - 4.925 5.0. 5.075 A6986F - 0.841 0.85 0.859 3.3 V (A6986F3V3) - 4 6 8.5 5 V (A6986F5V) - 7.5 10 13.5 A6986F - - 50 500 Error amplifier VOUT IVOUT Voltage feedback VOUT biasing current DocID027739 Rev 6 V A nA 9/79 79 Electrical characteristics A6986F Table 5. Electrical characteristics (continued) Symbol AV ICOMP Parameter Test condition Note Min. Typ. Max. Unit dB - (2) - 100 - - - ±6 ±12 ±25 - (4) ±4 - - Current sense transconductance (VCOMP to inductor current gain) Ipk = 1 A (2) - 2.5 - A/V Slope compensation - (5) 0.45 0.75 1 A - 1.15 1.2 1.25 - - 0.5 2 5 % Error amplifier gain EA output current capability A Inner current loop gCS VPP*gCS Overvoltage protection VOVP Overvoltage trip (VOVP/VREF) - VOVP HYST Overvoltage hysteresis - Synchronization (fan out: 6 slave devices typ.) fSYN MIN Synchronization frequency LNM; fSW = VCC - 266.5 - - kHz VSYN TH SYNCH input threshold LNM, SYNCH rising - 0.70 - 1.2 V SYNCH pull-down current LNM, VSYN = 1.2 V - 0.7 - mA High level output LNM, 5 mA sinking load - 1.40 - - Low level output LNM, 0.7 mA sourcing load - - - 0.6 Selected RST threshold MLF pinstrapping before SS ISYN VSYN OUT V Reset VTHR VTHR HYST RST hysteresis VRST RST open collector output - see Table 7, Table 8, Table 9 (2) - 2 - VIN > VINH AND VFB < VTH 4 mA sinking load - - - 0.4 2 < VIN < VINH 4 mA sinking load - - - % V - 0.8 Delay VTHD RST open collector released as soon as VDELAY > VTHD VFB > VTHR - 1.19 ID CH CDELAY charging current VFB > VTHR - 1 2 3 - (2) - 165 - Thermal shutdown hysteresis - (2) - 30 - 1.234 1.258 V A Thermal shutdown TSHDWN THYS Thermal shutdown temperature °C 1. Parameter tested in static condition during testing phase. Parameter value may change over dynamic application condition. 2. Not tested in production. 3. LCM enables SLEEP mode at light-load. 4. TJ = -40 °C. 5. Measured at fsw = 250 kHz. 10/79 DocID027739 Rev 6 A6986F Electrical characteristics TJ = -40 to 135 °C, VIN = 12 V unless otherwise specified. Table 6. fSW selection Symbol fSW RVCC (E24 series) RGND (E24 series) 0 Tj fSW min. fSW typ. fSW max. NC 225 250 275 1.8 k NC - 285 - 3.3 k NC - 330 - 5.6 k NC - 380 - 10 k NC - 435 - NC 0 450 500 550 18 k NC - 575 - 33 k NC - 660 - 56 k NC - 755 - NC 1.8 k - 870 - NC 3.3 k 900 1000 1100 NC 5.6 k - 1150 - NC 10 k - 1310 - - 1500(2) 1925 2200 (1) (1) (1) 18 k NC NC 33 k 1575 1750(2) NC 56 k 1800 2000(2) Unit kHz 1. Not tested in production. 2. No synchronization as slave in LNM. TJ = -40 to 135 °C, VIN = 12 V unless otherwise specified. Table 7. LNM / LCM selection (A6986F3V3) Symbol VRST RVCC RGND (E24 1%) (E24 1%) VRST VRST VRST min. typ. max. 0 NC 93% 3.008 3.069 3.130 8.2 k NC 80% 2.587 2.640 2.693 18 k NC 87% 2.814 2.871 2.928 39 k NC 96% 3.105 3.168 3.231 NC 0 93% 3.008 3.069 3.130 NC 8.2 k 80% 2.587 2.640 2.693 NC 18 k 87% 2.814 2.871 2.928 NC 39 k 96% 3.105 3.168 3.231 Operating VRST/VOUT mode (tgt. value) LCM LNM DocID027739 Rev 6 Unit V 11/79 79 Electrical characteristics A6986F TJ = -40 to 135 °C, VIN = 12 V unless otherwise specified. Table 8. LNM / LCM selection (A6986F5V) Symbol VRST RVCC RGND (E24 1%) (E24 1%) 0 NC 8.2 k NC 18 k NC 39 k Operating VRST/VOUT mode (tgt. value) VRST VRST VRST min. typ. max. 93% 4.557 4.650 4.743 80% 3.920 4.000 4.080 87% 4.263 4.350 4.437 NC 96% 4.704 4.800 4.896 NC 0 93% 4.557 4.650 4.743 NC 8.2 k 80% 3.920 4.000 4.080 NC 18 k 87% 4.263 4.350 4.437 NC 39 k 96% 4.704 4.800 4.896 LCM LNM Unit V TJ = -40 to 135 °C, VIN = 12 V unless otherwise specified. Table 9. LNM / LCM selection (A6986F) Symbol VRST 12/79 RVCC RGND VRST/VOUT VRST VRST VRST (E24 1%) (E24 1%) (tgt value) min. typ. max. 0 NC 93% 0.779 0.791 0.802 8.2 k ± 1% NC 80% 0.670 0.680 0.690 18 k ± 1% NC 87% 0.728 0.740 0.751 39 k ± 1% NC 96% 0.804 0.816 0.828 NC 0 93% 0.779 0.791 0.802 NC 8.2 k± 1% 80% 0.670 0.680 0.690 NC 18 k ± 1% 87% 0.728 0.740 0.751 NC 39 k ± 1% 96% 0.804 0.816 0.828 Operating mode LCM LNM DocID027739 Rev 6 Unit V A6986F 4 Datasheet parameters over the temperature range Datasheet parameters over the temperature range The 100% of the population in the production flow is tested at three different ambient temperatures (-40 °C, +25 °C, +135 °C) to guarantee the datasheet parameters inside the junction temperature range (-40 °C, +135 °C). The device operation is guaranteed when the junction temperature is inside the (-40 °C, +150 °C) temperature range. The designer can estimate the silicon temperature increase respect to the ambient temperature evaluating the internal power losses generated during the device operation. However the embedded thermal protection disables the switching activity to protect the device in case the junction temperature reaches the TSHTDWN (+165 °C typ.) temperature. All the datasheet parameters can be guaranteed to a maximum junction temperature of +135 °C to avoid triggering the thermal shutdown protection during the testing phase because of self-heating. DocID027739 Rev 6 13/79 79 Functional description 5 A6986F Functional description The A6986F device is based on a “peak current mode”, constant frequency control. As a consequence, the intersection between the error amplifier output and the sensed inductor current generates the PWM control signal to drive the power switch. The device features LNM (low noise mode) that is forced PWM control, or LCM (low consumption mode) to increase the efficiency at light-load. The main internal blocks shown in the block diagram in Figure 3 are: 14/79  Embedded power elements. Thanks to the P-channel MOSFET as high-side switch the device features low dropout operation  A fully integrated sawtooth oscillator with adjustable frequency  A transconductance error amplifier  An internal feedback divider GDIV INT  The high-side current sense amplifier to sense the inductor current  A “Pulse Width Modulator” (PWM) comparator and the driving circuitry of the embedded power elements  The soft-start blocks to ramp the error amplifier reference voltage and so decreases the inrush current at power-up. The SS/INH pin inhibits the device when driven low.  The switchover capability of the internal regulator to supply a portion of the quiescent current when the VBIAS pin is connected to an external output voltage  The synchronization circuitry to manage master / slave operation and the synchronization to an external clock  The current limitation circuit to implement the constant current protection, sensing pulse by pulse high-side / low-side switch current. In case of heavy short-circuit the current protection is fold back to decrease the stress of the external components  A circuit to implement the thermal protection function  The OVP circuitry to discharge the output capacitor in case of overvoltage event  MLF pin strapping sets the LNM/LCM mode and the thresholds of the RST comparator  FSW pinstrapping sets the switching frequency  The RST open collector output DocID027739 Rev 6 A6986F Functional description Figure 3. Internal block diagram 5.1 Power supply and voltage reference The internal regulator block consists of a start-up circuit, the voltage pre-regulator that provides current to all the blocks and the bandgap voltage reference. The starter supplies the startup current when the input voltage goes high and the device is enabled (SS/INH pin over the inhibits threshold). The pre-regulator block supplies the bandgap cell and the rest of the circuitry with a regulated voltage that has a very low supply voltage noise sensitivity. Switchover feature The switchover scheme of the pre-regulator block features to derive the main contribution of the supply current for the internal circuitry from an external voltage (3 V < VBIAS < 5.5 V is typically connected to the regulated output voltage). This helps to decrease the equivalent quiescent current seen at VIN. (Please refer to Section 5.9: Switchover feature on page 35). DocID027739 Rev 6 15/79 79 Functional description 5.2 A6986F Voltages monitor An internal block continuously senses the VCC, VBIAS and VBG. If the monitored voltages are good, the regulator starts operating. There is also a hysteresis on the VCC (UVLO). Figure 4. Internal circuit 9&& 67$57(5 35(5(*8/$725 95(* %$1'*$3 ,&%,$6 95() ',1 5.3 Soft-start and inhibit The soft-start and inhibit features are multiplexed on the same pin. An internal current source charges the external soft-start capacitor to implement a voltage ramp on the SS/INH pin. The device is inhibited as long as the SS/INH pin voltage is lower than the VINH threshold and the soft-start takes place when SS/INH pin crosses VSS START. (See Figure 5: Soft-start phase). The internal current generator sources 1 A typ. current when the voltage of the VCC pin crosses the UVLO threshold. The current increases to 4 A typ. as soon as the SS/INH voltage is higher than the VINH threshold. This feature helps to decrease the current consumption in inhibit mode. An external open collector can be used to set the inhibit operation clamping the SS/INH voltage below VINH threshold. The startup feature minimizes the inrush current and decreases the stress of the power components during the power-up phase. The ramp implemented on the reference of the error amplifier has a gain three times higher (SSGAIN) than the external ramp present at SS/INH pin. 16/79 DocID027739 Rev 6 A6986F Functional description Figure 5. Soft-start phase The CSS is dimensioned accordingly with Equation 1: Equation 1 I SSCH  T SS 4A  TSS C SS = SS GAIN  -------------------------------- = 3  --------------------------V FB 0.85V where TSS is the soft-start time, ISS CH the charging current and VFB the reference of the error amplifier. The soft-start block supports the precharged output capacitor. DocID027739 Rev 6 17/79 79 Functional description A6986F Figure 6. Soft-start phase with precharged COUT During normal operation a new soft-start cycle takes place in case of:  Thermal shutdown event  UVLO event  The device is driven in INH mode The soft-start capacitor is discharged with a 0.6 mA typ. current capability for 1 msec time max. For complete and proper capacitor discharge in case of fault condition, a maximum CSS = 67 nF value is suggested. The application example in Figure 7 shows how to enable the A6986F and perform the softstart phase driven by an external voltage step, for example the signal from the ignition switch in automotive applications. Figure 7. Enable the device with external voltage step 18/79 DocID027739 Rev 6 A6986F Functional description The maximum capacitor value has to be limited to guarantee the device can discharge it in case of thermal shutdown and UVLO events (see Figure 9), so restart the switching activity ramping the error amplifier reference voltage. Equation 2 – 1 msec C SS  ------------------------------------------------------------------------------------------V SS_FINAL – 0.9 V R SS_EQ  ln  1 – ----------------------------------------------  600 A – R SS_EQ where: Equation 3 R UP  R DWN R SS_EQ = --------------------------------R UP + R DWN R DWN V SS_FINAL =  V STEP – V DIODE   ---------------------------------R UP + R DWN The optional diode prevents to disable the device if the external source drops to ground. RUP value is selected in order to make the capacitor charge at first approximation independent from the internal current generator (4 A typ. current capability, see Table 5 on page 8), so: Equation 4 V STEP – V DIODE – V SS END ----------------------------------------------------------------------- » I SS CHARGE  4 A R UP where: Equation 5 V FB V SS END = V SS START + --------------------SS GAIN represents the SS/INH voltage correspondent to the end of the ramp on the error amplifier (see Figure 5); refer to Table 5 for VSS START, VFB and SSGAIN parameters. As a consequence the voltage across the soft-start capacitor can be written as: Equation 6 1 v SS  t  = V SS_FINAL  ----------------------------------------t 1–e – --------------------------------C SS  R SS_EQ RSS_DOWN is selected to guarantee the device stays in inhibit mode when the internal generator sources 1 A typ. out of the SS/INH pin and VSTEP is not present: Equation 7 R DWN  I SS INHIBIT  R DWN  1 A « V INH  200 mV so: Equation 8 R DWN  100 k DocID027739 Rev 6 19/79 79 Functional description A6986F RUP and RDWN are selected to guarantee: Equation 9 V SS_FINAL  2 V  V SS_END The time to ramp the internal voltage reference can be calculated from Equation 10: Equation 10 V SS_FINAL – V SS START T SS = C SS  R SS_EQ  ln  -----------------------------------------------------------  V SS_FINAL – V SS END  that is the equivalent soft-start time to ramp the output voltage. Figure 8 shows the soft-start phase with the following component selection: RUP = 180 k, RDWN = 33 k, CSS = 200 nF, the 1N4148 is a small signal diode and VSTEP = 13 V. Figure 8. External soft-start network VSTEP driven The circuit in Figure 7 introduces a time delay between VSTEP and the switching activity that can be calculated as: Equation 11 V SS_FINAL T SS DELAY = C SS  R SS_EQ  ln  -----------------------------------------------------------  V SS_FINAL – V SS START Figure 9 shows how the device discharges the soft-start capacitor after an UVLO or thermal shutdown event in order to restart the switching activity ramping the error amplifier reference voltage. 20/79 DocID027739 Rev 6 A6986F Functional description Figure 9. External soft-start after UVLO or thermal shutdown DocID027739 Rev 6 21/79 79 Functional description 5.3.1 A6986F Ratiometric startup The ratiometric startup is implemented sharing the same soft-start capacitor for a set of the A6986F devices. Figure 10. Ratiometric startup 9 9287 9287 9287 W $0 As a consequence all the internal current generators charge in parallel the external capacitor. The capacitor value is dimensioned accordingly with Equation 12: Equation 12 I SSCH  T SS 4A  T SS C SS = n A6986F  SS GAIN  -------------------------------- = n A6986F  3  --------------------------V FB 0.85V where nA6986F represents the number of devices connected in parallel. For better tracking of the different output voltages the synchronization of the set of regulators is suggested. 22/79 DocID027739 Rev 6 A6986F Functional description Figure 11. Ratiometric startup operation DocID027739 Rev 6 23/79 79 Functional description 5.3.2 A6986F Output voltage sequencing The A6986F device implements sequencing connecting the RST pin of the master device to the SS/INH of the slave. The slave is inhibited as long as the master output voltage is outside regulation so implementing the sequencing (see Figure 12). Figure 12. Output voltage sequencing 9 9287 9287 9287 W W'(/$ 0.5 The graphical representation of the input RMS current of the input filter in the case of two devices with 0° phase shift (synchronized to an external signal) or 180° phase shift (synchronized connecting their SYNCH pins) regulating the same output voltage is provided in Figure 45. To dimension the proper input capacitor please refer to Section 7.6.1: Input capacitor selection on page 57. 52/79 DocID027739 Rev 6 A6986F Application notes Figure 45. Input RMS current 506FXUUHQWQRUPDOL]HG ,UPV,287   WZR UHJXODWRUV RSHUDWLQJ LQ SKDVH  WZR UHJXODWRUV RSHUDWLQJ RXW RI SKDVH          'XW\F\FOH DocID027739 Rev 6 53/79 79 Application notes A6986F Figure 46 shows two regulators not synchronized. Figure 46. Two regulators not synchronized Figure 47 shows the same regulators working synchronized. The MASTER regulator (LX2 trace) delivers the synchronization signal (SYNCH1, SYNCH2 pins are connected together) to the SLAVE device (LX1). The SLAVE regulator works in phase with the synchronization signal which is out of phase with the MASTER switching operation. Figure 47. Two regulators synchronized 54/79 DocID027739 Rev 6 A6986F Application notes Multiple A6986F can be synchronized to an external frequency signal fed to the SYNCH pin. In this case the regulator set is phased to the reference and all the devices will work with 0° phase shift. The frequency range of the synchronization signal is 275 kHz - 1.4 MHz and the minimum pulse width is 100 nsec (see Figure 48). Figure 48. Synchronization pulse definition L)[ G4:/$)30 .)[ G4:/$)30 OTFDNJO G4:/$)30 OTFDNJO ".7 Since the slope compensation contribution that is required to prevent subharmonic oscillations in peak current mode architecture depends on the switching frequency, it is important to select the same oscillator frequency for all regulators (all of them operate as SLAVE) as close as possible to the frequency of the reference signal (please refer to Table 6: fSW selection on page 11). As a consequence all the regulators have the same resistor value connected to the FSW pin, so the slope compensation is optimized accordingly with the frequency of the synchronization signal. The slope compensation contribution is latched at power-up and so fixed during the device operation. The A6986F normally operates in the MASTER mode, driving the SYNCH line at the selected oscillator frequency as shown in Figure 49 and Figure 46. In the SLAVE mode the A6986F sets the internal oscillator at 250 kHz typ. (see Table 6 on page 11 - first row) and drives the line accordingly. Figure 49. A6986F synchronization driving capability In order to safely guarantee that each regulator recognizes itself in SLAVE mode during the normal operation, the external master must drive the SYNCH pin with a clock signal DocID027739 Rev 6 55/79 79 Application notes A6986F frequency higher than the maximum oscillator spread (refer to Table 6 on page 11) for at least 10 internal clock cycles. For example: selecting RFSW = 0 to GND Table 13. Example of oscillator frequency selection from Table 6 Symbol RVCC (E24 series) RGND (E24 series) fSW min. fSW typ. fSW max. fSW NC 0 450 500 550 the device enters in slave mode after 10 pulses at frequency higher than 550 kHz and so it is able to synchronize to a clock signal in the range 275 kHz - 1.4 MHz (see Figure 48). Anyway it is suggested to limit the frequency range within ± 20% FSW resistor nominal frequency (see details in text below). If not spread spectrum is required, all the regulators synchronize to a frequency higher to the maximum oscillator spread (550 kHz in the example). The device keeps operating in slave mode as far as the master is able to drive the SYNCH pin faster than 275 kHz (maximum oscillator spread for 250 kHz oscillator), otherwise it goes back into MASTER mode at the nominal oscillator frequency after successfully driving one pulse at 250 kHz (see Figure 50) in the SYNCH line. Figure 50. Slave to master mode transition switching node SLAVE mode 250kHz typ. stand alone operation at nominal fsw SYNCH signal The external master can force a latched SLAVE mode driving the SYNCH pin low at powerup, before the soft-start starts the switching activity. So the oscillator frequency is 250 kHz typ. fixed until a new UVLO event is triggered regardless FSW resistor value, that otherwise counts to design the slope compensation. The same considerations above are also valid. 56/79 DocID027739 Rev 6 A6986F Application notes The master driving capability must be able to provide the proper signal levels at the SYNCH pin (see Table 5 on page 8 - Synchronization section):  Low level < VSYN THL= 0.7 V sinking 5 mA  High level > VSYN THH = 1.2 V sourcing 0.7 mA Figure 51. Master driving capability to synchronize the A6986F As anticipated above, in SLAVE mode the internal oscillator operates at 250 kHz typ. but the slope compensation is dimensioned accordingly with FSW resistors so, even if the A6986F supports synchronization over the 275 kHz - 1.4 MHz frequency range, it is important to limit the switching operation around a working point close to the selected frequency (FSW resistor). As a consequence, to guarantee the full output current capability and to prevent the subharmonic oscillations the master must limit the driving frequency range within ± 20% of the selected frequency. A wider frequency range may generate subharmonic oscillation for duty > 50% or limit the peak current capability (see IPK parameter in Table 5) since the internal slope compensation signal may be saturated. In order to guarantee the synchronization as a slave over distribution, temperature and the output load, the external clock frequency must be lower than 1.4 MHz. 7.6 Design of the power components 7.6.1 Input capacitor selection The input capacitor voltage rating must be higher than the maximum input operating voltage of the application. During the switching activity a pulsed current flows into the input capacitor and so its RMS current capability must be selected accordingly with the application conditions. Internal losses of the input filter depends on the ESR value so usually low ESR capacitors (like multilayer ceramic capacitors) have higher RMS current capability. On the other hand, given the RMS current value, lower ESR input filter has lower losses and so contributes to higher conversion efficiency. DocID027739 Rev 6 57/79 79 Application notes A6986F The maximum RMS input current flowing through the capacitor can be calculated as: Equation 44 D D I RMS = I OUT   1 – ----  ---   Where IOUT is the maximum DC output current, D is the duty cycles,  is the efficiency. This function has a maximum at D = 0.5 and, considering  = 1, it is equal to IOUT/2. In a specific application the range of possible duty cycles has to be considered in order to find out the maximum RMS input current. The maximum and minimum duty cycles can be calculated as: Equation 45 V OUT + V LOWSIDE D MAX = -----------------------------------------------------------------------------------------------V INMIN + V LOWSIDE – V HIGHSIDE Equation 46 V OUT + V LOWSIDE D MIN = -------------------------------------------------------------------------------------------------V INMAX + V LOWSIDE – V HIGHSIDE Where VHIGH_SIDE and VLOW_SIDE are the voltage drops across the embedded switches. The peak-to-peak voltage across the input filter can be calculated as: Equation 47 I OUT D D V PP = -------------------------   1 – ----  ---- + ESR   I OUT + I L  C IN  f SW    In case of negligible ESR (MLCC capacitor) the equation of CIN as a function of the target VPP can be written as follows: Equation 48 I OUT D D C IN = --------------------------   1 – ----  ---V PP  f SW    Considering this function has its maximum in D = 0.5: Equation 49 I OUT C INMIN = ---------------------------------------------4  V PPMAX  f SW Typically CIN is dimensioned to keep the maximum peak-peak voltage across the input filter in the order of 5% VIN_MAX. 58/79 DocID027739 Rev 6 A6986F Application notes Table 14. Input capacitors Manufacturer TDK Taiyo Yuden 7.6.2 Series Size Cap value (F) Rated voltage (V) C3225X7S1H106M 1210 10 50 C3216X5R1H106M 1206 - - UMK325BJ106MM-T 1210 - - Inductor selection The inductor current ripple flowing into the output capacitor determines the output voltage ripple (please refer to Section 7.6.3). Usually the inductor value is selected in order to keep the current ripple lower than 20% - 40% of the output current over the input voltage range. The inductance value can be calculated by Equation 50: Equation 50 V IN – V OUT V OUT I L = ------------------------------  T ON = --------------  T OFF L L Where TON and TOFF are the on and off time of the internal power switch. The maximum current ripple, at fixed VOUT, is obtained at maximum TOFF that is at minimum duty cycle (see Section 7.6.1: Input capacitor selection to calculate minimum duty). So fixing IL = 20% to 40% of the maximum output current, the minimum inductance value can be calculated: Equation 51 V OUT 1 – D MIN L MIN = -------------------  ----------------------I LMAX F SW where fSW is the switching frequency 1/(TON + TOFF). For example for VOUT = 3.3 V, VIN = 12 V, IOUT = 2 A and FSW = 500 kHz the minimum inductance value to have IL = 30% of IOUT is about 8.2 µH. The peak current through the inductor is given by: Equation 52 I L I L PK = I OUT + -------2 So if the inductor value decreases, the peak current (that has to be lower than the current limit of the device) increases. The higher is the inductor value, the higher is the average output current that can be delivered, without reaching the current limit. In Table 15 some inductor part numbers are listed. Table 15. Inductors Manufacturer Series Inductor value (H) Saturation current (A) Coilcraft XAL50xx 2.2 to 22 6.5 to 2.7 - XAL60xx 2.2 to 22 12.5 to 4 DocID027739 Rev 6 59/79 79 Application notes 7.6.3 A6986F Output capacitor selection The triangular shape current ripple (with zero average value) flowing into the output capacitor gives the output voltage ripple, that depends on the capacitor value and the equivalent resistive component (ESR). As a consequence the output capacitor has to be selected in order to have a voltage ripple compliant with the application requirements. The voltage ripple equation can be calculated as: Equation 53 I LMAX V OUT = ESR   I LMAX + --------------------------------------8  C OUT  f SW Usually the resistive component of the ripple can be neglected if the selected output capacitor is a multi layer ceramic capacitor (MLCC). The output capacitor is important also for loop stability: it determines the main pole and the zero due to its ESR. (see Section 6: Closing the loop on page 42 to consider its effect in the system stability). For example with VOUT = 3.3 V, VIN = 12 V, IL = 0.6 A, fSW = 500 kHz (resulting by the inductor value) and COUT = 10 F MLCC: Equation 54 V OUT I LMAX 1 1 0 6 15mV ------------------  --------------  ------------------------------ =  ------  -------------------------------------------------- = ---------------- = 0.45%  33 8  10F  500kHz V OUT V OUT C OUT  f SW 3.3 The output capacitor value has a key role to sustain the output voltage during a steep load transient. When the load transient slew rate exceeds the system bandwidth, the output capacitor provides the current to the load. In case the final application specifies high slew rate load transient, the system bandwidth must be maximized and the output capacitor has to sustain the output voltage for time response shorter than the loop response time. In Table 16 some capacitor series are listed. Table 16. Output capacitors Manufacturer Series Cap value (F) Rated voltage (V) ESR (m) GRM32 22 to 100 6.3 to 25
A6986F 价格&库存

很抱歉,暂时无法提供与“A6986F”相匹配的价格&库存,您可以联系我们找货

免费人工找货