0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
L99LD01TR-E

L99LD01TR-E

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    LQFP32

  • 描述:

    HIGH EFFICIENCY CONSTANT CURRENT

  • 数据手册
  • 价格&库存
L99LD01TR-E 数据手册
L99LD01 High efficiency constant current LED driver for automotive applications Datasheet - production data • Regulated output for micro supply 5 V ± 2 % -20 mA 40 V • Parameter programming and settings of internal memory registers by the dedicated SPI interface: – LED current reference adjusting (± 66.7 %) – Maximum input current limiter reference adjusting (± 55.5 %) – Random dither frequency sweeping, modulation frequency and deviation percentage 5.6 - 24 V • Power on reset pin output 100 - 500 kHz LQFP32 7x7 mm GAPG1506151117CFT Features Max VBATT Operation supply battery voltage VBATT Oscillator frequency range • ESD protection Applications • Automotive qualified Automotive day time running light, LED HeadLamps • Constant current operation • Current LED settable by external sensing resistor and adjustable via SPI • Converter switching frequency adjustable by external resistor (RSF) • EMC reduction by internal spread spectrum dither oscillator • Low frequency PWM dimming operation. • Maximum input current limiter • Maximum switching duty cycle limiter • Slope compensation adjustable by external resistor (R9) • Battery overvoltage shut down protection (ext. R3, R4 resistors required) • Led chain OV detection (ext. R5, R6) • Multiplexed output for monitoring and control of LED temperature (external NTC resistor required), voltage of LED chain, and low frequency PWM • SPI communication serial interface transceiver (SDI, SDO, SCK, CSN) June 2015 This is information on a product in full production. Description L99LD01 is a precise constant current DC–DC converter LED driver for automotive applications, dedicated to the control of high-brightness LED headlights and housed in a LQFP32™ package. The device is designed to be used in Boost, BuckBoost and Fly back converter topologies. An internal random dither oscillator works in low frequency modulation, allowing the RF spectrum of the switching frequency to spread so to reduce EMC emissions. The slope compensation ensures good converter loop stability whatever is the duty cycle needed by the application. The converter is able to work either in full power mode or in low frequency dimming mode. The device includes an internal low drop voltage regulator, that can be used to supply a microcontroller, and a reset pin, that is useful for resetting the microcontroller at the start up and every time that the regulated output voltage falls down below an established voltage threshold. DocID025319 Rev 3 1/69 www.st.com Contents L99LD01 Contents 1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1 2.2 3 2/69 Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.1 Operation with an external microcontroller . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.2 Stand alone operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.3 Start-up fail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.4 Normal mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.5 Software limp home . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.6 Limp home mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Protections and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.1 LED current adjust and temperature control . . . . . . . . . . . . . . . . . . . . . 16 2.2.2 Slope compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.3 LED chain overvoltage detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.4 Battery overvoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.5 Regulators thermal shut down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.6 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.7 Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.8 Standby and wake up by ENABLE pin . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.9 Frequency setting and dither effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.10 Start up LED overvoltage management . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.11 Programming the over/under voltage threshold . . . . . . . . . . . . . . . . . . . 27 2.2.12 Input overvoltage programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 SPI functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1 Serial peripheral interface (ST SPI standard) . . . . . . . . . . . . . . . . . . . . . . 31 3.2 Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3 SPI protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3.1 SDI, SDO format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3.2 Global status byte description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.3 Operating code definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.4 Address mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.5 Control registers (RAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.6 Status registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 DocID025319 Rev 3 L99LD01 4 Contents Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6 SPI electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.1 DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.2 AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.3 Dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 7 Application circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 8 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 8.1 ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 8.2 LQFP32™ package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 9 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 DocID025319 Rev 3 3/69 3 List of tables L99LD01 List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. 4/69 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Limp home mode: recovery paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Suggested KL value and overvoltage thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Command byte (8 bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Input data byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Global status byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Output data byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Global status byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Operation code definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 RAM memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ROM memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Internal oscillator frequency deviation settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Internal oscillator frequency modulation settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Watchdog timer status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 VS and VCC1 pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 VCC2 and C5V pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 NRES and LMODE pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 G1 driver 1 pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 G2 pin characteristics (driver2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Converter oscillator and RSF pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 PWM_L, PWM, MOUT pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ISENSE+, ISENSE- pin, and O.T.A. characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 SC pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 VLED pin characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 INP_OV pin characteristics (input overvoltage shut down). . . . . . . . . . . . . . . . . . . . . . . . . 52 NTC pin characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 ENABLE, LHM pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Power on reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Watchdog and timers parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 SPI DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 SPI AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 LQFP32™ mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 DocID025319 Rev 3 L99LD01 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Connection diagram (top view – not in scale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Operating modes, main states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Normal start up vs VS ramp up and VCC1 voltage dips. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 VCC1_FAIL or VCC1 reset under voltage (VS > VSMIN) at start up . . . . . . . . . . . . . . . . . . . . 14 VCC1 reset under voltage at start up (VS < VSMIN) and fast VS ramp down . . . . . . . . . . . . 15 Slow vs ramp down. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Internal structure of the slope compensation circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Operation with a standalone LIN and ENABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Operation with PM device and ENABLE (FSO active Low) . . . . . . . . . . . . . . . . . . . . . . . . 21 Internal structure of main converter oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Converter frequency range vs RSF and IRSF vs frequency . . . . . . . . . . . . . . . . . . . . . . . . . 23 Correct start UP with no LED overvoltage failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 LED overvoltage after tDStart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Device behavior in case the low to high transition of PWM_L signal happens after tDStart expiration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 LED overvoltage event not caused by a VS overvoltage event . . . . . . . . . . . . . . . . . . . . . 26 LED overvoltage detection due to a possible battery VS overvoltage . . . . . . . . . . . . . . . . 27 Behavior of LED overvoltage recovery bit with low on-time of PWM_L . . . . . . . . . . . . . . . 27 LED chain overvoltage thresholds settings. An example for boost and fly back converters28 Input overvoltage programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Clock polarity and clock phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 SPI global error information output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 SPI write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 SPI read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 SPI read and clear operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 SPI read device information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Principle of the WD_Status bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Voltage and current conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 SPI timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 SPI input and output timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 SPI maximum clock frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 NRES pin open drain structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Handshake procedure at start up with microcontroller on board . . . . . . . . . . . . . . . . . . . . 58 Boost application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Fly back application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Buck-boost application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Stand alone application example for boost topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Reverse battery protection: an example for boost topology . . . . . . . . . . . . . . . . . . . . . . . . 63 External MOS required during PWM dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 LQFP32™ package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 DocID025319 Rev 3 5/69 5 Block diagram and pin description 1 L99LD01 Block diagram and pin description Figure 1. Block diagram 9&& 96 56) 9ROWDJH5HJXODWRU %DQGJDS5HI 0DLQ 2VFLOODWRU 9ROWDJH 5HJXODWRU 5&&203 &9 6& 9&& '3B9 95() 4 6 'XW\0D[ 26&B5$03 26&B5$03 ,13B29 0287 3:0 (1$%/( 6WDWH0DFKLQH)RU3DUDPHWHU 6HWWLQJV'LDJQRVWLF :' /+0 /('B2&  /('&XUUHQW $GMXVW 17& &RQWURO (1B17& 9/5()   ,6(16( ,6(16(  &KDUJH3XPS 917&B7+ 7: 29 '5,9(5  /('2YHU 9ROWDJH 'HWHFWLRQ 9/(' 9 ,/02'( /02'( $QDORJ08; /6 &3% * (;7B9&& 3:0B/  7: (;7B9&& ,61 27$ 0$;,13 &855(17  ,17&  &61 %DWWB29 &RPS /('B2& 6723B&219/+B2))  6&. ,63 3:0&RPS  6'2  6', 5DQGRPLF 'LWKHU &B'LVFK  6: 15(6 6/23(B$'-    /$PS  3:0B/ /+B21 * '5,9(5 )) 5 6WGE\ %DWWB29 17& *1' *1' *1'  ("1($'5 ,61 9&& ,63 *1' (1$%/( 56) 6& 96 Figure 2. Connection diagram (top view – not in scale)         9&&  15(6  3:0B/   *  3*1'  &9  ,6(16(  ,6(16( 6',  -2'1 6'2  6&.   *  &3%  9/(' &61  0287  17& 5&&203 *1' /+0 /02'( 3:0 ,13B29 (;7B9&&         ("1($'5 6/69 DocID025319 Rev 3 L99LD01 Block diagram and pin description Table 1. Pin description 1. Pin number Pin name 1 VCC1 5 V internal voltage regulator 1 output (external capacitor req.) 2 NRES Reset I/O pin; active low 3 PWM_L 4 SDI Serial SPI data input 5 SDO Serial SPI data output 6 SCK SPI clock 7 CSN Chip select not 8 MOUT 9 EXT_VCC 10 INP_OV 11 PWM Low frequency PWM input (battery compatible) 12 LHM Limp home mode input pin 13 LMODE 14 GND2 15 NTC 16 RCCOMP 17 VLED Input for LED chain overvoltage detection 18 CPB Charge pump buffer capacitor 19 G2 20 ISENSE- Negative terminal of the LED sense resistor 21 ISENSE+ Positive terminal of the LED sense resistor 22 C5V 23 PGND 24 G1 25 VCC2 10 V voltage regulator 2 output (ext. capacitor required) 26 ISN Negative terminal of the shunt resistor 27 ISP Positive terminal of the shunt resistor 28 GND1 29 ENABLE 30 VS Supply voltage input pin 31 SC Slope compensation setting resistor 32 RSF Oscillator frequency setting resistor Function Logic low frequency PWM input Multiplexed data output pin Internal/external up supply voltage programming pin(1) Battery overvoltage programming pin Switch input pin (connect to GND if LED drop voltage is referred to GND or open (5 V) if LED drop is referred to VS) GND of controller Output for external N.T.C. resistor External R C compensation network Gate 2 output for external PMOS M2 Output for 5 V buffer capacitor Power ground Gate 1 output for external PMOS M1 GND of controller Enable pin In case of externally supplied microcontroller, attach this pin to its external supply voltage pin. DocID025319 Rev 3 7/69 68 Functional description L99LD01 2 Functional description 2.1 Operating modes The device is able to work both with a microcontroller and without it (stand alone configuration). 2.1.1 Operation with an external microcontroller This way allows parameters to be adjusted and checked by means of the SPI interface. The adjusted device parameters, stored, i.e., inside the micro EEPROM, can be loaded into device internal registers after the start up phase. By means of a small 8 pins microcontroller it is possible to implement the following functions: • Parameters setting: – LED current level and maximum input current limit can be adjusted according to the application, the LED characteristic and spreads – Dither oscillator parameters as random, frequency modulation and deviation percentage can be programmed • Flexible PWM operation with duty cycle and frequency managed by the microcontroller • Diagnostic feedback: – • Advanced LED monitoring: – • 8/69 Fault condition is sent to the micro when the CSN pin is pulled down LED voltage drop and temperature are multiplexed and sent to the microcontroller through the dedicated MOUT pin in order to monitor the selected parameter with the A/D of the microcontroller. The multiplexer is driven through a SPI command. This function allows a sophisticated control of the LED status. For example, as an alternative to the default overvoltage detection, it is possible to monitor the LED drop voltage, reduced by the external R5/R6 resistor divider. So taking into account the spread and temperature influence on the LED voltage drop, the microcontroller is able to detect if there is one or more LED shorted. Furthermore, it is possible to monitor the LED chain temperature, by means of the voltage feedback through the dedicated NTC pin. The temperature limit control, operated by the device by default, can be disabled via the SPI and the voltage applied on the NTC pin can be sent back to the microcontroller via the multiplexed output, MOUT, so allowing the microcontroller itself to control the LED chain either acting on the internal current LED register or reducing the low frequency PWM duty cycle. In case of VR1 over temperature, its output will be switched off, the device enters in limp home mode and a failsafe bit will be set in the internal status register (see details in the following paragraph). In order to restart the normal operation, so clearing the corresponding status register bit, the VS or ENABLE voltage has to be switched off and then on. The mentioned bit can be cleared by the microcontroller only when it is external supplied. DocID025319 Rev 3 L99LD01 2.1.2 Functional description Stand alone operation The device operates with default parameters. The overall tolerance depends on the internal references precision and the external resistors tolerance. In details: • LED current via external sensing resistor: I LED = 150 mV/R SENSE • Maximum input current via an external shunt resistor. • Oscillator dither effects are set to its default parameters; a low level on the SDI allows disabling the function. • Low frequency dimming operation is allowed either by PWM pin or by logic level PWM_L input pin. Connecting the PWM control pin to the supply voltage via a resistor divider, allows the converter to be synchronized to the low frequency PWM generated, i.e., from the smart junction box. • Connecting the MOUT pin, which by default provides a logic level image of the control input, to the PWM_L input, it is possible to drive the LED according to the PWM frequency and duty cycle of control. (See application circuit of Figure 38). • In case of VR1 over temperature, its output will be permanently switched off. The device still continues to work in normal mode but with VR1 = OFF. The L99LD01 can operate in 4 different modes: • Start-up fail • Normal mode • Software limp home • Limp home After the power on reset, the device stays in start-up phase until VCC1 reaches a specified threshold, VCC1_TH. Then the device enters in normal mode either with microcontroller or standalone, depending on the voltage level on the Nreset pin. Note: The information about the operation with microcontroller or standalone is latched until a new power on reset. If VCC1 does not reach both VCC1 fail and VCC1_TH thresholds within a given delay or if a VCC1 over temperature event occurs, the device enters in a corresponding state. 2.1.3 Start-up fail The device enters this mode in case a VCC1 under voltage event occurs during start-up phase and VS < VSMIN, provided that a microcontroller is detected. In this case VCC1 is turned off. If VS remains below VSMIN, then the converter is switched off. If VS rises above VSMIN, the converter behaves according to the PWM_L pin. DocID025319 Rev 3 9/69 68 Functional description 2.1.4 L99LD01 Normal mode • Normal mode with microcontroller: the device enters this mode after a successful start up (VCC1 > VCC1_TH) and a microcontroller is detected. The device keeps this mode as long as the watchdog is retriggered before a timeout event. • Normal mode in standalone configuration: the device enters this mode if a standalone configuration is detected, independently from VCC1 errors. The L99LD01 keeps this mode even in case of watchdog timeouts. In both cases, the converter behaves according to the PWM_L pin. 2.1.5 Software limp home This device enters software limp home mode in case the Lh_Sw bit is set (see Section : Control registers 3). The control registers are set to their default values, with the exception of the Lh_Sw bit, which remains unchanged. The converter behaves according to the signal on the LHM pin: 2.1.6 – Turned on if a high signal is detected at the LHM pin – Turned off if a low signal is detected at the LHM pin Limp home mode The device enters limp home mode, if a microcontroller is detected, in the following cases: – Watchdog timeout in normal mode – VCC1 under voltage (VCC1 < VCC1_TH) for more than 2 ms in normal mode – VCC1 is below the VCC1_FAIL threshold for more than 4 ms during start-up – VCC1 is below Vcc1uv for more than 100 ms during start-up and VS is above VSMIN threshold – Thermal shutdown of VCC1 – SDI stuck at 0 or 1 In Limp Home mode, all the control registers are set to their default values, except Lh_Sw (see Section : Control registers 3), which remains unchanged. The converter behaves according to the voltage level on the LHM pin: • Turned on if a High signal is detected at the LHM pin • Turned off if a Low signal is detected at the LHM pin Depending on the root cause, the action taken to quit the limp home mode (provided that the limp home condition has disappeared) is different. Some of the recovery paths require the microcontroller to be supplied by external supply. A power on reset is always possible. 10/69 DocID025319 Rev 3 L99LD01 Functional description Figure 3. Operating modes, main states  325 1RX& 6WDQGDORQH 9&&6WDUWXS 9&&2. 9& 9& &8 9 & )D  9 LO RU 6!  9 && 96P L  27 Q /KBVZRQ 6: /LPSKRPH /KBVZRII :'WULJJHU 9&&27 1RUPDOPRGH )DLOXUH  QRW27 5 & :'WULJJHU :'WULJJHU 6WDUWXSIDLO YFFRII 9&&89 9696PLQ /LPS+RPH YFFRII 5 & :'WULJJHU 9FFVWD\VRII UH OX L ID ' :  H 7 LY 2 XW  HF && V 9  Q FR 25 G U /LPS+RPH YFFRQ 5 &5HDGDQG&OHDUVWDWXVUHJLVWHU )DLOXUH  6',6WXFNWR+LJKRU/RZ 25ZDWFKGRJWLPHRXW 259FF9FFBWKIRUPRUHWKDQW\SPV ("1($'5 Table 2. Limp home mode: recovery paths Transition Root cause Action to get back to normal mode Fail Safe bit = 0 WD_Fail bit = 0 WD timeout (1st or 2nd WD timeout) Normal mode  Limp Home VCC1 on VCC1 < VCC1_TH for more than 2 ms Response in the next SPI command Read and clear status1 AND WD trigger Fail Safe bit = 0 Vcc1_Uv_To bit = 0 Fail Safe bit = 0 SDI_Stuck@ = 0 SDI stuck at 0 or 1 DocID025319 Rev 3 11/69 68 Functional description L99LD01 Table 2. Limp home mode: recovery paths (continued) Transition Root cause Action to get back to normal mode Response in the next SPI command 3 consecutive WD timeouts (microcontroller is supplied by VCC1) Fail Safe bit = 0 Power on reset OR toggling WD_Fail bit = 0 of EN pin Reset bit = 1 3 consecutive WD timeouts (microcontroller is supplied by another VREG) Read and clear Status1 AND WD trigger Fail Safe bit = 0 WD_Fail bit = 0 VCC1 < VCC1_FAIL during start up for more than 4 ms Power on reset Failsafe bit = 0 Vcc1_Sc bit = 0 Reset bit = 1 VCC1 < VCC1_FAIL during start up for more than 4 ms (microcontroller supplied by another VREG) Read and clear Status1 AND WD trigger OR Toggling of EN pin Failsafe bit = 0 Vcc1_Sc bit = 0 Vcc1_Fail = 0 VCC1 < VCC1_TH for more than 100 ms during start up AND VS > VSMIN Fail Safe bit = 0 Power on reset OR toggling Vcc1_Sc bit = 0 of EN pin Reset bit = 1 VCC1 < VCC1_TH for more than 100 ms during start up AND VS > VSMIN (microcontroller supplied by another VREG) Read and clear Status1 AND WD trigger Fail Safe bit = 0 Vcc1_Sc bit = 0 Any state except normal mode standalone limp home VCC1 off VCC1 over temperature Read and clear Status1 AND WD trigger Fail Safe bit = 0 Vcc1_Ot bit = 0 Normal mode  SW limp home Software limp home is activated Reset Lh_Sw bit AND WD trigger Fail Safe bit = 0 Lh_Sw_St = 0 Limp home VCC1 on  limp home VCC1 off Start up limp home VCC1 off The following Figure 4, Figure 5 (a), (b) and Figure 6 (a) show the behavior of the device and NRES during start-up in case of normal VS ramp up or in case of VCC1 failures (VCC1 fail or reset under voltage), both with microcontroller and standalone. Figure 6 (b) and Figure 7 show the behavior at VS ramp down fast and slow respectively. 12/69 DocID025319 Rev 3 L99LD01 Functional description Figure 4. Normal start up vs VS ramp up and VCC1 voltage dips 9V >9@  960,1 3RZHURQ5HVHW WKUHVKROG 9325 6SHFLILFDWLRQ3DUDPHWHUV W9) )LOWHUWLPHIRU9FF)DLO GHWHFWLRQ 9FF >9@ W9)WW55 W W55 W55 9FF5HVHW7LPHILOWHUWLPH W W55 WW)6  W5' 5HVHWGHOD\WLPH W)6  9FFUHVHWWLPHRXWIRUIDLO VDIHGHWHFWLRQ W W)6 9&&B7+ PV W6+79$ILOWHUWLPHEHIRUH GHWHFWLRQRIVKRUWFLUFXLWRQ9FF DWWXUQRQ 9FF9FF)$,/  9&&)$,/ W6+79% 9FFBXYBWRVWDWXVVHW $1' /LPS+RPHPRGHDFWLYDWHGLI—&RQERDUG 9FFBIDLO VWDWXVVHW W6+79$ 15HVHW +LJK W W5' W W5' W W5' PV PV PV W6+79%ILOWHUWLPHEHIRUH GHWHFWLRQRIVKRUWFLUFXLWRQ9FF DWWXUQRQ 9FF)$,/ 9FF9&&B7+  9&&B7+ UHVHWLQWHUYHQWLRQ WKUHVKROG 960,1 PLQLPXP9VUHTXLUHGIRU UHDFKLQJ9FFQRPLQDOYROWDJH 9&&B)$,/ 9FFIDLOGHWHFWLRQ WKUHVKROG /RZ —&RQERDUG 6WDQGE\ 6WDUWXS 6WDQGDORQH 6WDQGE\ 6WDUWXS $FWLYHPRGH /LPS+RPHLI—& $FWLYHPRGH ("1($'5 Note: Normal start up with or without microcontroller. DocID025319 Rev 3 13/69 68 Functional description L99LD01 Figure 5. VCC1_FAIL or VCC1 reset under voltage (VS > VSMIN) at start up 9V >9@ 9V >9@   960,1 960,1 3RZHURQ5HVHW WKUHVKROG 9325 3RZHURQ5HVHW WKUHVKROG 9325 9FFBIDLOVWDWXVVHW 9FFBVFVWDWXVVHW 9FFBVFVWDWXVVHW 9FF >9@ 9FF >9@ 9FFBRIIVWDWXVVHW /LPS+RPHPRGHDFWLYDWHGLI—&RQERDUG  9FFBRIIVWDWXVVHW /LPS+RPHPRGHDFWLYDWHGLI—&RQERDUG  9&&B7+ 9&&B7+ 9&&)$,/ 9&&)$,/ W W6+79$ WW6+79$ 15HVHW WW6+79% 15HVHW +LJK +LJK /RZ /RZ —&RQERDUG 6WDQGE\ 6WDUWXS /LPS+RPH —&RQERDUG 6WDQGE\ 6WDUWXS /LPS+RPH 6WDQGDORQH 6WDQGE\ 6WDUWXS $FWLYH0RGH 6WDQGDORQH 6WDQGE\ 6WDUWXS $FWLYH0RGH B C B TUBSUVQ7$$GBJM C 7 $$VOEFSSFTFUUISFTIPMEEVSJOHTUBSUVQ 7 47 4.*/ 14/69 DocID025319 Rev 3 ("1($'5 L99LD01 Functional description Figure 6. VCC1 reset under voltage at start up (VS < VSMIN) and fast VS ramp down 9V >9@ 9V >9@   9VBXYVWDWXVVHW 960,1 960,1 9V9VPLQ 3RZHURQ5HVHWWKUHVKROG 9325 9325 9FFBVFVWDWXVVHW 9FFBRIIVWDWXVVHW 9FF >9@ 9VBXYVWDWXVVHW 1R/LPS+RPHPRGHDFWLYDWHG 9V9VPLQ   9&&B7+ 9&&B7+ 9&&)$,/ 9&&)$,/ WW6+79$ W W55 W W6+79%aPV 15HVHW 15HVHW +LJK +LJK /RZ /RZ —&RQERDUG 6WDQGE\ 6WDUWXS 6WDUWXS9FFRII —&RQERDUG $FWLYH0RGH 6WDQGE\ 6WDQGDORQH 6WDQGE\ 6WDUWXS $FWLYH0RGH 6WDQGDORQH $FWLYH0RGH 6WDQGE\ B C B 7 $$@67EVSJOHTUBSUVQ C 747 4.*/'BTU7 4SBNQEPXO ("1($'5 DocID025319 Rev 3 15/69 68 Functional description L99LD01 Figure 7. Slow vs ramp down 9V >9@  W W960 960,1 9325 9VBXYVWDWXVVHW 9FF >9@  W W55 9&&B7+ W W)6 PV 9&&)$,/ 15HVHW 9FFBXYBWRVWDWXVUHJLVWHU +LJK /RZ —&RQERDUG 6WDQGDORQH 1RUPDO0RGH /LPS+RPH 1RUPDO0RGH 6WDQGE\ 6WDQGE\ ("1($'5 2.2 Protections and functions 2.2.1 LED current adjust and temperature control The LED current can be adjusted within a range of ± 66.7 %, with respect to the default value set by the LED current sense resistor, via the SPI input, so allowing the end of line calibration. The LED chain temperature measurement is achieved by means of an external NTC resistor connected between the NTC pin and GND. The NTC resistor is supplied through a resistor connected to the 5 V internal regulator output. As soon as the voltage on the NTC resistor becomes lower than the internal threshold, VNTC_TH, (due to an overtemperature in the LED chain) an internal circuitry is activated and the internal LED current reference voltage decreases proportionally, so that the LED current is progressively 16/69 DocID025319 Rev 3 L99LD01 Functional description reduced (maximum 50 % of the nominal LED current), not allowing the LED temperature to increase over the programmed limit. Thermal limit intervention is reported by properly setting a bit inside the internal status register. 2.2.2 Slope compensation Slope compensation is needed to ensure the stability of the control loop with all possible values of duty cycle T ON D = ----------T (0 < D < 1) especially for duty cycle greater than 0.5. The recommended slope SADD of the additional ramp is proportional to the inductor current slope during the turn off phase, that is: S ADD = α ⋅ S L where SADD is the additional slope introduced by the circuit, dI L S L = -------dt OFF is the off-time inductor slope and 0.5 < α < 1 SL is also given by the formula: G LA ⋅ R SHUNT ⋅ ( V OUT – V IN ) S L = -------------------------------------------------------------------------------L Being GLA the gain of the linear amplifier (see Chapter 5: Electrical characteristics for GLA parameter values) and RSHUNT is the resistor across pin ISP and ISN (see Chapter 7: Application circuits). The simplified internal circuit structure for the slope compensation is shown in Figure 8. The additional slope is obtained from the internal oscillator ramp voltage. A fraction of the oscillator voltage ramp is added to the output voltage of the sensing amplifier, which is proportional to the sense resistor voltage drop, and therefore, to the current flowing through power mosfet M1. The added ramp voltage is V ADD = I ⋅ R SLOPE where DocID025319 Rev 3 17/69 68 Functional description L99LD01 V OSC I = 2 ⋅ ---------------RT and RSLOPE and RT are defined in the Figure 8, together with their typical values. Therefore, will result: R SLOPE V ADD = 2 ⋅ V OSC ⋅ ----------------------RT and consequently: 2 ⋅ V OSC ⋅ R SLOPE V ADD S ADD = --------------- = --------------------------------------------------RT ⋅ T T where T is the period of the converter oscillator. The additional compensating current slope can be simply adjusted by properly setting the value of the external resistor R9 (and consequently RT). Figure 8. Internal structure of the slope compensation circuit , /$PS  56/23( . 5(6  ,  926&57 ,63 ,61 27$   ,6(16( ,6(16(   3:0&RPS . 5&&203 57  56&  56& 9 56&PLQ.2+0  926&   6& 56& 5  . ("1($'5 2.2.3 LED chain overvoltage detection Via the external resistor divider (R5, R6) it is possible to detect LED overvoltage events, by programming a threshold for the maximum drop voltage of the LED chain for a specific LED board (see Section 2.2.12 for details). In case Boost or Fly back topology is used, the LMODE pin must be connected to GND. In this case the voltage at pin VLED will be referred to ground. Instead, if Buck Boost topology is used, the LMODE pin must be connected to 5 V or left open. An internal pull up current source keep this pin high, and in this case, the voltage applied by the resistor divider R5/R6 at pin VLED will be referred to the battery voltage applied at pin VS. If a valid overvoltage event occurs, which is detected if the LED drop voltage reaches a value VLED ≥ OV_TH1, the device is switched off immediately forcing the 18/69 DocID025319 Rev 3 L99LD01 Functional description pins G1 and G2 to zero voltage and the event is registered in the status register of the SPI interface and read by the micro. In case of LED overvoltage, immediately after stopping the device, an internal resistor is applied between pin ISENSE+ and GND trough the switch “C_disch” (see Figure 1), in order to discharge capacitors C1 and C4, avoiding LED flashing when the converter restarts. Any LED_OV event will be written in the GSB (Global Status Byte) bit 7 and also in the SR1 (Status Register 1) bit 18. 2.2.4 Battery overvoltage shutdown In case supply voltage applied to the VS pin rises above a maximum voltage threshold, sensed by a resistor divider attached at pin INP_OV, the converter is switched off immediately, forcing outputs pin G1 and G2, to zero voltage. This prevents a LED over current in case of load-dump. If, following the input overvoltage event, the battery voltage decreases under a second threshold, lower than the former, the converter starts again. 2.2.5 Regulators thermal shut down Both voltage regulators inside the chip are provided with over temperature detection circuits. If VR1 reaches its maximum temperature, VR1 will be switched off. After that, the behavior of the device depends on the application (see Section 2.2.1: LED current adjust and temperature control). If instead, is VR2 to reach its maximum temperature (typ 175 °C), then the device will be completely switched off (VCC1 and VCC2 = 0). Only the internal temperature monitoring of VCC2 remains alive and when the temperature falls down under a second lower temperature threshold (150 °C typ.), the device tries to restart again. 2.2.6 Reset The NRES pin (active low), generates a reset signal for the microcontroller. An external pull up resistor (typ. 100 k) maintain normally high the voltage at pin NRES (see Figure 32). Following a power up condition, the NRES pin is forced low while the voltage provided by regulator 1 (VCC1) is below an internal fixed threshold VCC1_TH of typ 4.5 V. After VCC1 has reached the above mentioned internal threshold, NRES voltage is kept low for a fixed default time of 2 ms; after that, the NRES pin will be released reaching the normal high state. However, this time can be externally extended by an additional capacitance connected between NRES and GND (see C6 in the application circuits), which is charged by the external pull-up. Depending on the reset-input-threshold of the µP (UTR), the required capacitance for a typical TRD can be calculated as follows: C6 = – T RD ⁄ ( R PU ⋅ lg ( 1 – U TR ⁄ V CC1 ) ) RPU is the pull up resistor (value in ohm) DocID025319 Rev 3 19/69 68 Functional description L99LD01 In case VCC1 voltage drops below the internal threshold during the normal functioning, or when the device is put in standby, the NRES pin is forced to low, but after a time interval TRR has expired and kept low until the VCC1 has gone back again to the internal threshold (see Figure 4 for more details). 2.2.7 Watchdog In case the application uses a microcontroller, during the device power-up a reset pulse is generated periodically every 200 ms (default) for 2.0 ms waiting for microcontroller acknowledgment. Timeout window is selectable by SPI (100 ms or 200 ms) and the reset time could be extended by the external capacitor C6. 2.2.8 • Timeout WD is refreshed by bit toggling. • After the 1st WD timeout, a reset pulse is generated and the device enters in Limp Home mode. After the second WD timeout, another reset pulse cycle is generated, waiting for microcontroller response. • After 3 consecutive reset cycles without WD refresh, which means that microcontroller is not responding, the voltage regulator, VCC1, is turned off and the device keeps working in “Limp Home Mode” (see Figure 33). Safety critical functions like Low Beam application require the LED Driver to be turned on if the microcontroller fails, while in case of high beam application, it is required the driver to be switched off in case of microcontroller failure. As a consequence, the device operates according to the state of LHM pin which is enabled during the recognition of the microcontroller failure. In particular, if LHM pin is kept low the device will be always OFF. If instead, LHM pin is high or left open, the device will be switched permanently ON, regardless of the status of PWM_L pin.If the application doesn’t use a microcontroller (stand alone operation), the start-up WD control must to be deactivated. This can be done by connecting NRES pin to the battery supply voltage VS. In such a case the driver will operate in normal mode as above mentioned (see stand alone operation). Standby and wake up by ENABLE pin A low consumption mode is required in case of applications directly connected to the battery. The device enters in standby mode, that is the default operating modes because of an internal pull down, in case of low level signal at the ENABLE pin and it wakes up in case of high level signal.During standby mode, VCC1 and VCC2 are switched off. Figure 9 and Figure 10 show two possible application schematics in case of direct connection to the battery. In case of Figure 9 the microcontroller of the application goes in standby when the microcontroller sets the LIN transceiver in standby mode: NSLP = Low→INH goes Low→the DRL driver goes in standby. The application is waken up from the standby when a wake up source is detected by the LIN transceiver. That means INH goes high and so ENABLE, then the DRL driver restarts and consequently VCC1 is activated and supplies the microcontroller. In case of Figure 10, a power management device is present, which supplies the microcontroller. Normally the inverted FSO signal coming from the power management device is high. This output is inverted by an external logic and applied to one of the two input OR diodes and therefore, at the input of the OR the voltage is normally at logical zero. 20/69 DocID025319 Rev 3 L99LD01 Functional description So in this case the LED driver goes: • In stand-by mode with a low level on ENABLE pin operated by the microcontroller • In normal mode with a high level on ENABLE pin operated by the microcontroller The inverted FSO signal, coming from the power management device ensures, putting trough the inverter and the external OR diode ENABLE pin high, that the LED driver correctly restarts even if the microcontroller fails. Figure 9. Operation with a standalone LIN and ENABLE /('0RGXOH 9%$77 9 '5/ 'ULYHU 16/3 —& /,1 (1$%/( ,1+ ("1($'5 Figure 10. Operation with PM device and ENABLE (FSO active Low) /('0RGXOH 9%$77 9 3RZHU PDQDJHPHQW '5/ 'ULYHU —& /,1 (1$%/( )62 )62 ("1($'5 1. An inverter network is required. 2.2.9 Frequency setting and dither effect The internal main converter oscillator structure is reported in Figure 11. DocID025319 Rev 3 21/69 68 Functional description L99LD01 The external resistor applied between pin RSF and ground is setting the converter working frequency. The voltage applied on pin RSF is the internal reference reported by the source follower structure which is a constant voltage of 1.21 V. The converter frequency is directly related to the current flowing through the RSF pin. Figure 12 reports the behavior of frequency converter as function of the external resistor RSF and IRSF as function of converter frequency. As above mentioned the converter oscillator spread parameters (dither effect) are adjustable via SPI. Dither effect is disabled by default during standalone operation, but it is possible enabling it simply connecting the SDI pin to 5 V voltage. Figure 11. Internal structure of main converter oscillator ,56) 56) ,F .,56) 9   2VFLOODWRU ,56) 56) ("1($'5 22/69 DocID025319 Rev 3 L99LD01 Functional description Figure 12. Converter frequency range vs RSF and IRSF vs frequency )UHTXHQF\YV56) )5(4>.K]@               56)>.@ ,56)YV)UHTXHQF\ ,56)>X$@      ,56)  )5(4           )5(4>.K]@ ("1($'5 2.2.10 Start up LED overvoltage management The following diagram shows the purpose of delay time windows “tDStart” and “tEnRecov”. The first delay window tDStart has been thought to ensure an initial time period for charging the external buffer capacitor of the charge pump C9. When VS is below VSMIN, the LED overvoltage recovery bit is set. During this time interval, triggered as soon as the battery voltage VS overcomes VSMIN threshold, the converter remain in a stop condition, independently from PWM_L. When the tDStart is elapsed (typ. 5 ms), the converter is released and behaves according to the PWM_L signal provided, that no failure occurs. If no LED overvoltage comes during the 2nd time interval tEnRecov, LED ov recovery bit is reset. DocID025319 Rev 3 23/69 68 Functional description L99LD01 If a LED overvoltage failure occurs afterwards, the failure will be latched and the converter is stopped until a read and clear of the status register 1. Note that during tDStart, the converter is stopped to enable the buffer capacitor C9 to charge at a sufficient voltage to correctly drive the mosfet M2. This delay prevents the converter to turn on, while M2 stays off, avoiding a LED overvoltage event. If the application uses a big capacitor(a), it is recommended to keep the PWM_L signal low after a power on reset or after a VS under voltage, until C9 is totally charged, to avoid a LED overvoltage. Figure 13 shows the device behavior in case of no LED overvoltage failure, after tDStart. If C9, after tDStart time, should be not enough charged to allow correct driving operation, a possible LED overvoltage will appear when, the converter will be released. Figure 14 shows what happens in this case. After tDStart, the converter is released while the C9 capacitor is only partially charged. Consequently, VLED increases up to LED OV_TH1 and a LED overvoltage event is detected during the tEnRecov phase. The LED_Ov_Rec bit is not reset at the end of the tEnRecov phase due to the LED overvoltage event. The discharge path is activated until VLED crosses LED OV_TH2. Then, the LED_Ov_Rec bit is reset, the converter is released, and the buffer capacitor C9 is now fully charged, enabling the dimming mosfet M2 to turn on. Figure 15 shows the case of LED_Ov_Rec bit during a start up with a rising edge on PWM_L = High after the expiration of tDStart. In this case, the tEnRecov phase starts only when the PWM_L signal goes High. Figure 16 shows the case of LED overvoltage event, which could appear during normal functioning. The LED overvoltage status bit is set (latched) and the discharge path is activated until VLED crosses LED OV_TH2. The converter is stopped, independently from PWM_L, until a read and clear command of the status register 1 (LED_Ov_Rec bit is reset). If a LED overvoltage failure event occurs during VS overvoltage, (battery OV), the discharge path for the output capacitor is inhibited and the LED overvoltage status bit is not set. When the VS overvoltage event disappears, (VS crosses VS OV_TH2), the LED overvoltage status bit is set (latched) and the discharge path is activated until VLED crosses LED OV_TH2. The converter is stopped, independently from PWM_L, until the LED ov status bit is cleared (read and clear of the status register 1). Figure 17 shows such a case. Finally Figure 18 shows how will be managed the LED_Ov_Rec bit in case signal PWM_L has a low on-time. In this case the LED_Ov_Rec bit is reset when the cumulated running time of tEnRecov exceeds typ. 5 ms. This feature enables a single recovery of a LED overvoltage event, due to a too fast regulation loop (set by the resistor and capacitor connected to RCCOMP pin), even in PWM operation with low on-time. However, a proper choice of RC network values, avoiding fast transients on the LED string voltage, when the converter is switched ON, it is carefully recommended a. More than 22 nF 24/69 DocID025319 Rev 3 L99LD01 Functional description Figure 13. Correct start UP with no LED overvoltage failure  325 9V 9VBPLQ 7LPHU  W'6WDUW aPV W(Q5HFRY aPV 2)) 21  3:0B/ &RQYHUWHU /('RY UHFRYELW 6LQJOH/('RYUHFRYHU\HQDEOHG 5HFGLVDEOHG ("1($'5 Figure 14. LED overvoltage after tDStart  325 /('RYHUYROWDJHGXULQJWKH 7KHHQGRIWKHW(Q5HFRYSKDVHLVLJQRUHG EHFDXVHGRIWKH/('RYHYHQWWKH/('RY W(Q5HFRYSKDVH UHFRYHU\ELWLVQRWUHVHW 9V 9VBPLQ 7LPHU  W'6WDUW aPV W(Q5HFRY aPV  3:0B/ &RQYHUWHU 2)) 2)) 21 /('RY UHFRYELW /('2YBWK /('2YBWK 2XWSXWFDS 'LVFKDUJH ("1($'5 DocID025319 Rev 3 25/69 68 Functional description L99LD01 Figure 15. Device behavior in case the low to high transition of PWM_L signal happens after tDStart expiration  325 9V 9VBPLQ 7LPHU W'6WDUW aPV  :DLWLQJIRU 3:0B/ULVLQJ W(Q5HFRY aPV  3:0B/ &RQYHUWHU 2)) /('2Y UHFRYELW 21 6LQJOH/('RYUHFRYHU\HQDEOHG /('RYUHFRYHU\GLVDEOHG ("1($'5 Figure 16. LED overvoltage event not caused by a VS overvoltage event 9V 9V2YBWK 9VPLQ 9/(' /('2YBWK /('2YBWK &RQYHUWHU 21 2XWSXWFDS 'LVFKDUJH 2)) 2)) 21 21 2)) /('RY VWDWXVELW 5HDGDQG&OHDU 6WDWXV5HJ ("1($'5 26/69 DocID025319 Rev 3 L99LD01 Functional description Figure 17. LED overvoltage detection due to a possible battery VS overvoltage  9V 9V2YBWK 9V2YBWK 9/(' /('2YBWK /('2YBWK &RQYHUWHU 2)) 21 'LVFKDUJH 21 2)) 2)) /('RY VWDWXVELW 5HDGDQG&OHDU 6WDWXV5HJ ("1($'5 Figure 18. Behavior of LED overvoltage recovery bit with low on-time of PWM_L 325 ([SLUDWLRQRIW(Q5HFRY FXPXODWHGUXQQLQJWLPHaPV ([SLUDWLRQRIW'VWDUW 9V 9VBPLQ 7LPHU  W'6WDUW aPV :DLW 3:0/ 5LVLQJ W(Q5HFRY W(Q5HFRY W(Q5HFRY W(Q5HFRY W(Q5HFRY W(Q5HFRY W(Q5HFRY 5XQQLQJ 5XQQLQJ 5XQQLQJ 5XQQLQJ +DOW +DOW +DOW  3:0B/ &RQYHUWHU /('RY UHFRYELW 21 2)) 6LQJOH/('RYUHFRYHU\HQDEOHG 5HFRYHU\GLVDEOHG ("1($'5 2.2.11 Programming the over/under voltage threshold The voltage across the LED string is continuously sensed by the external resistor divider R5/R6 and reported inside the chip trough the apposite pin VLED. Considering negligible the voltage drop due to the sense resistor and the VDS of external mosfet M2 respect to the LED DocID025319 Rev 3 27/69 68 Functional description L99LD01 voltage string, according to the equation reported below, the LED overvoltage thresholds are given by the following formulas: VLED_OV = OV_TH1 / KL; being KL = R6 / (R5+R6); OV_TH1 is the reference for the OV internal comparator. Typical value for OV_TH1 is 3.5 V. LED OV event makes the converter and also mosfet M2 immediately switched OFF, in order to prevent any damage to the LED string or to the driver. Furthermore, following an OV event, the LED_OV status register is set and an internal load is applied between ISENSE+ pin and ground in order to fast discharge the voltage across capacitor C4. In the boost topology application, if a short circuit between the source of external mosfet M2 and GND occurs, an uncontrolled current could flow. In order to avoid this situation, a maximum LED current protection has been inserted, which continuously monitors the voltage across the sense resistor RSENSE. If this voltage reaches a value in excess of an internal fixed threshold of (see Table 24 - LED over current protection threshold parameter), the status bit LED_OC (led over current) is set and the converter and also mosfet M2 will be immediately switched OFF. Following a stop of the converter due to an OV event, the device can not be restarted before of C4 discharge (VLED is below OV_TH2). After an OV event, the converter could restart if a read and clear command of the LED_OV status bit is done. Table 3 summarizes the suggested value of KL resistor ratio, supposing to have a LED_OV event, when the voltage across LED string, reaches a value in excess of 50 % of its nominal value. Figure 19. LED chain overvoltage thresholds settings. An example for boost and fly back converters 9%$77  & 29B&203 29 29B7+   56(16( 0 0 9/(' 9/('675,1* 5 9/(' §./ 9/('675,1* 1  9/('B29 29B7+./  5 ./ 5  55 ("1($'5 28/69 DocID025319 Rev 3 L99LD01 Functional description Table 3. Suggested KL value and overvoltage thresholds N KL LED CHAIN nominal DROP N*VF [V] overvoltage VLED_OV [V] 1(1) 0.583 4 6 2(1) 0.292 8 12 3(1) 0.194 12 18 4(1) 0.146 16 24 5 0.117 20 30 6 0.097 24 36 7 0.083 28 42 8 0.073 32 48 9 0.065 36 54(2) 10 0.0583 40 60(2) Number of LED 1. Not Applicable on boost converter topology, since the chain LED Drop must be always larger as the maximum battery voltage. 2. Theoretical value; effective value will be clamped to 52 V (typ) by the OV protection. 2.2.12 Input overvoltage programming Supply overvoltage is programmed by the external partition ratio KI = R3/R4 According to the Figure 20 input overvoltage thresholds depend on the internal reference voltages VOVTH1 and VOVTH2 (being VOVTH2 < VOVTH1) Typical values of these internally generated references are 3.5 V and 3 V. When the Battery voltage reaches a value in excess to VS_TH1 the converter is immediately stopped. When the battery voltage, going down, reaches a value just lower to VS_TH2, the converter restarts again. Figure 20. Input overvoltage programming 9%$77 96 & 5 ,13B29  5  9297+ 96B7+  55 9297+ 96B7+  55 9297+ ("1($'5 DocID025319 Rev 3 29/69 68 Functional description L99LD01 As an example, if we want VS_TH1 = 20 V, according to the formula of Figure 20, R3/R4 will result equal to 4.7 and consequently the deactivation threshold VS_TH2 will result ~ 17 V.(b) b. Notice that the deactivation threshold must be always greater than the maximum allowed battery value in normal conditions. 30/69 DocID025319 Rev 3 L99LD01 SPI functional description 3 SPI functional description 3.1 Serial peripheral interface (ST SPI standard) The SPI communication is based on a standard ST-SPI 24-bit interface, using CSN, SDI, SDO and SCK signal lines. Input data are shifted into SDI, MSB first while output data are shifted out on SDO, MSB first. During active mode, the SPI: Note: • Triggers the watchdog • Controls the modes and status of all internal modules (incl. input and output drivers) • Provides driver output diagnostic • Provides device diagnostic (incl. over temperature warning, device operation status) During standby modes, the SPI is generally deactivated. The SPI can be driven by a microcontroller with its SPI peripheral running in following mode: Figure 21. Clock polarity and clock phase &32/&3+$  &61 6&. 06% 6', 6'2 +, 06% /6% /6% +, *$3*&)7 According to the standard, a generic input bit is sampled by the low to high transition of the clock CLK and a generic output bit changes synchronously to the high to low transition of CLK. This device is not limited to micro controller through a built-in SPI. Only three CMOScompatible output pins and one input pin will be needed to communicate with the device. A fault condition can be detected by setting CSN low. If CSN = 0, the DO pin will reflect the global error flag (fault condition) of the device (see Figure 22). This operation does not cause a communication error bit in the global status byte to be set. DocID025319 Rev 3 31/69 68 SPI functional description L99LD01 Figure 22. SPI global error information output & 6 1 KLJ K WR OR Z D Q G &/ . V WD\V OR Z  VWDWXV LQIRU PDWLR Q RI G DWD ELW  ID XOW F R Q GLWLR Q LV WUD QV IHUH G WR ' 2 &61 WLP H &/. WLP H ', WLP H ', G DWD LV Q RW DFF H SWH G  '2 WLP H ' 2 VWDWXV LQIRU P DWLRQ RI GDWD ELW  IDXOW F R QGLWLR Q ZLOO VWD\ DV OR QJ DV & 6 1 LV OR Z $*9 3.2 Signal description • Serial Clock (SCK): this input signal provides the timing of the serial interface. Data present at Serial Data Input (SDI) is latched on the rising edge of Serial Clock (SCK). Data on Serial Data Out (SDO) is shifted out at the falling edge of Serial Clock (SCK). • Serial Data Input (SDI): This input is used to transfer data serially into the device. It receives the data to be written. Values are latched on the rising edge of Serial Clock (SCK). • Serial Data Output (SDO): this output signal is used to transfer data serially out of the device. Data is shifted out on the falling edge of Serial Clock (SCK). SDO also reflects the status of the (Bit 7 of the ) while CSN is low and no clock signal is present • Chip Select Not (CSN): when this input signal is High, the device is deselected and Serial Data Output (SDO) is high impedance. Driving this input Low enables the communication. The communication must start and stop on a Low level of Serial Clock (SCK). 3.3 SPI protocol 3.3.1 SDI, SDO format SDI format during each communication frame starts with a command byte. It begins with two bits of operating code (OC0, OC1) which specify the type of operation (read, write, read and clear status, read device information) and is followed by a 6 bit address (A0:A5). The command byte is followed by an input data byte (D0:D15). 32/69 DocID025319 Rev 3 L99LD01 SPI functional description At the beginning of each communication the master device read the contents of the register (ROM address 3Eh) of the slave device. This 8 bit register indicates the SPI frame length (24 bit) and the availability of additional features. Each communication frame consists of a command byte which is followed by 2 data bytes. The data returned on SDO within the same frame always starts with the . It provides general status information about the device. It is followed by 2 data bytes (i.e. "in-frame-response"). For write cycles the is followed by the previous content of the addressed register. Table 4. Command byte (8 bit) Bit 23 22 21 20 19 18 17 16 Name OC1 OC0 A5 A4 A3 A2 A1 A0 Table 5. Input data byte Data Byte 1 Data Byte 0 Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Name D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 SDO format during each communication frame starts with a specific byte called Global Status Byte (see Section 3.3.2). This byte is followed by two output data byte (D0:D7, D8:D15). Table 6. Global status byte Bit 23 22 21 20 Name GEF Comm_Err Not (chip reset or Comm_Error) 19 18 LED overload Temp. warning Overvoltage 17 16 VCC1 Fail safe Error Table 7. Output data byte Data Byte 1 Bit 15 Name D15 3.3.2 Data Byte 0 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Global status byte description The data shifted out on SDO during each communication starts with a specific byte called Global Status Byte. This one is used to inform the microcontroller about global faults which can be happened on the channel part (like thermal warning, OVL,...) or on the SPI interface (like communication error,...). This specific register has the following format. DocID025319 Rev 3 33/69 68 SPI functional description L99LD01 Table 8. Global status byte Bit Name Description 23 Global Error Flag (GEF) This bit is an OR combination of the remaining bits of the register OR (Vs_uv) OR (Lmode_err) 22 Comm_Err The right number of SPI clocks within any valid spi command is 24. If not, then this bit is set to ‘1’. This bit goes to ‘0’ automatically after any valid spi command 21 Not (Chip reset OR Comm Err) After a POR phase this bit is active (‘0’). It becomes inactive (‘1’) after the first valid spi command, provided that any communication error occurs. 20 LED Overload This bit is set when an LED overcurrent event is detected 19 Temp. warning Temperature Warning for the LED 18 Overvoltage LED chain overvoltage or Vs overvoltage via INP_OV (Led_Ov OR Vs_Overvoltage) 17 VCC1 Error This bit is an OR combination of all the errors related to VCC1 16 Fail Safe This bit is set if the device is in a limp home mode (Data In stuck at ‘0’ or ‘1’, watchdog time out, software limp home), VCC1 undervoltage for more than 2 ms in active mode. 3.3.3 Operating code definition The SPI interface features four different addressing modes which are listed in Table 10. Table 9. Operation code definition OC1 OC0 Meaning 0 0 Write operation 0 1 Read operation 1 0 Read and clear status operation 1 1 Read device information The and operations allow access to the RAM of the device. A operation is used to read a status register and subsequently clears its content. The allows access to the ROM area which contains device related information such as , , and . Write mode The write mode of the device allows writing the content of the input data byte into the addressed register. Incoming data are sampled on the rising edge of the serial clock (SCK), MSB first. 34/69 DocID025319 Rev 3 L99LD01 SPI functional description During the same sequence outgoing data are shifted out MSB first on the falling edge of the CSN pin and subsequent bits on the falling edge of the serial clock (SCK). The first byte corresponds to the Global Status Byte and the second to the previous content of the addressed register. Figure 23. SPI write operation CSN SDI SDO Data (8 bit) Command Byte 0 0 MSB Address Global Status Byte (8 bit) MSB LSB MSB LSB MSB LSB Data (previous content of register) LSB Read mode The read mode of the device allows to read and to check the state of any register. Incoming data are sampled on the rising edge of the serial clock (SCK), MSB first. Outgoing data are shifted out MSB first on the falling edge of the CSN pin and others on the falling edge of the serial clock (SCK). The first byte corresponds to the Global Status Byte and the second to the content of the addressed register. In case of a read mode on an unused address, the ‘global status/error’ byte on the SDO pin is following by 00H byte. In order to avoid inconsistency between the Global status byte and the status register, the status register contents are frozen during SPI communication. Figure 24. SPI read operation CSN SDI SDO Don’t care (8 bit) Command Byte 0 MSB 1 MSB Address Global Status Byte (8 bit) LSB MSB LSB MSB LSB Data (8 bit) LSB Read and clear status command The read and clear status operation is used to clear the content of the addressed status register (see Section : Status registers 1). A read and clear status operation with address DocID025319 Rev 3 35/69 68 SPI functional description L99LD01 3Fh clears all status registers simultaneously and reads back the configuration register (GLOBCTR). Incoming data are sampled on the rising edge of the serial clock (SCK), MSB first. The command byte allows to determine which register content is read then erased while the data byte is ‘don’t care’. Outgoing data are shifted out MSB first on the falling edge of the CSN pin and others on the falling edge of the serial clock (SCK). The first byte corresponds to the Global Status byte and the second to the content of the addressed register. In order to avoid inconsistency between the Global status byte and the status register, the status register contents are frozen during SPI communication. Figure 25. SPI read and clear operation CSN SDI SDO Don’t care (8 bit) Command Byte 1 MSB 0 MSB Address Global Status Byte (8 bit) LSB MSB LSB MSB LSB Data (8 bit) LSB Read device information Specific information can be read but not modified during this mode. Incoming data are sampled on the rising edge of the serial clock (SCK), MSB first. The command byte allows to determine which information is read while the data byte is ‘don’t care’. Outgoing data are shifted out MSB first on the falling edge of the CSN pin and others on the falling edge of the serial clock (SCK). The first byte corresponds to the Global Status byte and the second to the content of the addressed register. 36/69 DocID025319 Rev 3 L99LD01 SPI functional description Figure 26. SPI read device information CSN 1 SDO 3.4 MSB 1 MSB LSB MSB Address Global Status Byte (8 bit) LSB MSB LSB Data (8 bit) LSB Address mapping T Address Don’t care (8 bit) Command Byte SDI Table 10. RAM memory map Name Access Content 00h Reserved Read/write Reserved 01h Control register 1 Read/write Mux settings, WD period and retrigger 02h Control register 2 Read/write Spread spectrum settings, max input current and LED current settings 03h Control register 3 Read/write SW Limp Home, OTA/driver and converter delay control 04h Status register 1 Read Detailed status information 05h Status register 2 Read WD status, operation mode and LMode error 3E Trimming and test Read Trimming bus and test mode select 3F Configuration reg. Read/write WD retrigger bit Table 11. ROM memory map Address Name Access Content 00h ID header Read only 4300h (ASSP ST_SPI) 01h Version Read only 0100h 02h Product code 1 Read only 3100h (dec. 49) 03h Product code 2 Read only 5100h (ASCII ‘Q’) 3Eh SPI frame ID Read only 4200h (Watchdog available, 24 bit ST-SPI) DocID025319 Rev 3 37/69 68 SPI functional description 3.5 L99LD01 Control registers (RAM) 13 12 11 10 9 8 7 Reserved Address: 0x01h Type: R/W Reset: 0000 0000 0000 1110b 6 4 3 2 1 0 Mux[[1:0] En_Ntc WD_trig 14 WD_Period 15 Mux_En Control registers 1 5 Bit [6:15] Reserved Bit [5:4] Mux[1:0]: 00 (default): the signal on the PWM pin is reflected on Mout pin 01: the signal on the VLED is reflected on Mout pin 10: the signal on NTC is selected 11: the signal on Lmode pin is selected Bit [3] Mux_En: 0: the Mout pin is inactive (tristate) 1: the Mout pin is active (default) Bit [2] En_Ntc: When set, the current fold back feature enabled in case of LED overtemperature conditions. This bit is ignored in case of any LIMP MODE and the LED temperature monitoring is activated (the NTC control is internal) Bit [1] WD_Period: 0: WD timeout = 100 ms 1: WD timeout = 200 ms (default) Bit [0] WD_trig: This bit must be toggled within the WD period to refresh the WD 38/69 DocID025319 Rev 3 L99LD01 SPI functional description Control registers 2 15 14 Fdev[2:0] 13 12 11 Fmod[1:0] 10 9 8 Dith_En 7 6 5 4 Led_Curr[4:0] Address: 0x02h Type: R/W Reset: 0101 1110 0001 1111b 3 2 1 0 Max_Curr[4:0] Bit [15:13] Fdev[2:0]: frequency deviation of the internal oscillator (see Table 12) Bit [12:11] Fmod[1:0]: frequency modulation of the internal oscillator (see Table 13) Bit [10] Dith_En: enable or disable random dither effect. If this bit is set Dithering is enabled; If the bit is reset, the dithering is disabled Bit [9:5] Led_Curr[4:0]: these bits set the LED current. The LED current is given by: 0.05 + (0.2 * Led_Curr[4:0]d) / 31) / (RSENSE) [A] (typ) Where Led_Curr[4:0]d = decimal value of Led_Curr[4:0] Bit [4:0] Max_Curr[4:0]: these bits set the maximum input current. The internal current limiter voltage threshold is: 1 + (2.5 * Max_Curr[4:0]d) / 31 in [V] (typ) Considering the gain of the amplifier of 10, the current limitation is: (1 + 2.5 * Max_Curr[4:0]d / 31) / (10 RSHUNT) (typ); Where Max _Curr[4:0]d = decimal value of Max_Curr[4:0] Table 12. Internal oscillator frequency deviation settings Fdev[2] Fdev[1] Fdev[0] Frequency deviation 0 0 0 0% 0 0 1 5% 0 1 0 10 % 0 1 1 15 % 1 0 0 20 % 1 0 1 25 % 1 1 0 30 % Table 13. Internal oscillator frequency modulation settings Fmod[1] Fmod[0] Frequency modulation 0 0 1.95 kHz 0 1 3.9 kHz 1 0 7.8 kHz 1 1 15.6 kHz DocID025319 Rev 3 39/69 68 SPI functional description L99LD01 Control registers 3 15 14 Reserved 13 12 Lh_Sw 11 10 9 8 Ctrl_Ota[3:0] Address: 0x03h Type: R/W Reset: 0000 1000 0000 0000b 7 6 5 4 3 2 1 0 Ctrl_Drv[3:0] Bit [15:13] Reserved Bit [12] Lh_Sw: The device goes in Limp Home mode without WD supervision (VCC1 stays on) when the bit is set Bit [11:8] Ctrl_Ota[3:0]: these bits set the delay between a rising edge of the PWM_L signal and a connection of the output of the operation transconductance amplifier. The delay is given by Ctrl_Ota[3:0]d * 3.3 µs (typ.) Where Ctrl_Ota[3:0]d is the decimal value of Ctrl_Ota[3:0] The default of these bits are loaded from the corresponding control bus Bit [7:4] Ctrl_Drv[3:0]: these bits set the delay between a rising edge of the PWM_L signal and the activation of the converter The delay is given by: Ctrl_Drv[3:0]d * 1.67 µs (typ.) Where Ctrl_Drv[3:0]d is the decimal value of Ctrl_Drv[3:0] The default of these bits are loaded from the corresponding control bus Bit [3:0] Ctrl_Sw[3]: these bits set the delay between the falling edge of the PWM_L signal and the turn off of the dimming mosfet M2. The delay is given by: Ctrl_Sw[3:0]d * 1.67 µs (typ.) Where Ctrl_Sw[3:0]d is the decimal value of Ctrl_Sw[3:0] The default of these bits are loaded from the corresponding control bus. 40/69 DocID025319 Rev 3 L99LD01 3.6 SPI functional description Status registers 8 Reserved Vs_Ov Vs_Uv — R(1) R R(1) 7 Led_Oc Led_Ov 6 5 4 3 2 1 0 SDI_stuck@ 9 Vcc1_Sc 10 Vcc1_Ot 11 Vcc1_Uv_To 13 Vcc1_Fail 14 Vcc1_Off 12 Led_Temp_War 15 Lmode_Err Status registers 1 WD_fail R/C(2) R R/C(2) 1. “Read only”, real time bit. 2. These bits are latched until a “Read and Clear” access. Address: 0x04h Type: R/C Bit [15:13] Reserved Bit [12] Lmode_Err: this bit is set if a mismatch between the signal on LMODE pin and VLED pin is detected. Bit [11] Vs_Ov: is set if an overvoltage event at the supply line is detected Bit [10] Vs_Uv: is set if an under voltage event at the supply line is detected Bit [9] Led_Temp_Warn: temperature warning for the LED Bit [8] Led_Oc: Is set if an over current event across the LED chain is detected Bit [7] Led_Ov: is set if an overvoltage event across the LED chain is detected Bit [6] Vcc1_Off: when set, this bit indicated that VCC1 is off Bit [5] Vcc1_Fail Indicates that: VCC1 is below VCC1_FAIL threshold for typ. 2 µs in active mode VCC1 is below VCC1_FAIL threshold for more than 4 ms typ. during start up Bit [4] Vcc1_Uv_To: this bit is set in active mode if VCC1 is below the reset threshold for more than typ. 2 ms Bit [3] Vcc1_Ot: set if an overtemperature condition has been detected on VCC1 Bit [2] Vcc1_Sc: indicates a short circuit on VCC1. This bit is set if VCC1 stays below the VCC1_FAIL threshold 4 ms (typ.) after the power on reset or below the reset threshold 100 ms after the POR (Power On Reset) Bit [1] SDI_stuck@ Bit [0] WD_fail DocID025319 Rev 3 41/69 68 SPI functional description L99LD01 8 7 6 5 4 3 Reserved PWM_L Standalone LHM Lh_Sw_St 14 Ext_Vcc 15 Led_Ov_Rec Status registers 2 13 12 11 10 9 WD_Status[2:0] — R R R(1) R R(2) R(1) 2 1 0 1. “Read only”, real time bit. 2. “Read only” bit. These bits are cleared by a WD re-trigger. Address: 0x05h Type: R Bit [15:9] Reserved Bit [8] Led_Ov_Rec Once this bit is set, the device will make a single trial to recover from an LED overvoltage. Bit [7] Ext_Vcc: this bit reflects the signal on the Ext_Vcc pin, Bit [6] PWM_L: this bit reflects the signal on the PWM_L pin Bit [5] Standalone: this bit is set if the device operates in standalone mode, without microcontroller Bit [4] LHM: reflects the level at LHM pin Bit [3] Lh_Sw_St: is set if the software limp home mode is activated Bit [2:0] WD_status[2:0]: these bits indicate the status of the watchdog timer (see Table 14 and see Figure 27) Table 14. Watchdog timer status 42/69 WD_Status[1] WD_Status[1] WD_Status[0] WD timer status 0 0 0 [0…25 %[ 0 0 1 [25 % … 50 %[ 0 1 1 [50 % … 75 %[ 1 1 1 [75 % … 100 %[ DocID025319 Rev 3 L99LD01 SPI functional description Figure 27. Principle of the WD_Status bits :'5HIUHVK :'5HIUHVK :'7LPHU  7LPHRXW     :'6WDWXV>@         ("1($'5 Trimming and test register 15 14 13 12 11 10 9 8 7 6 5 4 TM[5:0] Trim_Bus[9:0] R/W R Address: 0x3Eh Type: R/W Reset: 0000 0000 0000 0000b 3 2 1 0 Bit [15:10] TM[5:0]: test mode selection (refer to the UQ49 test controller) Bit [9:0] Trim_Bus[9:0]: copy of the data stored in the trimming fuse cells Configuration register 15 14 13 12 11 10 9 Address: 0x3Fh Type: R/W Reset: 0000 0000 0000 0000b 8 7 6 5 4 3 2 1 0 Reserved WD_Trig — R/W Bit [15:1] Reserved Bit [0] WD_Trig: this bit must be toggled within the WD period to refresh the WD. Note that this bit is copied in the Control register 1, bit 0 DocID025319 Rev 3 43/69 68 Electrical specifications 4 L99LD01 Electrical specifications Figure 28. Voltage and current conventions 956) ,&203 ,56) ,&9 9&9 9&203 ,6& 96& ,&& 9&& 9&& ,96 ,&& 9&& &9 56) 5&&203 6& 9&& 96 ,15(6 915(6 ,* ,3:0B/ 93:0B/ ,6', 96', ,6'2 96'2 15(6 3:0B/ * ,63 6', ,61 ,&61 9&61 ,0287 90287 93:0 9,13B29 ,(1$%/( 9(1$%/( ,/+0 9/+0 ,61 961 ,6(16( 6&. ,6(16( ,6(16( &61 * /02'( 3:0 ,,13B29 963 ,6(16( 0287 ,3:0 9* ,63 6'2 ,6&. 96&. 96 (;7B9&& 9/(' ,13B29 (1$%/( &3% /+0 17& *1' ,*1' *1' 96(16( 96(16( ,* 9* ,/02'( 9/02'( ,(;79&& 9(;79& ,9/(' ,&3% & 9/(' 9&3% ,17& 917& *1' ,*1' ,*1' ("1($'5 4.1 Absolute maximum ratings Maximum ratings are absolute ratings; exceeding any one of these values may cause permanent damage to the integrated circuit. Table 15. Absolute maximum ratings Symbol VS VS_TR Parameter Value Unit DC operating supply voltage 5.6 / 24 V Transient operating supply voltage (T < 400 ms) -0.3 / 40 V VSDI SPI data input voltage range -0.3 / +5.3 V VSDO SPI data output voltage range -0.3 / +5.3 V VSCK SPI clock voltage range -0.3 / +5.3 V VCSN SPI chip select not voltage range -0.3 /+5.3 V VNRES Reset output pin voltage range -0.3 ÷ VS+0.3 V VCC1 Regulator1 supply voltage output -0.3 / + 5.5 V VCC2 Regulator 2 supply voltage output -0.3 / + 10.5 V -0.3 ÷ VS+0.3 V VENABLE 44/69 Enable input pin voltage range DocID025319 Rev 3 L99LD01 Electrical specifications Table 15. Absolute maximum ratings (continued) Symbol Parameter Value Unit VSC Slope compensation input voltage range -0.3 / + 5.3 V VLHM Limp home mode input pin voltage range -0.3 ÷ VS+0.3 V VPWM Input L.F. PWM voltage range -0.3 ÷ VS+0.3 V VPWM_L Logic level L.F. PWM input voltage range -0.3 / +5.3 V VMOUT Multiplexed data output pin voltage range -0.3 / +5.3 V -0.3 / (VCC2 + 0.3) V -0.3 / min (VCPB + 0.3, 68) V -0.3 / 5.3 V VISENSE+ - 0.8 V / min (VISENSE+ + 16 V, 68 V) V VG1 Driver 1 output voltage range VG2 Driver 2 gate output voltage range VEXT_VCC VCPB External VCC voltage range External capacitor voltage range VISENSE+ Positive sensing res. voltage range -0.3 / 55 V VISENSE- Negative sensing res. voltage range VISENSE+ - 5 V / VISENSE+ + 0.3 V V VSP Sensing positive shunt res voltage range -0.3 / +5.3 V VSN Sensing negative shunt res voltage range -0.3 / +5.3 V -0.3 ÷ VS+0.3 V VINP_OV overvoltage input pin voltage range VRSF External set frequency resistor voltage range -0.3 / 5.5 V VC5V C5V ext capacitor voltage range -0.3 / 5.5 V External RC network input pin voltage range -0.3 / 5.5 V VNTC External NTC resistor input voltage range -0.3 / 5.5 V VLED LED chain drop voltage detection input range -0.3 / + 65 V LED Mode switch voltage range -0.3 / +5.3 V VRC COMP VLMODE VESD Electrostatic discharge (HBM R = 1.5 kΩ; C = 100 pF) ±2 kV VESD CDM model all pin 500 V VESD CDM for corner pin 750 V Junction operating temperature -40 to 150 °C Storage temperature -55 to 150 °C Value Unit Tj Tstg Table 16. Thermal data Symbol Parameter RThj-case Thermal resistance junction to case 27 °C/W RThj-amb Thermal resistance junction to ambient 90 °C/W DocID025319 Rev 3 45/69 68 Electrical characteristics 5 L99LD01 Electrical characteristics Values specified in this section are for 5.6 V ≤ VS ≤ 24 V; -40 °C ≤ Tj ≤ 150 °C, unless otherwise specified Table 17. VS and VCC1 pin characteristics Symbol Parameter Test condition Min Typ Unit 24 V VS Operative battery voltage IS Supply current consumption in continuous mode (L.F. PWM = 100 %) VS = 13.5 V; FREQ = 300 kHz; ICC1 = ICC2 = IC5V = 0 20 mA IS_STBY Supply current consumption in stand by mode Enable = Low; LHM,CSN,PWM, INP_OV = open; VNRES ≤ 5.5 V; VS = 13.5 V; Tj = 25 ºC 12 µA Minimum VS required for reaching VCC1 nominal value VS ramp up 5.6 V VSMIN hysteresis VS ramp down VSMIN VSMIN_HYS 5.6 Max 4.8 5.2 0.2 V tVSM VSMIN filtering time 13 16 23 µs VCC1 D.C. logic supply output voltage 1 < -ICC1 < 10 mA 4.9 5 5.1 V -ICC1 Output current capability VS = 13.5 V; VCC1 = VCC1_1mA 0.1 V(1) VCC1_DROP Min voltage drop of VCC1 respect to VS: VCC1_DROP = min (VS - VCC1) -ICC1 = 10 mA VCC1_LINE Line regulation voltage VCC1_LOAD Load regulation voltage VCC1_FAIL VCC1 fail detection threshold(2) tLMODERR 50 mA 500 mV -ICC1 = 10 mA; VCC1@5.6 – VCC1@24 5 mV -ICC1 = 1 to 10 mA; VS = 13.5 V 10 mV VS ≥VSMIN; VCC1 rising 2.4 2.6 2.8 V VS ≥VSMIN; VCC1 falling 1.9 2.1 2.3 V Filtering time for LMODE error 13 16 23 µs tOC Filtering time for LED overcurrent 13 16 23 µs tLEDOV Filtering time for LED overvoltage 12 15 22 µs tWD1 1st watchdog time-out period 85 100 135 ms tWD2 2nd watchdog time-out period 170 200 275 ms tV1F Internal filtering time for vcc1 fail VS ≥ VSMIN detection 1.7 2 2.75 µs tSHTV1A Time to detect a short on V1 regulator at turn-on VS ≥ VSMIN; VCC1 < VCC1_FAIL; t ≥ tSHTV1A tSHTV1B Time to detect a short on V1 regulator at turn-on VS ≥ VSMIN; VCC1_FAIL ≤ VCC1 ≤ VCC1_TH; t ≥ tSHTV1B 46/69 DocID025319 Rev 3 4 ms 100 ms L99LD01 Electrical characteristics Table 17. VS and VCC1 pin characteristics (continued) Symbol CVCC1 VCC1_OT VCC1_OT_HYS tV1OT Parameter Test condition Min Typ 1 10 Regulator 1 over temperature detection level 150 175 190 °C Hysteresis 20 25 30 °C 0.75 1 1.55 ms A good quality (Low ESR) capacitor is recommended Load capacitance Filtering time for regulator 1 over temperature detection 1. VCC1_1mA is VCC1 at ILOAD = 1 mA; VS = 13.5 V. 2. Minimum VCC1 voltage for keep RAM data. Max Unit µF Table 18. VCC2 and C5V pin characteristics Symbol Parameter VCC2 D.C. logic supply output voltage -ICC2 VCC2_DROP -ICC2_SHT CVCC2 VCC2_OT VCC2_OT_HYS VC5V -IC5V -IC5V_SHT C5V 1. Test condition Min Typ Max Units 1 ≤ -ICC2 ≤ 10 mA; VS = 13.5 V; VPWM_L = 0 9.5 10 10.5 V Output current capability VS = 13.5 V; VCC2 = VCC2_1mA - 0.1 V(1); VPWM_L = 0 20 Drop voltage to VS: VCC2_DROP = (VS - VCC2) -ICC2 = 1 mA; VCC2 = 9.5 V; VPWM_L = 0 100 mV Short output current limitation 0 ≤ VCC2 ≤ VCC2_1mA; VS = 13.5 V; VPWM_L = 0 100 mA Load capacitance A good quality (Low ESR) capacitor is recommended for correct managing gate peaks current during switching On and OFF of G1 mA 10 µF Regulator 2 over temperature detection level 150 175 190 °C Over temperature detection level hysteresis 20 25 30 °C 4.75 5 5.25 V 0 ≤ -IC5V ≤ 2.5 mA Internal 5 V output voltage (2) 5 V output current VC5V = VC5V_1mA - 0.1 Short output current limitation 0 ≤ VC5V ≤ VC5V_1mA(3) (pulsed s.c. no continuous short) Load capacitance See Figure 34 2.5 mA 50 1 mA µF VCC2_1mA is the value of VCC2 at I load = 1 mA, VS = 13.5 V; Tj = 25 °C. 2. VC5V_1mA is the value of VC5V at external IC5V load = 1 mA, VS = 13.5 V; Tj = 25 °C. 3. VC5V_1mA is the value of VC5V at external IC5V load = 1 mA, VS = 13.5 V; Tj = 25 °C. DocID025319 Rev 3 47/69 68 Electrical characteristics L99LD01 Table 19. NRES and LMODE pin characteristics Symbol Parameter Test condition Reset intervention threshold VCC1_TH Min Typ Max Unit 4.6 4.7 4.8 V TRR VCC1 reset filtering time VCC1 < VCC1_TH 13 16 23 µs tFS VCC1 reset time-out for fail safe detection VS ≥ VSMIN; VCC1 < VCC1_TH; t ≥ tFS 1.6 2 2.9 ms TRD Reset delay time VCC1 ≥ VCC1_TH 1.6 2 2.9 ms INRES High state reset sink current VNRES = VS; NRES active 0.5 1.7 3.5 mA INRES High state reset leakage current VNRES = VS; NRES inactive 300 μA Reset I/O low state level VCC1 ≤ VCC1_TH; INRES = 1 mA 0.5 V VNRES_L VLMODE_H Led mode switch high state input VLMODE_L Led mode switch low state input -ILMODE 4 Internal pull up current source VLMODE = 0 V 10 1 V 25 µA Max Unit VCC2 V 0.5 V 18 Table 20. G1 driver 1 pin characteristics Symbol Parameter Test condition Min Typ VG1_H Gate1 high level 5 VG1_L Gate1 low level tr_G1 Gate1 charging rise time CG = 4.7 nF; VGS1 rising from 10 % to 90 %; VS ≥ 10 V 40 ns tf_G1 Gate1 discharging fall time CG = 4.7 nF; VGS1 falling from 90 % to 10 %; VS ≥ 10 V 40 ns Table 21. G2 pin characteristics (driver2) Symbol Parameter Test condition Min Typ Max Unit V(ISENSE+) +14 V 0.05 V VG2_H High state output VG2 voltage PWM_L = High; V(ISENSE+) = 30 V VG2_L Low state output voltage VG2 PWM_L = Low; V(ISENSE+) = 30 V -IG2_H Gate 2 high state output current PWM_L = High; VGS_M2 = 6 V(1); CGS_M2 = 1 nF; V(ISENSE+) = 30 V 200 µA IG2_L Gate 2 low state output current PWM_L = Low; VGS_M2 = 6 V(2); CGS_M2 = 1 nF; V(ISENSE+) = 30 V 200 µA V(ISENSE+) +10 1. IG2_H current is measured when the voltage across gate and source of Mosfet M2 (VGS_M2) reaches a value of 6 V during its rising transient. 2. IG2_L current is measured when the voltage across gate and source of Mosfet M2 (VGS_M2) reaches a value of 6 V during its falling transient. 48/69 DocID025319 Rev 3 L99LD01 Electrical characteristics Table 22. Converter oscillator and RSF pin characteristics Symbol Parameter Test condition Min Typ Max Unit 1.21 1.25 V 520 kHz Voltage at pin RSF IRSF = 42 µA 1.12 DC-DC converter frequency range See Figure 12 100 FO_S Oscillator frequency spread at 125 kHz IRSF = 17 µA (FO ≈ 125 kHz) 100 125 150 kHz FO_S Oscillator frequency spread at 300 kHz IRSF = 42 µA (FO ≈ 300 kHz) 240 300 360 kHz FO_S Oscillator frequency spread at 470 kHz IRSF = 67 µA (FO ≈ 470 kHz) 420 470 520 kHz VRSF FO Duty cycle max DC-DC converter max duty cycle limit 90 % Duty cycle min DC-DC converter min duty cycle limit 10 % FMOD Modulation frequency of the internal See Section 3.5: Control oscillator registers (RAM) FMOD[0:1] See Section 3.5: Control registers (RAM) FDEV[0:2] D% = ∆F0 / F0 Frequency deviation factor 1.95, 3.9, 7.8, 15.6 kHz 0 to ±35 (step ±5 %) % Table 23. PWM_L, PWM, MOUT pin characteristics Symbol Parameter Test condition TONPWM_L Minimum PWM_L on time PWM_LLOW Low level PWM_L input voltage PWM_LHIGH High level PWM_L input voltage 4 IPWM_L_PD Pull down current source 20 PWMLOW Low level PWM input voltage PWMHIGH High level PWM input voltage 4 RPWM_PD Pull Down resistor 50 VMOUT_H High state output voltage (digital mode) -IMOUT = 0.1 mA VMOUT_L Low state output voltage (digital mode) IMOUT = 0.1 mA ZMOUT QG = 9 nC Min Typ Max 100 µs 1 V V 28 35 µA 1 V V 230 500 4 kΩ V 1 Analogue mode output impedance Unit 10 V kΩ Table 24. ISENSE+, ISENSE- pin, and O.T.A. characteristics Symbol Parameter Test condition Min Typ Max Units VISENSE+ VISENSE- Common mode input range VS - 0.3 49 V (VISENSE+ VISENSE-) Operative differential input voltage range -1 0.3 V DocID025319 Rev 3 49/69 68 Electrical characteristics L99LD01 Table 24. ISENSE+, ISENSE- pin, and O.T.A. characteristics (continued) Symbol Parameter (VISENSE+ - LED over current VISENSE-)_TH protection threshold ISENSE_CD Current consumption from ISENSE+ (LED_OV) Test condition V(ISENSE+) = 25 V; VLREF = VLREF_16; VRCCOMP = 2 V VSENSE+ = VSENSE- = 25 V Threshold at pin VSENSE_MAX_1 ISENSE+ for overvoltage protection (activation) VSENSE_MAX_2 Threshold at pin ISENSE+ for overvoltage protection (deactivation) VOFFS OTA input offset voltage VLREF = 0 V; V(ISENSE+) = 25 V; VRCCOMP = 2 V IOFFS OTA input offset current V(ISENSE+) = 25 V; VRCCOMP = 2 V GM Transconductance gain V(ISENSE+) = 25 V; VRCCOMP = 2 V -ICOMP Sourced output current ICOMP VCOMP VLREF_16 Sunk output current Max Units VLREF + VLREF + VLREF + 0.03 0.08 0.14 V 3 5 10 mA 49.5 52 54 V 25 33 35 V 10 mV 10 µA -10 1.2 mS VLREF = VLREF_16; (VISENSE+ - VISENSE-) = 0 50 175 µA VLREF = VLREF_16; (VISENSE+ - VISENSE-) = 300 mV 50 175 VLREF = VLREF_16; (VISENSE+ - VISENSE-) = 1 V 100 300 µA 0 Internal LED current register = 16d; VNTC = 5 V; VISENSE+ = 25 V Internal voltage reference range for setting output LED current(1) VNTC = 5 V VLREF_NTC Max internal VLREF reduction caused by NTC intervention (thermal LED current reduction) VNTC = 0 V VLREF_STEP Internal voltage reference step VLREF Typ 0.95 Output voltage range Default internal voltage reference for constant LED current regulation Min 138 150 3.5 V 162 mV (8 + N) / 24 * VLREF_16 mV (2) 0.5 * VLREF mV 4/3* (VLREF_16 / 31) mV ISP, ISN pin characteristics VSP, VSN 50/69 Shunt resistor input voltage range -0.3 DocID025319 Rev 3 5 V L99LD01 Electrical characteristics Table 24. ISENSE+, ISENSE- pin, and O.T.A. characteristics (continued) Symbol Test condition VSP-VSN Differential input voltage range GLA_CPK Gain of internal linear amplifier VSP = 100 mV; VSN = 0 V; Pin SC floating VLA_OFFS Linear amplifier output offset voltage Default internal reference for the current limiter(3) VCL_31 (VSP-VSN)TH 1. Parameter Internal C.L. voltage reference range VCL_STEP Internal C.L. voltage reference step Typ Max Units 0.5 V -0.3 9.8 12 VSP = VSN = 0 150 350 Internal C.L. register = 31 3.5 Differential threshold Internal C.L. register = 31; voltage for activate max VSC = 5 V input current prot. VCL Min 8 300 V 350 0.279 * VCL_31 mV 400 mV VCL_31 V (0.721 * VCL_31 / 31) V Writing into 5 bit LED Current Register via SPI. 2. N is the number corresponding to the 5 bits of LED_CURR control register. 3. Settable by loading the 5 bit C.L. Register via SPI. Table 25. SC pin characteristics Symbol Parameter Test condition VSC_low Min ramp voltage at pin SC ISC = 0 VSC_HIGH Max ramp voltage at pin SC ISC = 0 RSC Min Typ Max Units 0.2 0.45 V 2 2.6 V 1000 kΩ 1.4 Ext. resistor range 10 Table 26. VLED pin characteristics Symbol Parameter VLED Operative input voltage range for OV detection RVLED_PD Pull down resistor OV_TH1 LED overvoltage threshold 1 boost application OV_TH2 LED overvoltage threshold 2 boost application Test condition Min Typ Max LMODE = low 0 5 LMODE = high VS VS+5 Units V 0.4 0.8 1.2 mΩ LMODE = low 3.4 3.5 3.6 V LMODE = low 2.3 2.5 2.7 V DocID025319 Rev 3 51/69 68 Electrical characteristics L99LD01 Table 26. VLED pin characteristics (continued) Symbol Parameter Test condition Min Typ Max Units OV_TH1_VS LED overvoltage threshold 1 buck-boost application LMODE = high VS + 3.2 VS + 3.55 VS + 3.8 V OV_TH2_VS LED overvoltage threshold 2 buck-boost application LMODE = high VS + 2.2 VS + 2.45 VS + 2.8 V Table 27. INP_OV pin characteristics (input overvoltage shut down) Symbol Parameter Test condition Min Typ Max Units 5 V VINP_OV Operative input overvoltage range 0 -IINP_OV Pull UP current source at input INP_OV VINP_OV = 0 V 10 18 25 µA VINP_OV_TH1 Internal voltage reference 1 3.4 3.6 3.7 V VINP_OV_TH2 Internal voltage reference 2 2.7 2.9 3.1 V Min Typ Max Units 5 V Table 28. NTC pin characteristics Symbol Parameter Test condition VNTC Operative NTC voltage range INTC Pull down current source 0 VNTC=5 V 5 10 15 µA VNTC_TH1 Reference for current LED thermal LED temp ramp up regulation, temp ramp up 1.13 1.2 1.27 V VNTC_TH2 Reference for current LED thermal LED temp ramp down regulation, temp ramp down 1.38 1.45 1.52 V Table 29. ENABLE, LHM pin characteristics Symbol Parameter Test condition Min VENABLE_L Low level ENABLE input voltage VENABLE_H High level ENABLE input voltage 4 RENABLE_PD Enable pull down resistor 50 Typ Max Units 1 VLHM_L Low level limp home mode input pin VLHM_H High level limp home mode input pin ILHM_PU Limp home pin pull up current V 250 500 kΩ 1 V 4 VHLM = 0 10 V V 18 25 µA Table 30. Power on reset Symbol Parameter Test condition Min Typ Max Units POR_TH1 Internal power on reset threshold VC5V rising; VS = 13.5 V; C5V = 10 µF 3.2 3.7 4.2 V POR_TH2 Internal power on reset threshold VC5V falling; VS = 13.5 V; C5V = 10 µF 2.7 3.4 3.7 V 52/69 DocID025319 Rev 3 L99LD01 Electrical characteristics Table 31. Watchdog and timers parameters Symbol Parameter tWDTO Watchdog timeout window tDStart Start time window Test condition tEnRecov 1. Min Typ Max Units 100 or 200(1) ms 5 ms 5 ms Selectable by SPI command. DocID025319 Rev 3 53/69 68 SPI electrical characteristics L99LD01 6 SPI electrical characteristics 6.1 DC characteristics The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6 V ≤ VS ≤ 24 V; all outputs open; Tj = -40 °C to 150 °C, unless otherwise specified. Table 32. SPI DC characteristics Symbol Parameter Test condition Min Typ Max Unit 0.3 VC5V V Inputs: CSN, CLK, DI VIL Input voltage low level VS = 13.5 V VIH Input voltage high level VS = 13.5 V 0.7 VC5V V VIHYS Input hysteresis VS = 13.5 V 500 mV ICSN in CSN pull-up current source VS = 13.5 V 10 18 25 µA ICLK in CLK pull-down current source VS = 13.5 V 20 25 35 µA DI pull-down current source VS = 13.5 V 20 25 35 µA VOL Output voltage low level IOL = 5 mA; VS = 13.5 V 0.3 VC5V V VOH Output voltage high level IOH = -5 mA; VS = 13.5 V IDI in Output: DO 6.2 0.7 VC5V V AC characteristics The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6 V ≤ VS ≤ 24 V; all outputs open; Tj = -40 °C to 150 °C, unless otherwise specified. Table 33. SPI AC characteristics Symbol COUT(1) CIN (1) Parameter Test condition Min Typ Max Unit Output capacitance (DO) — — 10 pF Input capacitance (DI, CSN, CLK) — — 10 pF 1. Value of input capacity is not measured in production test. Parameter guaranteed by design. 54/69 DocID025319 Rev 3 L99LD01 6.3 SPI electrical characteristics Dynamic characteristics The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6 V ≤ VS ≤ 24 V; all outputs open; Tj = -40 °C to 150 °C, unless otherwise specified. For definition of the parameters please see Figure 29 and Figure 30. Table 34. SPI dynamic characteristics Symbol Parameter Test condition Min Typ Max Unit tCSNQVL DO enable from tristate to low level CDO = 100 pF; IDO = 1 mA; pull-up load to VCC; VCC1 = 5.0 V 100 250 ns tCSNQVH DO enable from tristate to high level CDO = 100 pF; IDO = 1 mA; pull-down load to GND; VCC1 = 5.0 V 100 250 ns tCSNQTL DO disable from low level to tristate CDO = 100 pF; IDO = 4 mA; pull-up load to VCC; VCC1 = 5.0 V 380 450 ns tCSNQTH DO disable from high level to tristate CDO = 100 pF, IDO = -4 mA; pull-down load to GND; VCC1 = 5.0 V 380 450 ns tCLKQV CLK falling until DO valid VDO < 0.3 VCC or VDO > 0.7 VCC; CDO = 5 pF; VCC1 = 5.0 V ns VDO < 0.3 VCC or VDO > 0.7 VCC; CDO = 100 pF; VCC1 = 5.0 V ns tSCSN CSN setup time, CSN low before rising edge of CLK VCC1 = 5.0 V 400 ns tSDI DI setup time, DI stable before rising edge of CLK VCC1 = 5.0 V 200 ns tHCLK minimum CLK high time VCC1 = 5.0 V 115 ns tLCLK minimum CLK low time VCC1 = 5.0 V 115 ns tHCSN minimum CSN high time VCC1 = 5.0 V 4 µs tSCLK CLK setup time before CSN rising VCC1 = 5.0 V 400 ns tr DO DO rise time CDO = 100 pF; VCC1 = 5.0 V 80 140 ns tf DO DO fall time CDO = 100 pF; VCC1 = 5.0 V 50 100 ns tr in rise time of input signal DI, CLK, CSN VCC1 = 5.0 V 100 ns tf in fall time of input signal DI, CLK, CSN VCC1 = 5.0 V 100 ns DocID025319 Rev 3 55/69 68 SPI electrical characteristics L99LD01 Figure 29. SPI timing parameters  W+&61 &61 W&6149 W&6147 'DWDRXW '2 'DWDRXW W&/.49 W6&61 W6&/. &/. W6', ', W+&/. W/&/. 'DWDLQ 'DWDLQ ("1($'5 Figure 30. SPI input and output timing parameters WU'2 9&& '2  ORZWRKLJK    9&&   WI'2 9&& '2  KLJKWRORZ  9&& WILQ WULQ ', &/. &61 9&& 9&& ("1($'5 56/69 DocID025319 Rev 3 L99LD01 SPI electrical characteristics Figure 31. SPI maximum clock frequency  W6&.ULVH W6&.ILOW W6&.49 6&. 0LFUR&RQWUROOHU 0DVWHU 6ODYH 0,62 WVHWXS ("1($'5 The maximum SPI clock frequency can be calculated as follows (see Figure 31): tCLKQV(total) = tCLKrise(uC) + tCLKfilt(PCB) + tCLKQV(slave) + tsetup(uC) fCLK(max) < ½ x tCLKQV(total) Example: tCLKQV = 25 ns + 100 ns + 250 ns + 25 ns = 400 ns fCLK(max) < 1.25 MHz Figure 32. NRES pin open drain structure  15(6 ("1($'5 DocID025319 Rev 3 57/69 68 SPI electrical characteristics L99LD01 Figure 33. Handshake procedure at start up with microcontroller on board 9&& 9&&B7+ 15(6 PV 6WDUWXS$FNQRZOHGJPHQWZLWKLQ RU PV 15(6 PV 15(6 6WDUWXSDFNQRZOHGJPHQWZLWKLQRWKHU RU PV PV ,IQRDFNQRZOHGJPHQWZLWKLQ RU PVÎ GHYLFHHQWHUVLQ/LPS+RPHPRGH ,IQRDFNQRZOHGJPHQWDIWHUFRQVHFXWLYHUHVHWSXOVHVGHYLFHHQWHUVLQ/LPS+RPH 0RGHDQG5HJXODWRU9&&LVVZLWFKHG2)) ("1($'5 58/69 DocID025319 Rev 3 L99LD01 Application circuits 7 Application circuits Typical application circuits are shown on the following Figure 34, Figure 35 and Figure 36. Figure 37 shows the case of standalone application. Figure 38 shows an example for the boost converter topology which uses an external Mosfet M3, for provide reverse battery protection, maintaining at same time a very low drop voltage in the normal functioning, but achieving low dissipation and high efficiency, in case of high power applications (LED headlamps). Figure 34. Boost application circuit 9%&0  ' & & ' & & . . 0LFUR . . 15(6 3:0B/ 6', 6'2 6&.  /+0 . ,63 ,VHQVH ,VHQVH * /02'( &61 56+817  Q) 0 (;7B9&& (1$%/( 5 0 * ,61 0287 3:0 ,13B29 5 96 9&& &  56(16( 9&& & 6& 5 Q)  & 5 5 5&FRPS 5 *QG *QG *QG & &9 5 56) 5  & &3% 9/(' 17& 9 5 5 & 5  6XSSO\YROWDJHSURYLGHGE\WKHERG\FRQWUROPRGXOH 517&  &KDVWREHXVHGLQFDVHWKHGHIDXOWPVUHVHWWLPHKDVWREHLQFUHDVHG  ,QFDVHRI/LPS+RPHHYHQW /+0 JQGÎ 'HYLFHDOZD\V2II /+0 2SHQRU+LJKÎ 'HYLFHDOZD\V21  (;7B9&&&RQQHFWWKLVSLQWRJQGLIWKHX3LVVXSSOLHGE\9&& SLQ,IWKHX3LVH[WHUQDOO\VXSSOLHGE\DQH[WHUQDO9VXSSO\ FRQQHFWWKLVSLQWRWKHX3H[WHUQDOVXSSO\  5&FRPSRQHQWVKDYHWREHFKRVHQLQRUGHUWRGRQ¶WUHVHWWKHGHYLFHGXULQJ3:0RSHUDWHGE\WKH%&09ROWDJH  2SWLRQDOFRPSRQHQWVIRUQRLV\ILOWHULQJ ("1($'5 DocID025319 Rev 3 59/69 68 Application circuits L99LD01 Figure 35. Fly back application circuit 9%&0  ' & ' & & & & 5 Q)  15(6 3:0B/ 6', 6'2 6&. . . 0LFUR . . ,VHQVH ,VHQVH * /02'( 0287 3:0 ,13B29  /+0 56(16( 0 . 56+817  Q) 0 (;7B9&& (1$%/( 5 * ,63 5 ,61 &61 5 96 &  9&& 9&& & &9 5 & 5 6& 5 5&FRPS &  56) 5 *QG *QG *QG 5 & &3% 9/(' 17&  9 5 5 & 5  6XSSO\YROWDJHSURYLGHGE\WKHERG\FRQWUROPRGXOH  &KDVWREHXVHGLQFDVHWKHGHIDXOWPV UHVHWWLPHKDVWREHLQFUHDVHG  ,QFDVHRI/LPS+RPHHYHQW /+0 JQG Î 'HYLFHDOZD\V2II /+0 2SHQRU+LJKÎ 'HYLFHDOZD\V21  (;7B9&&&RQQHFWWKLVSLQWRJQG LIWKHX3 LVVXSSOLHGE\9&& SLQ,IWKHX3 LVH[WHUQDOO\VXSSOLHGE\DQH[WHUQDO9VXSSO\ FRQQHFWWKLVSLQWRWKHX3 H[WHUQDOVXSSO\  5&FRPSRQHQWVKDYHWREHFKRVHQLQRUGHUWRGRQ¶WUHVHWWKHGHYLFHGXULQJ3:0RSHUDWHGE\WKH%&09ROWDJH  2SWLRQDOFRPSRQHQWVIRUQRLV\ILOWHULQJ 517& ("1($'5 60/69 DocID025319 Rev 3 L99LD01 Application circuits Figure 36. Buck-boost application circuit 9%&0  ' & & ' & & & 5 15(6 3:0B/ 6', 6'2 6&. . . . .  5 517& 56+817  Q) Q)  56(16( 5  (;7B9&& (1$%/( /+0 ,63 0 . ,VHQVH ,VHQVH * /02'( 0287 3:0 ,13B29 5 * ,61 &61 5 96 9&& 9&& &  0LFUR 5 & 6& 5 5&FRPS 5 &9 & 56) 5 *QG *QG *QG 5  & &3% 9/(' 17& 0 & 5 9  6XSSO\YROWDJHSURYLGHGE\WKHERG\FRQWUROPRGXOH  &KDVWREHXVHGLQFDVHWKHGHIDXOWPVUHVHWWLPHKDVWREHLQFUHDVHG  ,QFDVHRI/LPS+RPHHYHQW /+0 JQGÎ 'HYLFHDOZD\V2II /+0 2SHQRU+LJKÎ 'HYLFHDOZD\V21  (;7B9&&&RQQHFWWKLVSLQWRJQGLIWKHX3LVVXSSOLHGE\9&& SLQ,IWKHX3LVH[WHUQDOO\VXSSOLHGE\DQH[WHUQDO9VXSSO\ FRQQHFWWKLVSLQWRWKHX3H[WHUQDOVXSSO\  5&FRPSRQHQWVKDYHWREHFKRVHQLQRUGHUWRGRQ¶WUHVHWWKHGHYLFHGXULQJ3:0RSHUDWHGE\WKH%&09ROWDJH  2SWLRQDOFRPSRQHQWVIRUQRLV\ILOWHULQJ ("1($'5 DocID025319 Rev 3 61/69 68 Application circuits L99LD01 Figure 37. Stand alone application example for boost topology 9%&0  ' & & ' 5 . 5 & & 5  &  15(6 3:0B/ 6', 6'2 6&. 5 5 0287 3:0 ,13B29 (;7B9&& (1$%/( /+0 96 ,VHQVH ,VHQVH * /02'( *QG *QG *QG 5 0 * ,63 . ,61 &61 5 9&& 6& 5&FRPS &9 9&& 56(16( 5 56)  Q)  & & &3% 9/(' 17& 56+817 Q)  0  & 9 & 5 5 5  6XSSO\YROWDJHSURYLGHGE\WKHERG\FRQWUROPRGXOH  7KHLQWHUQDOFLUFXLWU\UHFRJQL]HVWKHVWDQGDORQHRSHUDWLRQVKRUWLQJ15(6WR96  &RQQHFWWKLVSLQWR9IRUHQDEOLQJ'LWKHU(IIHFW  (;7B9&&,QVWDQGDORQHLVVXJJHVWHGWRFRQQHFWWKLVSLQWR&9  5&FRPSRQHQWVKDYHWREHFKRVHQLQRUGHUWRGRQ¶WUHVHWWKHGHYLFHGXULQJ3:0RSHUDWHGE\WKH%&09ROWDJH  2SWLRQDOFRPSRQHQWVIRUQRLV\ILOWHULQJ 517& ("1($'5 62/69 DocID025319 Rev 3 L99LD01 Application circuits Figure 38. Reverse battery protection: an example for boost topology 9%$77 0 & & 5 & & . . 0LFUR . . 96 * ,63 ,VHQVH ,VHQVH * /02'( &61  /+0 56+817  (QDEOH&RQWURO Q) 0 (;7B9&& (1$%/( 5 0 . ,61 0287 3:0 ,13B29 5 9&& 6& 5&FRPS 15(6 3:0B/ 6', 6'2 6&. &9 &  9&& 56(16( 5 & 56) 5 Q)  & 5 5 *QG *QG *QG &RQWURO & &3% 9/(' 17& 5  9 5 & 5  &KDVWREHXVHGLQFDVHWKHGHIDXOWPVUHVHWWLPHKDVWREHLQFUHDVHG 517&  ,QFDVHRI/LPS+RPHHYHQW /+0 JQGÎ 'HYLFHDOZD\V2II /+0 2SHQRU+LJKÎ 'HYLFHDOZD\V21  (;7B9&&&RQQHFWWKLVSLQWRJQGLIWKHX3LVVXSSOLHGE\9&& SLQ,IWKHX3LVH[WHUQDOO\VXSSOLHGE\DQH[WHUQDO9VXSSO\ FRQQHFWWKLVSLQWRWKHX3H[WHUQDOVXSSO\  2SWLRQDOFRPSRQHQWVIRUQRLV\ILOWHULQJ ("1($'5 If the DRL module is supplied by a high side driver (HSD) of the body control module (BCM), a minimum current consumption is requested during the off phase of the PWM dimming, so that the HSD of the BCM do not detect a wrong open load condition. This is in charge of the µP which has to draw this “minimum current consumption”, from the supply line (see Figure 39). DocID025319 Rev 3 63/69 68 Application circuits L99LD01 Figure 39. External MOS required during PWM dimming 9ROWDJHPRGXODWLRQZLWKKLJKGXW\F\FOH+] SURYLGHGE\WKH+6'RIWKH%RG\&RQWURO0RGXOH 9%&0 ' & 3:0B/GLPPLQJHJGXW\F\FOH 6DPHRUPXOWLSOHIUHTXHQF\RI 9%&0 PRGXODWLRQ 7R3:0B/SLQRI/('GULYHU 0LFUR 0 0LVWXUQHGRQGXULQJWKHRIISKDVHRIWKH3:0B/GLPPLQJVLJQDO '!0'#&4 64/69 DocID025319 Rev 3 L99LD01 Package information 8 Package information 8.1 ECOPACK® In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 8.2 LQFP32™ package information Figure 40. LQFP32™ package dimensions ("1($'5 DocID025319 Rev 3 65/69 68 Package information L99LD01 Table 35. LQFP32™ mechanical data Millimeters Symbol Min. Typ. A 1.6 A1 0.05 A2 1.35 1.40 1.45 b 0.30 0.37 0.45 c 0.09 D 8.80 9.00 9.20 D1 6.80 7.00 7.20 D3 0.15 0.20 5.60 E 8.80 9.00 9.20 E1 6.80 7.00 7.20 E3 L 5.60 0.45 L1 K 0.60 0.75 1.00 0° 3.5° ccc 66/69 Max. 7° 0.10 DocID025319 Rev 3 L99LD01 9 Order codes Order codes Table 36. Device summary Order code Package Tube LQFP32 L99LD01 DocID025319 Rev 3 67/69 68 Revision history 10 L99LD01 Revision history Table 37. Document revision history 68/69 Date Revision Changes 19-Jun-2014 1 Initial release. 15-Jun-2015 2 Updated Description Table 15: Absolute maximum ratings: – VG1, VG2, VCPB, VISENSE-: updated values Table 16: Thermal data: – RThj-case: updated values Table 17: VS and VCC1 pin characteristics: – tVSM, tV1F, tV1OT: updated values – VCC1_DROP: updated description – tLMODERR, tOC, tLEDOV, tWD1, tWD2: added parameters Table 19: NRES and LMODE pin characteristics: – tRR, tFS, tRD: updated values Table 21: G2 pin characteristics (driver2): – VG2_H: updated values Table 22: Converter oscillator and RSF pin characteristics: – FO: updated values – FO_S: updated test conditions and values – Renamed “Duty cycle” symbol in “Duty cycle max”: updated test conditions and values – Renamed “TON_MIN” symbol in “Duty cycle min”: updated test conditions and values Table 24: ISENSE+, ISENSE- pin, and O.T.A. characteristics: – VISENSE+IR, VISENSE-IR: removed parameters – VISENSE+, VISENSE-, (VISENSE+ - VISENSE-)_TH , VSENSE_MAX_1, VLREF_16: updated values Table 25: SC pin characteristics: – VSC_low, VSC_HIGH: updated test conditions and values Table 26: VLED pin characteristics: – OV_TH1_VS, OV_TH2_VS: updated test conditions and values Updated Chapter 8: Package information 25-Jun-2015 3 Table 32: SPI DC characteristics: – ICLK in, IDI in: updated maximum value DocID025319 Rev 3 L99LD01 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2015 STMicroelectronics – All rights reserved DocID025319 Rev 3 69/69 69
L99LD01TR-E 价格&库存

很抱歉,暂时无法提供与“L99LD01TR-E”相匹配的价格&库存,您可以联系我们找货

免费人工找货
L99LD01TR-E
    •  国内价格 香港价格
    • 2400+21.780682400+2.64225

    库存:0

    L99LD01TR-E
      •  国内价格 香港价格
      • 2400+21.780682400+2.64225

      库存:0