0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
DEMOTS4909Q

DEMOTS4909Q

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    -

  • 描述:

    BOARD DEMO FOR TS4909Q

  • 数据手册
  • 价格&库存
DEMOTS4909Q 数据手册
TS4909 Dual mode low power 150 mW stereo headphone amplifier with capacitor-less and single-ended outputs Datasheet − production data Features DFN10 (3 x 3) ■ No output coupling capacitors necessary Pop-and-click noise reduction circuitry ■ Operating from VCC = 2.2 V to 5.5 V ■ ■ ■ Standby mode active low Output power: – 158 mW at 5 V, into 16 Ω with 1% THD+N max (1 kHz) – 52 mW at 3.0 V into 16 Ω with 1% THD+N max (1 kHz) Ultra-low current consumption: 2.0 mA typ. at 3V Ultra-low standby consumption: 10 nA typ. High signal-to-noise ratio: 105 dB typ. at 5 V High crosstalk immunity: 110 dB (F = 1 kHz) for single-ended outputs PSRR: 72 dB (F = 1 kHz), inputs grounded, for phantom ground outputs Low tWU: 50 ms in PG mode, 100 ms in SE mode ■ Available in lead-free DFN10 3 x 3 mm ■ ■ ■ ■ ■ ■ Pin connections (top view) Vin1 1 10 Stdby 2 9 Vout1 SE/PHG 3 8 Vout3 Bypass 4 7 Vout2 Vin2 5 6 Gnd Vdd Functional block diagram Vdd SE/PHG Vin1 Vout1 Applications Stdby Vout3 Bypass ■ ■ Headphone amplifier Mobile phone ■ PDA, portable audio player BIAS Vout2 Vin2 Description Gnd The TS4909 is a stereo audio amplifier designed to drive headphones in portable applications. The integrated phantom ground is a circuit topology that eliminates the heavy output coupling capacitors. This is of primary importance in portable applications where space constraints are very high. A single-ended configuration is also available, offering even lower power consumption because the phantom ground can be switched off. Pop-and-click noise during switch-on and switchoff phases is eliminated by integrated circuitry. January 2013 This is information on a product in full production. Specially designed for applications requiring low power supplies, the TS4909 is capable of delivering 31 mW of continuous average power into a 32 Ω load with less than 1% THD+N from a 3 V power supply. Featuring an active low standby mode, the TS4909 reduces the supply current to only 10 nA (typ.). The TS4909 is unity gain stable and can be configured by external gain-setting resistors. Doc ID 11972 Rev 9 1/35 www.st.com 35 Contents TS4909 Contents 1 Typical application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 6 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.2 Frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.3 Gain using the typical application schematics . . . . . . . . . . . . . . . . . . . . . 24 4.4 Power dissipation and efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.4.1 Single-ended configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.4.2 Phantom ground configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.4.3 Total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.5 Decoupling of the circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.6 Wake-up time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.7 Pop performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.8 Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2/35 Doc ID 11972 Rev 9 TS4909 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. Typical applications for the TS4909 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Open-loop frequency response, RL = 1 MΩ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Open-loop frequency response, RL = 100 Ω, CL = 400 pF . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Open-loop frequency response, RL = 1 MΩ, CL = 100 pF . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Open-loop frequency response, RL = 16 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Open-loop frequency response, RL = 16 Ω, CL = 400 pF . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Output swing vs. power supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 THD+N vs. output power, PHG, F = 1 kHz, RL = 16 Ω, Av = 1. . . . . . . . . . . . . . . . . . . . . . 10 THD+N vs. output power, PHG, F = 20 kHz, RL = 16 Ω, Av = 1. . . . . . . . . . . . . . . . . . . . . 10 THD+N vs. output power, PHG, F = 1 kHz, RL = 32 Ω, Av = 1. . . . . . . . . . . . . . . . . . . . . . 10 THD+N vs. output power, PHG, F = 20 kHz, RL = 32 Ω, Av = 1. . . . . . . . . . . . . . . . . . . . . 10 THD+N vs. output power, SE, F = 1 kHz, RL = 16 Ω, Av = 1 . . . . . . . . . . . . . . . . . . . . . . . 10 THD+N vs. output power, SE, F = 20 kHz, RL = 16 Ω, Av = 1 . . . . . . . . . . . . . . . . . . . . . . 10 THD+N vs. output power, SE, F = 1 kHz, RL = 32 Ω, Av = 1 . . . . . . . . . . . . . . . . . . . . . . . 11 THD+N vs. output power, SE, F = 20 kHz, RL = 32 Ω, Av = 1 . . . . . . . . . . . . . . . . . . . . . . 11 THD+N vs. output power, PHG, F = 1 kHz, RL = 16 Ω, Av = 4. . . . . . . . . . . . . . . . . . . . . . 11 THD+N vs. output power, PHG, F = 20 kHz, RL = 16 Ω, Av = 4. . . . . . . . . . . . . . . . . . . . . 11 THD+N vs. output power, PHG, F = 1 kHz, RL = 32 Ω, Av = 4. . . . . . . . . . . . . . . . . . . . . . 11 THD+N vs. output power, PHG, F = 20 kHz, RL = 32 Ω, Av = 4. . . . . . . . . . . . . . . . . . . . . 11 THD+N vs. output power, SE, F = 1 kHz, RL = 16 Ω, Av = 4 . . . . . . . . . . . . . . . . . . . . . . . 12 THD+N vs. output power, SE, F = 20 kHz, RL = 16 Ω, Av = 4 . . . . . . . . . . . . . . . . . . . . . . 12 THD+N vs. output power, SE, F = 1 kHz, RL = 32 Ω, Av = 4 . . . . . . . . . . . . . . . . . . . . . . . 12 THD+N vs. output power, SE, F = 20 kHz, RL = 32 Ω, Av = 4 . . . . . . . . . . . . . . . . . . . . . . 12 THD+N vs. frequency, PHG, RL = 16 Ω, Av = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 THD+N vs. frequency, PHG, RL = 32 Ω, Av = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 THD+N vs. frequency, SE, RL = 16 Ω, Av = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 THD+N vs. frequency, SE, RL = 32 Ω, Av = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 THD+N vs. frequency, PHG, RL = 16 Ω, Av = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 THD+N vs. frequency, PHG, RL = 32 Ω, Av = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 THD+N vs. frequency, SE, RL = 16 Ω, Av = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 THD+N vs. frequency, SE, RL = 32 Ω, Av = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Output power vs. power supply voltage, PHG, RL = 16 Ω, F = 1 kHz. . . . . . . . . . . . . . . . . 14 Output power vs. power supply voltage, PHG, RL = 32 Ω, F = 1 kHz. . . . . . . . . . . . . . . . . 14 Output power vs. power supply voltage, SE, RL = 16 Ω, F = 1 kHz . . . . . . . . . . . . . . . . . . 14 Output power vs. power supply voltage, SE, RL = 32 Ω, F = 1 kHz . . . . . . . . . . . . . . . . . . 14 Output power vs. load resistance, PHG, Vcc = 2.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Output power vs. load resistance, SE, Vcc = 2.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Output power vs. load resistance, PHG, Vcc = 3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Output power vs. load resistance, SE, Vcc = 3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Output power vs. load resistance, PHG, Vcc = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Output power vs. load resistance, SE, Vcc = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Power dissipation vs. output power, PHG, Vcc = 2.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Power dissipation vs. output power, SE, Vcc = 2.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Power dissipation vs. output power, PHG, Vcc = 3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Power dissipation vs. output power, SE, Vcc = 3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Power dissipation vs. output power, PHG, Vcc = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Power dissipation vs. output power, SE, Vcc = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Crosstalk vs. frequency, SE, Vcc = 5 V, RL = 16 Ω, Av = 1 . . . . . . . . . . . . . . . . . . . . . . . . 16 Doc ID 11972 Rev 9 3/35 List of figures Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. Figure 61. Figure 62. Figure 63. Figure 64. Figure 65. Figure 66. Figure 67. Figure 68. Figure 69. Figure 70. Figure 71. Figure 72. Figure 73. Figure 74. Figure 75. Figure 76. Figure 77. Figure 78. Figure 79. Figure 80. Figure 81. Figure 82. Figure 83. Figure 84. Figure 85. 4/35 TS4909 Crosstalk vs. frequency, SE, Vcc = 5 V, RL = 32 Ω, Av = 1 . . . . . . . . . . . . . . . . . . . . . . . . 16 Crosstalk vs. frequency, SE, Vcc = 5 V, RL = 16 Ω, Av = 4 . . . . . . . . . . . . . . . . . . . . . . . . 17 Crosstalk vs. frequency, SE, Vcc = 5 V, RL = 32 Ω, Av = 4 . . . . . . . . . . . . . . . . . . . . . . . . 17 Crosstalk vs. frequency, PHG, Vcc = 5 V, Av = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Crosstalk vs. frequency, PHG, Vcc = 5 V, Av = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 SNR vs. power supply voltage, PHG, unweighted, Av = 1 . . . . . . . . . . . . . . . . . . . . . . . . . 17 SNR vs. power supply voltage, SE, unweighted, Av = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 17 SNR vs. power supply voltage, PHG, A-weighted, Av = 1 . . . . . . . . . . . . . . . . . . . . . . . . . 18 SNR vs. power supply voltage, SE, A-weighted, Av = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 18 SNR vs. power supply voltage, PHG, unweighted, Av = 4 . . . . . . . . . . . . . . . . . . . . . . . . . 18 SNR vs. power supply voltage, SE, unweighted, Av = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 18 SNR vs. power supply voltage, PHG, A-weighted, Av = 4 . . . . . . . . . . . . . . . . . . . . . . . . . 18 SNR vs. power supply voltage, SE, A-weighted, Av = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Power supply rejection ratio vs. frequency vs. Vcc, PHG . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Power supply rejection ratio vs. frequency vs. Vcc, SE . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Power supply rejection ratio vs. frequency vs. gain, PHG . . . . . . . . . . . . . . . . . . . . . . . . . 19 Power supply rejection ratio vs. frequency vs. gain, SE . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 PSRR vs. frequency vs. bypass capacitor, PHG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 PSRR vs. frequency vs. bypass capacitor, SE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Current consumption vs. power supply voltage, PHG . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Current consumption vs. power supply voltage, SE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Current consumption vs. standby voltage, Vcc = 2.6 V, PHG . . . . . . . . . . . . . . . . . . . . . . 20 Current consumption vs. standby voltage, Vcc = 2.6 V, SE . . . . . . . . . . . . . . . . . . . . . . . . 20 Current consumption vs. standby voltage, Vcc = 3 V, PHG . . . . . . . . . . . . . . . . . . . . . . . . 20 Current consumption vs. standby voltage, Vcc = 3 V, SE . . . . . . . . . . . . . . . . . . . . . . . . . 20 Current consumption vs. standby voltage, Vcc = 5 V, PHG . . . . . . . . . . . . . . . . . . . . . . . . 21 Current consumption vs. standby voltage, Vcc = 5 V, SE . . . . . . . . . . . . . . . . . . . . . . . . . 21 Power derating curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Higher cut-off frequency vs. feedback capacitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Lower cut-off frequency vs. input capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Lower cut-off frequency vs. output capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Current delivered by power supply voltage in single-ended configuration . . . . . . . . . . . . . 24 Current delivered by power supply voltage in phantom ground configuration . . . . . . . . . . 25 Typical wake-up time vs. bypass capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Internal equivalent circuit schematics of the TS4909 in standby mode . . . . . . . . . . . . . . . 28 TS4909 footprint recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 DFN10 3 x 3 pitch 0.5 mm exposed pad package mechanical drawing . . . . . . . . . . . . . . . 30 Doc ID 11972 Rev 9 TS4909 1 Typical application schematics Typical application schematics Figure 1. Typical applications for the TS4909 Rfeed1 20k Vcc Cs 1μF Phantom ground configuration SE/PHG Vin1 Cin1 20k Vout1 Rin1 330nF Standby Vout3 BIAS Cb 1μF Vin2 330nF 20k Vout2 Rin2 Cin2 Gnd 20k Rfeed2 Rfeed1 20k Vcc Cs 1μF Single-ended configuration SE/PHG Vin1 Cin1 20k Cout1 Vout1 Rin1 330nF Standby Vout3 BIAS Cb 1μF Vin2 Cout2 330nF 20k Vout2 Rin2 Cin2 Gnd 20k Rfeed2 Table 1. Application component information Component Functional description Rin1,2 Inverting input resistor that sets the closed loop gain in conjunction with Rfeed. This resistor also forms a high pass filter with Cin (fc = 1 / (2 x Pi x Rin x Cin)). Cin1,2 Input coupling capacitor that blocks the DC voltage at the amplifier’s input terminal. Rfeed1,2 Feedback resistor that sets the closed loop gain in conjunction with Rin. AV = closed loop gain = -Rfeed/Rin. Cb Half supply bypass capacitor Cs Supply bypass capacitor that provides power supply filtering. Doc ID 11972 Rev 9 5/35 Absolute maximum ratings and operating conditions 2 TS4909 Absolute maximum ratings and operating conditions Table 2. Absolute maximum ratings Symbol VCC Vi Tstg Tj Rthja Parameter Value Unit 6 V -0.3V to VCC +0.3V V -65 to +150 °C Maximum junction temperature 150 °C Thermal resistance junction to ambient DFN10 120 °C/W 1.79 W 2 kV Supply voltage (1) Input voltage Storage temperature (2) Pdiss Power dissipation DFN10 ESD Human body model (pin to pin) ESD Machine model 220pF - 240pF (pin to pin) 200 V Latch-up Latch-up immunity (all pins) 200 mA Lead temperature (soldering, 10 sec) 260 °C 170 (3) mA Output current 1. All voltage values are measured with respect to the ground pin. 2. Pd is calculated with Tamb = 25°C, Tjunction = 150°C. 3. Caution: this device is not protected in the event of abnormal operating conditions, such as for example, short-circuiting between any one output pin and ground, between any one output pin and VCC, and between individual output pins. Table 3. Operating conditions Symbol VCC RL Toper CL VSTBY Parameter Supply voltage Load resistor Operating free air temperature range Load capacitor RL = 16 to 100Ω RL > 100Ω Standby voltage input TS4909 in STANDBY TS4909 in active state Value Unit 2.2 to 5.5 V ≥ 16 Ω -40 to + 85 °C 400 100 pF GND ≤ VSTBY ≤ 0.4 (1) 1.35V ≤ VSTBY ≤ VCC V VSE/PHG Single-ended or phantom ground configuration voltage input TS4909 outputs in single-ended configuration TS4909 outputs in phantom ground configuration VSE/PHG=VCC VSE/PHG=0 Rthja Thermal resistance junction-to-ambient DFN10(2) 41 V 1. The minimum current consumption (ISTBY) is guaranteed at ground for the whole temperature range. 2. When mounted on a 4-layer PCB. 6/35 Doc ID 11972 Rev 9 °C/W TS4909 Electrical characteristics 3 Electrical characteristics Table 4. Electrical characteristics at VCC = +5 V with GND = 0 V and Tamb = 25°C (unless otherwise specified) Symbol Parameter ICC Supply current ISTBY Standby current Pout THD+N PSRR Iout VO SNR Crosstalk Test conditions 2.1 3.1 3.2 4.8 mA No input signal, RL = 32Ω 10 1000 nA RL = 32Ω, Pout = 60mW, 20Hz ≤ RL = 16Ω, Pout = 90mW, 20Hz ≤ RL = 32Ω, Pout = 60mW, 20Hz ≤ ground RL = 16Ω, Pout = 90mW, 20Hz ≤ 60 95 60 95 F ≤ 20kHz, single-ended F ≤ 20kHz, single-ended F ≤ 20kHz, phantom F ≤ 20kHz, phantom ground Inputs grounded(1), Av = -1, RL>=16Ω, Cb=1μF, F = 217Hz, V Power supply ripple = 200mVpp rejection ratio Single-ended output referenced to phantom ground Single-ended output referenced to ground Max output current Typ. Max. Unit No input signal, no load, single-ended No input signal, no load, phantom ground THD+N = 1% max, F = 1kHz, RL = 32Ω, single-ended THD+N = 1% max, F = 1kHz, RL = 16Ω, single-ended Output power THD+N = 1% max, F = 1kHz, RL = 32Ω, phantom ground THD+N = 1% max, F = 1kHz, RL = 16Ω, phantom ground Total harmonic distortion + noise (Av=-1) Min. 4.17 A-weighted, Av=-1, RL = 32Ω, THD +N < 0.4%, 20Hz ≤ F ≤ 20kHz Single-ended Phantom ground Channel separation RL = 32Ω, Av=-1, phantom ground F = 1kHz F = 20Hz to 20kHz RL = 32Ω, Av=-1, single-ended F = 1kHz F = 20Hz to 20kHz VOO Output offset voltage Phantom ground configuration, floating inputs, Rfeed=22KΩ tWU Wake-up time Phantom ground configuration Single-ended configuration 0.3 0.3 0.3 0.3 % 72 67 140 4.39 Signal-tonoise ratio mW dB 66 61 THD +N ≤ 1%, RL = 16Ω connected between out and VCC/2 VOL: RL = 32Ω VOH: RL = 32Ω Output swing VOL: RL = 16Ω VOH: RL = 16Ω 88 158 85 150 0.14 4.75 0.25 4.55 mA 0.47 V 0.69 dB 104 105 -73 -68 dB -110 -90 5 20 mV 50 100 80 160 ms 1. Guaranteed by design and evaluation. Doc ID 11972 Rev 9 7/35 Electrical characteristics Table 5. Electrical characteristics at VCC = +3.0 V with GND = 0 V, Tamb = 25°C (unless otherwise specified) (1) Symbol Parameter ICC Supply current ISTBY Standby current Pout Iout VO SNR Crosstalk Test conditions Output swing 2.8 4.2 mA No input signal, RL=32Ω 10 1000 nA RL = 32Ω, Pout = 25mW, 20Hz ≤ RL = 16Ω, Pout = 40mW, 20Hz ≤ RL = 32Ω, Pout = 25mW, 20Hz ≤ ground RL = 16Ω, Pout = 40mW, 20Hz ≤ ground 20 30 20 30 F ≤ 20kHz, single-ended F ≤ 20kHz, single-ended F ≤ 20kHz, phantom F ≤ 20kHz, phantom VOL: RL = 32Ω VOH: RL = 32Ω VOL: RL = 16Ω VOH: RL = 16Ω 2.45 A-weighted, Av=-1, RL = 32Ω, THD +N < 0.4%, 20Hz ≤ F ≤ 20kHz Single-ended Phantom ground Channel separation RL = 32Ω, Av=-1, phantom ground F = 1kHz F = 20Hz to 20kHz RL = 32Ω, Av=-1, single-ended F = 1kHz F = 20Hz to 20kHz Output offset voltage Phantom ground configuration, floating inputs, Rfeed=22KΩ tWU Wake-up time Phantom ground configuration Single-ended configuration 1. All electrical values are guaranteed with correlation measurements at 2.6 and 5 V. 2. Guaranteed by design and evaluation. Doc ID 11972 Rev 9 mW 0.3 0.3 0.3 0.3 % 70 65 82 2.6 Signal-tonoise ratio 31 52 31 54 dB 64 59 THD +N ≤ 1%, RL = 16Ω connected between out and VCC/2 VOO 8/35 Typ. Max. Unit 2 2.8 Inputs grounded (2), Av=-1, RL>=16Ω, Cb=1μF, F = 217Hz, Power supply Vripple = 200mVpp rejection ratio Single-ended output referenced to phantom ground Single-ended output referenced to ground Max output current Min. No input signal, no load, single-ended No input signal, no load, phantom ground THD+N = 1% max, F = 1kHz, RL = 32Ω, single-ended THD+N = 1% max, F = 1kHz, RL = 16Ω, single-ended Output power THD+N = 1% max, F = 1kHz, RL = 32Ω, phantom ground THD+N = 1% max, F = 1kHz, RL = 16Ω, phantom ground Total harmonic distortion + THD+N noise (Av=-1) PSRR TS4909 0.12 2.83 0.19 2.70 mA 0.34 V 0.49 dB 100 101 -73 -68 dB -110 -90 5 20 mV 50 100 80 160 ms TS4909 Table 6. Electrical characteristics Electrical characteristics at VCC = +2.6 V with GND = 0 V, Tamb = 25°C (unless otherwise specified) Symbol Parameter ICC Supply current No input signal, no load, single-ended No input signal, no load, phantom ground 1.9 2.8 2.7 4 mA ISTBY Standby current No input signal, RL=32Ω 10 1000 nA Pout THD+N PSRR Iout VO SNR Crosstalk VOO tWU Test conditions THD+N = 1% max, F = 1kHz, RL = 32Ω, single-ended THD+N = 1% max, F = 1kHz, RL = 16Ω, single-ended Output power THD+N = 1% max, F = 1kHz, RL = 32Ω, phantom ground THD+N = 1% max, F = 1kHz, RL = 16Ω, phantom ground Total harmonic distortion + noise (Av=-1) RL = 32Ω, Pout = 20mW, 20Hz ≤ RL = 16Ω, Pout = 30mW, 20Hz ≤ RL = 32Ω, Pout = 20mW, 20Hz ≤ ground RL = 16Ω, Pout = 30mW, 20Hz ≤ F ≤ 20kHz, phantom ground 2.11 A weighted, Av=-1, RL = 32Ω, THD +N < 0.4%, 20Hz ≤ F ≤ 20kHz Single-ended Phantom ground Channel separation RL = 32Ω, Av=-1, phantom ground F = 1kHz F = 20Hz to 20kHz RL = 32Ω, Av=-1, single-ended F = 1kHz F = 20Hz to 20kHz Output offset Phantom ground configuration, floating inputs, Rfeed=22kΩ voltage Phantom ground configuration Single-ended configuration 23 38 23 39 mW 0.3 0.3 0.3 0.3 % 70 65 70 2.25 Signal-tonoise ratio Typ. Max. Unit dB 64 59 THD +N ≤ 1%, RL = 16Ω connected between out and VCC/2 VOL: RL = 32Ω V : R = 32Ω Output swing OH L VOL: RL = 16Ω VOH: RL = 16Ω Wake-up time 15 22 15 22 F ≤ 20kHz, single-ended F ≤ 20kHz, single-ended F ≤ 20kHz, phantom Inputs grounded (1), Av=-1, RL>=16Ω, Cb=1μF, F = 217Hz, Power supply Vripple = 200mVpp rejection ratio Single-ended output referenced to phantom ground Single-ended output referenced to ground Max output current Min. mA 0.11 0.3 2.45 0.18 0.44 2.32 V dB 99 100 -73 -68 dB -110 -90 5 20 mV 50 100 80 160 ms 1. Guaranteed by design and evaluation. Doc ID 11972 Rev 9 9/35 Electrical characteristics Figure 2. TS4909 Open-loop frequency response, RL = 1 MΩ 150 Figure 3. Open-loop frequency response, RL = 100 Ω, CL = 400 pF 90 100 125 45 75 100 0 50 0 75 -45 25 -45 50 -90 0 -90 25 -135 90 gain 45 -25 Phase (°) Gain (dB) phase Phase (°) Gain (dB) gain -135 phase 0 -180 -50 -25 -225 -75 RL=1M Ω , T AMB =25°C -50 -1 10 -270 3 10 10 5 10 -270 3 10 Frequency (Hz) Figure 4. -225 RL=100 Ω , CL=400pF, T AMB =25°C -100 -1 10 7 10 -180 5 10 7 10 10 Frequency (Hz) Open-loop frequency response, RL = 1 MΩ, CL = 100 pF 150 Figure 5. 90 100 45 75 Open-loop frequency response, RL = 16 Ω 90 gain 125 45 0 25 -45 50 -90 Gain (dB) Gain (dB) 50 -45 phase Phase (°) 0 75 100 0 -90 phase 25 -135 -25 -135 0 -180 -50 -180 -25 -225 RL=1M Ω , CL=100pF, T AMB =25°C -50 -1 10 -75 -270 3 10 10 5 7 10 10 -270 3 10 Frequency (Hz) Figure 6. -225 RL=16 Ω , T AMB =25°C -100 -1 10 Phase (°) gain 5 10 7 10 10 Frequency (Hz) Open-loop frequency response, RL = 16 Ω, CL = 400 pF Figure 7. Output swing vs. power supply voltage 6 100 90 75 45 T AMB =25°C 5 25 -45 0 -90 phase -25 -135 VOH & VOL (V) 0 Phase (°) Gain (dB) gain 50 4 3 RL=32 Ω RL=16 Ω 2 -50 -75 -100 -1 10 -180 -225 RL=16 Ω , CL=400pF, T AMB =25°C 1 -270 3 10 10 Frequency (Hz) 5 10 7 10 0 2 3 4 Power Supply Voltage (V) 10/35 Doc ID 11972 Rev 9 5 6 TS4909 Electrical characteristics Figure 8. THD+N vs. output power, PHG, F = 1 kHz, RL = 16 Ω, Av = 1 Figure 9. 10 10 Phantom Ground F=1kHz, RL=16 Ω Av=-1, Tamb=25°C BW =20Hz-120kHz Phantom Ground F=20kHz, RL=16 Ω Av=-1, Tamb=25°C BW=20Hz-120kHz Vcc=5V THD+N (%) THD+N (%) 1 THD+N vs. output power, PHG, F = 20 kHz, RL = 16 Ω, Av = 1 Vcc=3V 0.1 Vcc=2.6V Vcc=5V 1 Vcc=3V Vcc=2.6V 0.1 0.01 1E-3 1E-3 0.01 0.1 0.01 1E-3 0.2 Output Power (mW) Figure 10. THD+N vs. output power, PHG, F = 1 kHz, RL = 32 Ω, Av = 1 Figure 11. 10 0.1 0.2 THD+N vs. output power, PHG, F = 20 kHz, RL = 32 Ω, Av = 1 10 Phantom Ground F=1kHz, RL=32 Ω Av=-1, Tamb=25°C BW =20Hz-120kHz Phantom Ground F=20kHz, RL=32 Ω Av=-1, Tamb=25°C BW=20Hz-120kHz THD+N (%) THD+N (%) 1 0.01 Output Power (mW) Vcc=5V 0.1 Vcc=3V 1 Vcc=5V Vcc=3V Vcc=2.6V 0.1 Vcc=2.6V 0.01 1E-3 1E-3 0.01 0.1 0.01 1E-3 0.2 Output Power (mW) Figure 12. THD+N vs. output power, SE, F = 1 kHz, RL = 16 Ω, Av = 1 0.2 10 Single Ended F=1kHz, RL=16 Ω Av=-1, Tamb=25°C BW =20Hz-120kHz Single Ended F=20kHz, RL=16 Ω Av=-1, Tamb=25°C BW=20Hz-120kHz Vcc=5V THD+N (%) THD+N (%) 0.1 Figure 13. THD+N vs. output power, SE, F = 20 kHz, RL = 16 Ω, Av = 1 10 1 0.01 Output Power (mW) Vcc=3V 0.1 Vcc=2.6V Vcc=5V 1 Vcc=3V Vcc=2.6V 0.1 0.01 1E-3 1E-3 0.01 0.1 0.2 0.01 1E-3 Output Power (mW) 0.01 0.1 0.2 Output Power (mW) Doc ID 11972 Rev 9 11/35 Electrical characteristics TS4909 Figure 14. THD+N vs. output power, SE, F = 1 kHz, RL = 32 Ω, Av = 1 Figure 15. THD+N vs. output power, SE, F = 20 kHz, RL = 32 Ω, Av = 1 10 10 THD+N (%) THD+N (%) 1 Single Ended F=20kHz, RL=32 Ω Av=-1, Tamb=25°C BW=20Hz-120kHz Single Ended F=1kHz, RL=32 Ω Av=-1, Tamb=25°C BW =20Hz-120kHz Vcc=5V 0.1 Vcc=3V 1 Vcc=5V Vcc=3V Vcc=2.6V 0.1 Vcc=2.6V 0.01 1E-3 1E-3 0.01 0.1 0.01 1E-3 0.2 Output Power (mW) Figure 16. THD+N vs. output power, PHG, F = 1 kHz, RL = 16 Ω, Av = 4 0.2 10 Phantom Ground F=1kHz, RL=16 Ω Av=-4, Tamb=25°C BW =20Hz-120kHz Phantom Ground F=20kHz, RL=16 Ω Av=-4, Tamb=25°C BW=20Hz-120kHz Vcc=5V THD+N (%) THD+N (%) 0.1 Figure 17. THD+N vs. output power, PHG, F = 20 kHz, RL = 16 Ω, Av = 4 10 1 0.01 Output Power (mW) Vcc=3V 0.1 Vcc=2.6V Vcc=5V Vcc=3V 1 Vcc=2.6V 0.1 0.01 1E-3 1E-3 0.01 0.1 0.01 1E-3 0.2 Output Power (mW) Figure 18. THD+N vs. output power, PHG, F = 1 kHz, RL = 32 Ω, Av = 4 0.2 10 Phantom Ground F=1kHz, RL=32 Ω Av=-4, Tamb=25°C BW =20Hz-120kHz Phantom Ground F=20kHz, RL=32 Ω Av=-4, Tamb=25°C BW=20Hz-120kHz Vcc=5V THD+N (%) THD+N (%) 0.1 Figure 19. THD+N vs. output power, PHG, F = 20 kHz, RL = 32 Ω, Av = 4 10 1 0.01 Output Power (mW) Vcc=3V 0.1 Vcc=2.6V Vcc=5V 1 Vcc=3V Vcc=2.6V 0.1 0.01 1E-3 1E-3 0.01 0.1 0.2 0.01 1E-3 Output Power (mW) 12/35 0.01 Output Power (mW) Doc ID 11972 Rev 9 0.1 0.2 TS4909 Electrical characteristics Figure 20. THD+N vs. output power, SE, F = 1 kHz, RL = 16 Ω, Av = 4 Figure 21. THD+N vs. output power, SE, F = 20 kHz, RL = 16 Ω, Av = 4 10 10 Single Ended F=20kHz, RL=16 Ω Av=-4, Tamb=25°C BW=20Hz-120kHz Vcc=5V THD+N (%) THD+N (%) 1 Single Ended F=1kHz, RL=16 Ω Av=-4, Tamb=25°C BW =20Hz-120kHz Vcc=3V 0.1 Vcc=2.6V Vcc=5V 1 Vcc=3V Vcc=2.6V 0.1 0.01 1E-3 1E-3 0.01 0.1 0.01 1E-3 0.2 0.01 Output Power (mW) Figure 22. THD+N vs. output power, SE, F = 1 kHz, RL = 32 Ω, Av = 4 10 Single Ended F=1kHz, RL=32 Ω Av=-4, Tamb=25°C BW =20Hz-120kHz Single Ended F=20kHz, RL=32 Ω Av=-4, Tamb=25°C BW=20Hz-120kHz Vcc=5V THD+N (%) THD+N (%) 0.2 Figure 23. THD+N vs. output power, SE, F = 20 kHz, RL = 32 Ω, Av = 4 10 1 0.1 Output Power (mW) Vcc=3V 0.1 Vcc=2.6V Vcc=5V 1 Vcc=3V Vcc=2.6V 0.1 0.01 1E-3 1E-3 0.01 0.1 0.01 1E-3 0.2 0.01 Output Power (mW) Figure 24. THD+N vs. frequency, PHG, RL = 16 Ω, Av = 1 0.2 Figure 25. THD+N vs. frequency, PHG, RL = 32 Ω, Av = 1 1 1 Phantom Ground RL=16 Ω, Av=-1 BW =20Hz-120kHz T AM B =25°C Phantom Ground RL=32 Ω, Av=-1 BW =20Hz-120kHz T AM B =25°C Vcc=3V Po=40mW 0.1 Vcc=2.6V Po=30mW THD+N (%) THD+N (%) 0.1 Output Power (mW) Vcc=5V Po=90mW Vcc=5V Po=60mW 0.1 Vcc=2.6V Po=20mW 0.01 Vcc=3V Po=25mW 0.01 0.002 0.002 20 100 1k 10k 20k 20 Frequency (Hz) 100 1k 10k 20k Frequency (Hz) Doc ID 11972 Rev 9 13/35 Electrical characteristics TS4909 Figure 26. THD+N vs. frequency, SE, RL = 16 Ω, Av = 1 Figure 27. THD+N vs. frequency, SE, RL = 32 Ω, Av = 1 1 1 Single Ended RL=32 Ω, Av=-1 BW =20Hz-120kHz T AM B =25°C Vcc=5V Po=90mW THD+N (%) THD+N (%) Single Ended RL=16 Ω,Av=-1 BW =20Hz-120kHz T AM B =25°C 0.1 Vcc=3V Po=40mW 0.1 Vcc=2.6V Po=30mW Vcc=2.6V Po=20mW 0.01 Vcc=3V Po=25mW 0.01 0.002 0.002 20 100 1k 10k 20k 20 100 Frequency (Hz) 1k 10k 20k 10k 20k Frequency (Hz) Figure 28. THD+N vs. frequency, PHG, RL = 16 Ω, Av = 4 Figure 29. THD+N vs. frequency, PHG, RL = 32 Ω, Av = 4 1 1 Phantom Ground RL=16 Ω, Av=-4 BW =20Hz-120kHz T AM B =25°C Phantom Ground RL=32 Ω, Av=-4 BW =20Hz-120kHz T AM B =25°C Vcc=5V Po=90mW THD+N (%) THD+N (%) Vcc=5V Po=60mW 0.1 Vcc=2.6V Po=30mW Vcc=3V Po=40mW Vcc=5V Po=60mW 0.1 Vcc=2.6V Po=20mW Vcc=3V Po=25mW 0.01 0.01 0.005 0.002 20 100 1k 10k 20k 20 100 Frequency (Hz) Figure 30. THD+N vs. frequency, SE, RL = 16 Ω, Av = 4 Figure 31. THD+N vs. frequency, SE, RL = 32 Ω, Av = 4 1 1 Single Ended RL=16 Ω, Av=-4 BW =20Hz-120kHz T AM B =25°C Single Ended RL=32 Ω, Av=-4 BW =20Hz-120kHz T AM B =25°C Vcc=5V Po=90mW THD+N (%) THD+N (%) 1k Frequency (Hz) Vcc=3V Po=40mW 0.1 Vcc=2.6V Po=30mW 0.1 Vcc=5V Po=60mW Vcc=3V Po=25mW Vcc=2.6V Po=20mW 0.01 0.01 0.005 0.002 20 100 1k 10k 20k 20 Frequency (Hz) 14/35 100 1k Frequency (Hz) Doc ID 11972 Rev 9 10k 20k TS4909 Electrical characteristics Figure 32. Output power vs. power supply voltage, PHG, RL = 16 Ω, F = 1 kHz Figure 33. Output power vs. power supply voltage, PHG, RL = 32 Ω, F = 1 kHz 140 240 Output Power (mW) 200 Output Power (mW) Phantom Ground RL=16 Ω , F=1kHz Av=-1, T AM B =25°C BW =20Hz-120kHz 160 120 THD+N=10% 80 120 Phantom Ground RL=32 Ω , F=1kHz Av=-1, T AMB =25°C 100 BW =20Hz-120kHz 80 60 THD+N=10% 40 THD+N=1% THD+N=1% 40 20 0 0 2 3 4 5 6 2 3 Power Supply Voltage (V) Figure 34. Output power vs. power supply voltage, SE, RL = 16 Ω, F = 1 kHz 6 140 Output Power (mW) Single Ended RL=16 Ω , F=1kHz Av=-1, T AMB =25°C 200 Output Power (mW) 5 Figure 35. Output power vs. power supply voltage, SE, RL = 32 Ω, F = 1 kHz 240 BW =20Hz-120kHz 160 120 THD+N=10% 80 120 Single Ended RL=32 Ω , F=1kHz Av=-1, T AMB =25°C 100 BW =20Hz-120kHz 80 60 THD+N=10% 40 THD+N=1% THD+N=1% 40 20 0 0 2 3 4 5 6 2 3 Power Supply Voltage (V) 5 6 Figure 37. Output power vs. load resistance, SE, Vcc = 2.6 V 50 50 Phantom Ground Vcc=2.6V, F=1kHz Av=-1, T AM B =25°C BW =20Hz-120kHz 30 THD+N=1% 20 10 Single Ended Vcc=2.6V, F=1kHz Av=-1, T AM B =25°C THD+N=10% 40 Output Power (mW) THD+N=10% 40 0 16 4 Power Supply Voltage (V) Figure 36. Output power vs. load resistance, PHG, Vcc = 2.6 V Output Power (mW) 4 Power Supply Voltage (V) BW =20Hz-120kHz 30 THD+N=1% 20 10 32 48 64 80 96 0 16 Load Resistance (Ω ) 32 48 64 80 96 Load Resistance (Ω ) Doc ID 11972 Rev 9 15/35 Electrical characteristics TS4909 Figure 38. Output power vs. load resistance, PHG, Vcc = 3 V Figure 39. Output power vs. load resistance, SE, Vcc = 3 V 80 80 Phantom Ground Vcc=3V, F=1kHz Av=-1, T AM B =25°C Single Ended Vcc=3V, F=1kHz Av=-1, T AM B =25°C THD+N=10% Output Power (mW) Output Power (mW) 60 BW=20Hz-120kHz 40 THD+N=1% 20 60 THD+N=10% BW=20Hz-120kHz 40 THD+N=1% 20 0 16 32 48 64 80 0 16 96 32 48 Load Resistance (Ω ) Figure 40. Output power vs. load resistance, PHG, Vcc = 5 V 80 96 Figure 41. Output power vs. load resistance, SE, Vcc = 5 V 200 200 Phantom Ground Vcc=5V, F=1kHz Av=-1, T AM B =25°C THD+N=10% 150 Output Power (mW) Output Power (mW) 64 Load Resistance (Ω ) BW =20Hz-120kHz THD+N=1% 100 50 Single Ended Vcc=5V, F=1kHz Av=-1, T AM B =25°C THD+N=10% 150 BW =20Hz-120kHz THD+N=1% 100 50 0 16 32 48 64 80 0 16 96 32 Load Resistance (Ω ) 48 64 80 96 Load Resistance (Ω ) Figure 42. Power dissipation vs. output power, Figure 43. Power dissipation vs. output power, PHG, Vcc = 2.6 V SE, Vcc = 2.6 V 30 80 Phantom Ground Vcc=2.6V, F=1kHz THD+N
DEMOTS4909Q 价格&库存

很抱歉,暂时无法提供与“DEMOTS4909Q”相匹配的价格&库存,您可以联系我们找货

免费人工找货