0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LSM320DLTR

LSM320DLTR

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    TFLGA28

  • 描述:

    IMU ACCEL/GYRO I2C/SPI 28LGA

  • 数据手册
  • 价格&库存
LSM320DLTR 数据手册
LSM320DL Linear sensor module 3D accelerometer sensor and 2D gyroscope sensor Preliminary data Features ■ Analog supply voltage 2.4 V to 3.6 V ■ Digital supply voltage IOs, 1.8 V ■ Low power mode ■ Power-down mode ■ 3 independent acceleration channels and 2 angular rate channels (pitch and yaw) ■ ±2g/±4g/±8/±16g dynamically selectable fullscale ■ ±250/±500/±2000 dps dynamically selectable full-scale ■ Embedded temperature sensor ■ SPI/I2C serial interface (16-bit data output) ■ Programmable interrupt generator for free-fall and motion detection ■ ECOPACK® RoHS and “Green” compliant LGA 28L 7.5 x 4.4 x 1.1 mm Applications ■ GPS navigation systems ■ Impact recognition and logging ■ Gaming and virtual reality input devices ■ Motion activated functions ■ Intelligent power saving for handheld devices ■ Vibration monitoring and compensation ■ Free-fall detection ■ 6D orientation detection The various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are realized using a CMOS technology that allows to design a dedicated circuit which is trimmed to better match the sensing element characteristics. LSM320DL has a dynamic user selectable fullscale acceleration range of ±2g/±4g/±8/±16g and angular rate of ±250/±500/±2000 deg/sec. The accelerometer and gyroscope sensors can be either activated or put in low power/powerdown mode separately for application optimized power saving. The LSM320DL is available in a plastic land grid array (LGA) package. Several years ago ST successfully pioneered the use of this package for accelerometers. Today, ST has the widest manufacturing capability and strongest expertise in the world for production of sensors in a plastic LGA package. Table 1. Device summary Order codes Description The LSM320DL is a system-in-package featuring a 3D digital accelerometer and a 2D digital gyroscope. Temperature Package range [°C] LSM320DL Packing Tray -40 to +85 LSM320DLTR LGA 28L Tape and reel The ST modules family uses a robust and mature manufacturing process already used for the production of micromachined accelerometers. May 2011 Doc ID 018845 Rev 1 This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice. 1/53 www.st.com 53 Contents LSM320DL Contents 1 2 3 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Module specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1 Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 15 5 SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4.2 I2C - inter IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.5 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.6 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.6.1 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.6.2 Zero level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1 4 2.4.1 Factory calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.1 External capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.2 Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.1 I2C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.1.1 5.2 6 2/53 I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.2.1 SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.2.2 SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.2.3 SPI read in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Doc ID 018845 Rev 1 LSM320DL 7 Contents Registers description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.1 CTRL_REG1_A (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.2 CTRL_REG2_A (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7.3 CTRL_REG3_A (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7.4 CTRL_REG4_A (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7.5 CTRL_REG5_A (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7.6 CTRL_REG6_A (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7.7 REFERENCE/DATACAPTURE_A (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7.8 STATUS_REG_A (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7.9 OUT_X_L_A (28h), OUT_X_H_A (29h) . . . . . . . . . . . . . . . . . . . . . . . . . . 34 7.10 OUT_Y_L_A (2Ah), OUT_Y_H_A (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . 34 7.11 OUT_Z_L _A(2Ch), OUT_Z_H_A (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . 34 7.12 FIFO_CTRL_REG_A (2Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 7.13 FIFO_SRC_REG_A (2Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 7.14 INT1_CFG_A (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 7.15 INT1_SRC_A (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 7.16 INT1_THS_A (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 7.17 INT1_DURATION_A (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 7.18 CLICK_CFG _A (38h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 7.19 CLICK_SRC_A (39h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 7.20 CLICK_THS_A (3Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 7.21 TIME_LIMIT_A (3Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 7.22 TIME_LATENCY_A (3Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 7.23 TIME WINDOW_A (3Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 7.24 CTRL_REG1_G (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 7.25 CTRL_REG2_G (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 7.26 CTRL_REG3_G (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 7.27 CTRL_REG4_G (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 7.28 CTRL_REG5_G (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 7.29 REFERENCE/DATACAPTURE_G (25h) . . . . . . . . . . . . . . . . . . . . . . . . . 44 7.30 OUT_TEMP_G (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 7.31 STATUS_REG_G (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 7.32 OUT_X_L_G (28h), OUT_X_H_G (29h) . . . . . . . . . . . . . . . . . . . . . . . . . 45 Doc ID 018845 Rev 1 3/53 Contents LSM320DL 7.33 OUT_Z_L_G (2Ch), OUT_Z_H_G (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . 45 7.34 FIFO_CTRL_REG_G (2Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 7.35 FIFO_SRC_REG_G (2Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 7.36 INT1_CFG_G (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 7.37 INT1_SRC_G (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 7.38 INT1_THS_XH_G (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7.39 INT1_THS_XL_G (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7.40 INT1_THS_ZH_G (36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7.41 INT1_THS_ZL_G (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 7.42 INT1_DURATION_G (38h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 8 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4/53 Doc ID 018845 Rev 1 LSM320DL List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 SPI slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 I2C slave timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Part list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Transfer when master is writing multiple bytes to slave:. . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Transfer when master is receiving (reading) one byte of data from slave: . . . . . . . . . . . . . 23 Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . . 23 Linear acceleration SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Angular rate SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Register address map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 CTRL_REG1_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 CTRL_REG1_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Data rate configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 CTRL_REG2_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 CTRL_REG2_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 High pass filter mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 CTRL_REG3_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 CTRL_REG3_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 CTRL_REG4_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 CTRL_REG4_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 CTRL_REG5_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 CTRL_REG5_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 CTRL_REG6_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 CTRL_REG6 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 REFERENCE_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 REFERENCE register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 STATUS_REG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 STATUS_REG_A register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 FIFO_CTRL_REG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 FIFO_CTRL_REG_A register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 FIFO mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 FIFO_SRC_REG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 INT1_CFG_REG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 INT1_CFG_REG_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 INT1_SRC_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 INT1_SRC_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 INT1_THS_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 INT1_THS_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 INT1_DURATION_Aregister . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Doc ID 018845 Rev 1 5/53 List of tables Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. Table 82. Table 83. Table 84. Table 85. Table 86. Table 87. Table 88. Table 89. Table 90. Table 91. Table 92. Table 93. Table 94. Table 95. Table 96. Table 97. Table 98. Table 99. 6/53 LSM320DL INT1_DURATION_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 CLICK_CFG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 CLICK_CFG_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 CLICK_SRC_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 CLICK_SRC_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 CLICK_THS_A register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 CLICK_SRC_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 TIME_LIMIT_A register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 TIME_LIMIT_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 TIME_LATENCY_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 TIME_LATENCY_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 TIME_WINDOW_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 TIME_WINDOW_A description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 CTRL_REG1_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 CTRL_REG1_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 DR and BW configuration setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Power mode selection configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 CTRL_REG2_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 CTRL_REG2_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 High pass filter mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 High pass filter cut-off frequency configuration [Hz] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 CTRL_REG1_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 CTRL_REG3_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 CTRL_REG4_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 CTRL_REG4_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 CTRL_REG5_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 CTRL_REG5_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Out_Sel configuration setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 INT_SEL configuration setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 REFERENCE_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 REFERENCE_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 OUT_TEMP_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 OUT_TEMP_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 STATUS_REG_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 STATUS_REG_G description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 REFERENCE_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 REFERENCE_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 FIFO mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 FIFO_SRC_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 FIFO_SRC_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 INT1_CFG_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 INT1_CFG_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 INT1_SRC_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 INT1_SRC_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 INT1_THS_XH_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 INT1_THS_XH_G description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 INT1_THS_XL_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 INT1_THS_XL_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 INT1_THS_ZH_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 INT1_THS_ZH_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 INT1_THS_ZL_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Doc ID 018845 Rev 1 LSM320DL Table 100. Table 101. Table 102. Table 103. Table 104. List of tables INT1_THS_ZL_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 INT1_DURATION_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 INT1_DURATION_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 LGA 28L 7.5 x 4.4 x 1.1 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Doc ID 018845 Rev 1 7/53 List of figures LSM320DL List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. 8/53 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 SPI slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 I2C slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 LSM320DL electrical connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Read and write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 SPI read protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Multiple bytes SPI read protocol (2 bytes example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Multiple bytes SPI write protocol (2 bytes example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 SPI read protocol in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 INT1_Sel and Out_Sel configuration block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Wait disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Wait enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 LGA 28L 7.5 x 4.4 x 1.1 package drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Doc ID 018845 Rev 1 LSM320DL Block diagram and pin description 1 Block diagram and pin description 1.1 Block diagram Figure 1. Block diagram Sensing Block Sensing Interface X+ Y+ CS_A/G CHARGE AMPLIFIER Z+ SDA/SDI_A/G I (a) + ZY- Control Logic I2C/SPI A/D converter MUX SDO_A/G INT1_A INT2_A X- INT_G CHARGE AMPLIFIER X+ DRDY_G DEMODULATOR Z+ + I (Ω) MUX LOW-PASS FILTER SCL_A/G - ZX- ANALOG CONDITIONING Feedback+ Feedback- AUTOMATIC GAIN CONTROL DriveVOLTAGE GAIN AMPLIFIER Drive+ REFERENCE TRIMMING CIRCUITS CLOCK CONTROL LOGIC & INTERRUPT GEN. SET/RESET CIRCUITS PHASE GENERATOR AM09273V1 Doc ID 018845 Rev 1 9/53 X 28 VCONT GND CS_G 11 LSM320DL (BOTTOM FILTVDD VIEW) Res Z INT2_A 10 1 VddIO_A +Ω z SDA/SDI_G DIRECTION OF DETECTABLE ACCELERATIONS SDO_G Y 1 INT1_A Z DRDY_G Pin connection SDO_A Figure 2. SCL_A Pin description Res 1.2 LSM320DL SDA/SDI_A Block diagram and pin description Res Vdd_IO_G SCL_G 14 25 Res 1 15 Res CS_A Res Res Res INT_G Vdd FILTIN Y Vdd 24 Res X DIRECTION OF DETECTABLE ANGULAR RATE Res +Ω X AM09274V1 Table 2. Pin# Name Function Accelerometer: I2C serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO) 1 SDA/SDI_A 2 Res 3 SDO_A Accelerometer: SPI serial data output (SDO) I2C least significant bit of the device address (SA0) 4 SCL_A Accelerometer: I2C serial clock (SCL) SPI serial port clock (SPC) 5 DRDY_G 6 INT1_A Accelerometer interrupt signal 7 SDO_G Gyroscope: SPI serial data output (SDO) I2C least significant bit of the device address (SA0) 8 INT2_A Accelerometer interrupt signal 9 10/53 Pin description SDA/SDI_G Reserved connect to GND Gyroscope data ready Gyroscope: I2C serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO) Doc ID 018845 Rev 1 LSM320DL Block diagram and pin description Table 2. Pin# Pin description (continued) Name 10 CS_G 11 Res 12 VddIO_G Function Gyroscope: SPI enable I2C/SPI mode selection (1: SPI idle mode / I2C communication enabled; 0: SPI communication mode / I2C disabled) Reserved connect to GND Gyroscope power supply for IO pins 13 SCL_G Gyroscope: I2C serial clock (SCL) SPI serial port clock (SPC) 14 Res Reserved connect to GND 15 Vdd Power supply 16 Res Reserved connect to GND Accelerometer: SPI enable I2C/SPI mode selection (1: SPI idle mode / I2C communication enabled; 0: SPI communication mode / I2C disabled) 17 CS_A 18 Res Reserved connect to GND 19 Res Reserved connect to GND 20 Res Reserved connect to GND 21 INT_G Gyroscope interrupt signal 22 Vdd Power supply 23 Res Reserved connect to GND 24 Res Reserved connect to GND 25 GND 0 V power supply 26 VCONT 27 Res 28 VddIO_A PLL filter connection Reserved connect to GND Accelerometer power supply for IO pins Doc ID 018845 Rev 1 11/53 Module specifications LSM320DL 2 Module specifications 2.1 Mechanical characteristics @ Vdd = 3V, T = 25 °C unless otherwise noted(a). Table 3. Symbol LA_FS G_FS LA_So G_So Mechanical characteristics Parameter Linear acceleration measurement range(2) Angular rate measurement range(2) Linear acceleration sensitivity Angular rate sensitivity Test conditions Min. Typ.(1) Max. Unit FS bit set to 00 ±2.0 FS bit set to 01 ±4.0 FS bit set to 10 ±8.0 FS bit set to 11 ±16.0 FS bit set to 00 ±250 FS bit set to 01 ±500 FS bit set to 10 ±2000 FS bit set to 00 1 FS bit set to 01 2 FS bit set to 10 4 FS bit set to 11 12 FS bit set to 00 8.75 FS bit set to 01 17.5 FS bit set to 10 70 ±0.05 %/°C g dps mg/digit mdps/ digit LA_So Linear acceleration sensitivity change vs. temperature FS bit set to 00 G_So Angular rate sensitivity change vs. temperature From -40 to +85 °C ±2 % LA_TyOff Typical Zero-g level offset accuracy(3) FS bit set to 00 ±60 mg G_TyOff Typical zero-rate level(4) FS bit set to 00 10 LSb LA_TCOff Zero-g level change vs. temperature Max. delta from 25 °C ±0.5 mg/°C G_TCOff Zero-rate level change vs. temperature FS bit set to 00 from -40 to +85 °C ±0.03 dps/°C An Acceleration noise density FS bit set to 00 Normal mode, ODR bit set to 1001 220 µg/ Hz Rn Rate noise density FS bit set to 00 0.03 °/s/ Hz Top Operating temperature range -40 +85 a. The product is factory calibrated at 3 V. The operational power supply range is from 2.4 V to 3.6 V. 12/53 Doc ID 018845 Rev 1 °C LSM320DL Module specifications 1. Typical specifications are not guaranteed. 2. Verified by wafer level test and measurement of initial offset and sensitivity. 3. Typical Zero-g level offset value after MSL3 preconditioning. 4. Offset can be eliminated by enabling the built-in high pass filter. 2.2 Electrical characteristics @ Vdd = 3 V, T = 25 °C unless otherwise noted. Table 4. Symbol Vdd Electrical characteristics Parameter Test conditions Min. Typ.(1) Max. Unit Supply voltage 2.4 3.6 V Vdd_IO Power supply for I/O 1.71 Vdd+0.1 V LA_Idd LA current consumption in normal mode ODR = 50Hz 11 ODR = 1Hz 2 LA current consumption in low power mode ODR = 50Hz 6 µA LA_IddPdn LA current consumption in power-down mode T = 25°C 0.5 µA G_Idd AR current consumption in normal mode 6 mA 1.5 mA 5 µA LA_IddLowP G_IddSL Supply current in sleep mode(2) G_IddPdn AR current consumption in power-down mode VIH Digital high level input voltage VIL Digital low level input voltage VOH High level output voltage VOL Low level output voltage Top Operating temperature range µA T = 25 °C 0.8*Vdd_IO V 0.2*Vdd_IO 0.9*Vdd_IO -40 V V 0.1*Vdd_IO V +85 °C 1. Typical specifications are not guaranteed. 2. Sleep mode introduces a faster turn-on time compared to power-down mode. Doc ID 018845 Rev 1 13/53 Module specifications 2.3 LSM320DL Temperature sensor characteristics @ Vdd =3.0 V, T= 25 °C, unless otherwise noted.(b) Table 5. Symbol Temperature sensor characteristics Parameter Test condition TSDr Temperature sensor output change vs. temperature TODR Temperature refresh rate Top - Operating temperature range -40 1. Typical specifications are not guaranteed. b. The product is factory calibrated at 3.0 V. 14/53 Min. Doc ID 018845 Rev 1 Typ.(1) Max. Unit -1 °C/digit 1 Hz +85 °C LSM320DL Module specifications 2.4 Communication interface characteristics 2.4.1 SPI - serial peripheral interface Subject to general operating conditions for Vdd and Top. Table 6. SPI slave timing values Value (1) Symbol Parameter Unit Min. tc(SPC) SPI clock cycle fc(SPC) SPI clock frequency tsu(CS) CS setup time 6 th(CS) CS hold time 8 tsu(SI) SDI input setup time 5 th(SI) SDI input hold time 15 tv(SO) SDO valid output time th(SO) SDO output hold time tdis(SO) Max. 100 ns 10 MHz ns 50 9 SDO output disable time 50 1. Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not tested in production. Figure 3. CS SPI slave timing diagram (c) (3) (3) tc(SPC) tsu(CS) SPC (3) (3) tsu(SI) SDI (3) th(SI) LSB IN MSB IN tv(SO) SDO th(CS) (3) tdis(SO) th(SO) MSB OUT (3) LSB OUT (3) 3. When no communication is on-going, data on CS, SPC, SDI, and SDO are driven by internal pull-up resistors. c. Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both input and output ports. Doc ID 018845 Rev 1 15/53 Module specifications LSM320DL I2C - inter IC control interface 2.4.2 Subject to general operating conditions for Vdd and Top. Table 7. I2C slave timing values I2C standard mode(1) Symbol I2C fast mode (1) Parameter f(SCL) Unit SCL clock frequency Min. Max. Min. Max. 0 100 0 400 tw(SCLL) SCL clock low time 4.7 1.3 tw(SCLH) SCL clock high time 4.0 0.6 tsu(SDA) SDA setup time 250 100 th(SDA) SDA data hold time 0,01 KHz µs ns 3.45 0 0.9 tr(SDA) tr(SCL) SDA and SCL rise time 1000 20 + 0.1Cb (2) 300 tf(SDA) tf(SCL) SDA and SCL fall time 300 20 + 0.1Cb (2) 300 th(ST) START condition hold time 4 0.6 tsu(SR) Repeated START condition setup time 4.7 0.6 tsu(SP) STOP condition setup time 4 0.6 4.7 1.3 µs ns µs tw(SP:SR) Bus free time between STOP and START condition 1. Data based on standard I2C protocol requirement, not tested in production. 2. Cb = total capacitance of one bus line, in pF. Figure 4. I2C slave timing diagram (d) REPEATED START START tsu(SR) tw(SP:SR) SDA tf(SDA) tsu(SDA) tr(SDA) START th(SDA) tsu(SP) STOP SCL th(ST) tw(SCLL) tw(SCLH) tr(SCL) tf(SCL) AM09238V1 d. Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports. 16/53 Doc ID 018845 Rev 1 LSM320DL 2.5 Module specifications Absolute maximum ratings Stresses above those listed as “absolute maximum ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 8. Absolute maximum ratings Symbol Vdd Vdd_IO Vin Ratings Maximum value Unit Supply voltage -0.3 to 4.8 V I/O pins supply voltage -0.3 to 4.8 V -0.3 to Vdd_IO +0.3 V Input voltage on any control pin (SCL, SDA/SDI) 3000 g for 0.5 ms APOW Acceleration (any axis, powered, Vdd = 3 V) AUNP Acceleration (any axis, unpowered) TOP Operating temperature range -40 to +85 °C TSTG Storage temperature range -40 to +125 °C ESD Electrostatic discharge protection 2 (HBM) kV 10000 g for 0.1 ms 3000 g for 0.5 ms 10000 g for 0.1 ms This is a mechanical shock sensitive device, improper handling can cause permanent damage to the part This is an ESD sensitive device, improper handling can cause permanent damage to the part Doc ID 018845 Rev 1 17/53 Module specifications 2.6 Terminology 2.6.1 Sensitivity LSM320DL Linear acceleration sensitivity can be determined, for example, by applying 1 g acceleration to the device. As the sensor can measure DC accelerations this can be done easily by pointing the axis of interest towards the center of the Earth, noting the output value, rotating the sensor by 180 degrees (pointing to the sky) and noting the output value again. By doing so, ±1 g acceleration is applied to the sensor. Subtracting the larger output value from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This value changes very little over temperature and also very little over time. The sensitivity tolerance describes the range of sensitivities of a large population of sensors. Angular rate sensitivity describes the angular rate gain of the sensor and can be determined by applying a defined angular velocity to it. This value changes very little over temperature and also very little over time. 2.6.2 Zero level Linear acceleration Zero-g level offset (TyOff) describes the deviation of an actual output signal from the ideal output signal if no acceleration is present. A sensor in a steady-state on a horizontal surface measures 0 g in the X axis and 0 g in the Y axis, whereas the Z axis measures 1 g. The output is ideally in the middle of the dynamic range of the sensor (content of OUT registers 00h, data expressed as 2’s complement number). A deviation from the ideal value in this case is called Zero-g offset. Offset is, to some extent, a result of stress to the MEMS sensor and therefore the offset can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress. The offset changes little over temperature, see “Zero-g level change vs. temperature”. The Zero-g level tolerance (TyOff) describes the standard deviation of the range of Zero-g levels of a population of sensors. Angular rate zero-rate level describes the actual output value if there is no angular rate present. The zero-rate level of precise MEMS sensors is, to some extent, a result of stress to the sensor and therefore zero-rate level can slightly change after mounting the sensor onto a printed circuit board or after exposing it to extensive mechanical stress. This value changes very little over temperature and also very little over time. 18/53 Doc ID 018845 Rev 1 LSM320DL 3 Functionality Functionality The LSM320DL is a system-in-package featuring a 3D digital accelerometer and a 2D digital gyroscope. The complete device includes specific sensing elements and two IC interfaces able to measure both the acceleration and angular rate applied to the module and to provide a signal to the external world through an SPI/I2C serial interface. The various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are realized using a CMOS technology that allows to design a dedicated circuit which is trimmed to better match the sensing element characteristics. The LSM320DL may also be configured to generate an inertial wake-up and free-fall interrupt signal according to a programmed acceleration event along the enabled axes. 3.1 Factory calibration The IC interface is factory calibrated for sensitivity and zero level. The trimming values are stored inside the device by a non-volatile memory. Any time the device is turned on, the trimming parameters are downloaded into the registers to be used during the normal operation. This allows the user to use the device without further calibration. Doc ID 018845 Rev 1 19/53 Application hints 4 LSM320DL Application hints Figure 5. LSM320DL electrical connection Reserved pins have to be connected to GND Z Vdd_IO Y 1 Vdd_IO C5 X SDA/SDI_A Res SDO_A SCL_A DRDY_G INT1_A SDO_G INT2_A CS_G SDA/SDI_G GND DIRECTION OF DETECTABLE ACCELERATIONS +Ω Z z 1 +Ω 10 X 1 X Res 11 DIRECTION OF DETECTABLE ANGULAR RATE C1 VCONT 14 25 15 VddIO_A Res (TOP VIEW) FILTVDD SCL_G Res 28 LSM320DL Vdd_IO_G GND 24 FILTIN Y C2 R2 Res Res Vdd INT_G Res Res Res CS_A Res Vdd GND C3 Vdd GND C4 Digital signal from/to signal controller.Signals levels are defined by proper selection of Vdd AM09275V1 Table 9. 4.1 Part list Component Typical value C1 10 nF C2 470 nF C3 10 µF C4 100 nF C5 100 nF R2 10 kOhm External capacitors The device core is supplied through Vdd line. Power supply decoupling capacitors (C4=100 nF ceramic, C3=10 µF Al) should be placed as near as possible to the supply pin of the device (common design practice). All the voltage and ground supplies must be present at the same time to have proper behavior of the IC (refer to Figure 5). The functionality of the device and the measured acceleration/angular rate data is selectable and accessible through the SPI/I2C interface. 20/53 Doc ID 018845 Rev 1 LSM320DL Application hints The functions, the threshold, and the timing of the two interrupt pins for each sensor can be completely programmed by the user though the SPI/I2C interface. 4.2 Soldering information The LGA package is compliant with the ECOPACK®, RoHS and “Green” standard. It is qualified for soldering heat resistance according to JEDEC J-STD-020D. Leave “Pin 1 Indicator” unconnected during soldering. Land pattern and soldering recommendations are available at www.st.com/mems. Doc ID 018845 Rev 1 21/53 Digital interfaces 5 LSM320DL Digital interfaces The registers embedded inside the LSM320DL may be accessed through both the I2C and SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire interface mode. To select/exploit the I2C interface, CS line must be tied high (i.e. connected to Vdd_IO). Table 10. Serial interface pin description Pin name CS_A Linear acceleration SPI enable Linear acceleration I2C/SPI mode selection (1: I2C mode; 0: SPI enabled) CS_G Angular Rate SPI enable Angular Rate I2C/SPI mode selection (1: I2C mode; 0: SPI enabled) SCL_A SCL_G I2C serial clock (SCL) SPI serial port clock (SPC) SDA/SDI_A SDA/SDI_G SDO_A SDO_G 5.1 Pin description I2C serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO) I2C less significant bit of the device address (SA0) SPI serial data output (SDO) I2C serial interface The LSM320DL I2C is a bus slave. The I2C is employed to write the data into the registers whose content can also be read back. The relevant I2C terminology is given in the table below. Table 11. Serial interface pin description Term Transmitter Receiver Description The device which sends data to the bus The device which receives data from the bus Master The device which initiates a transfer, generates clock signals and terminates a transfer Slave The device addressed by the master There are two signals associated with the I2C bus: the serial clock line (SCL) and the serial data line (SDA). The latter is a bidirectional line used for sending and receiving the data to/from the interface. 22/53 Doc ID 018845 Rev 1 LSM320DL 5.1.1 Digital interfaces I2C operation The transaction on the bus is started through a START (ST) signal. A START condition is defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After this has been transmitted by the master, the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in the first 7 bits and the eighth bit tells whether the master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a start condition with its address. If they match, the device considers itself addressed by the master. Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line LOW so that it remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each byte of data received. The I2C embedded inside the LSM320DL behaves as a slave device and the following protocol must be adhered to. After the start condition (ST), a slave address is sent, once a slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted: the 7 LSb represent the actual register address while the MSB enables address auto increment. If the MSb of the SUB field is ‘1’, the SUB (register address) is automatically increased to allow multiple data read/write. Table 12. Transfer when master is writing one byte to slave Master ST SAD + W SUB Slave SAK Table 13. Master SAD + W Slave SAK DATA DATA SAK SAK SP SAK Transfer when master is receiving (reading) one byte of data from slave: ST SAD + W Slave Master SAK SUB SAK Table 14. Table 15. SP Transfer when master is writing multiple bytes to slave: ST Slave Master DATA SUB SAK SR SAD + R SAK NMAK SAK SP DATA Transfer when master is receiving (reading) multiple bytes of data from slave ST SAD+W SUB SAK SR SAD+R SAK MAK SAK DATA MAK DATA NMAK SP DATA Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes transferred per transfer is unlimited. Data is transferred with the most significant bit (MSb) first. If a receiver can’t receive another complete byte of data until it has performed some other function, it can hold the clock line, SCL LOW, to force the transmitter into a wait Doc ID 018845 Rev 1 23/53 Digital interfaces LSM320DL state. Data transfer only continues when the receiver is ready for another byte and releases the data line. If a slave receiver doesn’t acknowledge the slave address (i.e. it is not able to receive because it is performing some real time function), the data line must be left HIGH by the slave. The master can then abort the transfer. A LOW to HIGH transition on the SDA line while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be terminated by the generation of a STOP (SP) condition. In order to read multiple bytes, it is necessary to assert the most significant bit of the subaddress field. In other words, SUB(7) must be equal to 1 while SUB(6-0) represents the address of the first register to be read. In the presented communication format, MAK is Master Acknowledge, and NMAK is No Master Acknowledge. Default address: The SDO/SA0 pad can be used to modify less significant bits of the device address. If the SA0 pad is connected to voltage supply, LSb is ‘1’ (ex. address 0011001b), or else, if the SA0 pad is connected to ground, the LSb value is ‘0’ (ex address 0011000b). The slave address is completed with a Read/Write bit. If the bit is ‘1’ (Read), a repeated START (SR) condition must be issued after the two sub-address bytes; if the bit is ‘0’ (Write) the master transmits to the slave with direction unchanged. Table 16 and Table 17 explain how the SAD+Read/Write bit pattern is composed, listing all the possible configurations. Linear acceleration address: the default (factory) 7-bit slave address is 001100xb. Table 16. Linear acceleration SAD+Read/Write patterns Command SAD[6:1] SAD[0] = SA0 R/W SAD+R/W Read 001100 0 1 00110001 (31h) Write 001100 0 0 00110000 (30h) Read 001100 1 1 00110011 (33h) Write 001100 1 0 00110010 (32h) Angular rate sensor: the default (factory) 7-bit slave address is 110100xb. Table 17. 24/53 Angular rate SAD+Read/Write patterns Command SAD[6:1] SAD[0] = SA0 R/W Read 110100 0 1 11010001 (F1h) Write 110100 0 0 11010000 (F0h) Read 110100 1 1 11010011 (F3h) Write 110100 1 0 11010010 (F2h) Doc ID 018845 Rev 1 SAD+R/W LSM320DL 5.2 Digital interfaces SPI bus interface The LSM320DL SPI is a bus slave. The SPI allows to write and read the registers of the device. The serial interface interacts with the outside world with 4 wires: CS, SPC, SDI, and SDO.(SPC, SDI, SD0 are common) Figure 6. Read and write protocol CS SPC SDI DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 RW MS AD5 AD4 AD3 AD2 AD1 AD0 SDO DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of the transmission and returns to high at the end. SPC is the serial port clock and it is controlled by the SPI master. It is stopped high when CS is high (no transmission). SDI and SDO are respectively the serial port data input and output. Those lines are driven at the falling edge of SPC and should be captured at the rising edge of SPC. Both the read register and write register commands are completed in 16 clock pulses or in multiples of 8 in case of multiple bytes read/write. Bit duration is the time between two falling edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC after the falling edge of CS while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the rising edge of CS. bit 0: RW bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0) from the device is read. In the latter case, the chip drives SDO at the start of bit 8. bit 1: MS bit. When 0, the address remains unchanged in multiple read/write commands. When 1, the address is auto incremented in multiple read/write commands. bit 2-7: address AD(5:0). This is the address field of the indexed register. bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first). bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first). In multiple read/write commands, further blocks of 8 clock periods are added. When the MS bit is ‘0’, the address used to read/write data remains the same for every block. When the MS bit is ‘1’, the address used to read/write data is increased at every block. The function and the behavior of SDI and SDO remain unchanged. Doc ID 018845 Rev 1 25/53 Digital interfaces 5.2.1 LSM320DL SPI read Figure 7. SPI read protocol CS SPC SDI RW MS AD5 AD4 AD3 AD2 AD1 AD0 SDO DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 The SPI Read command is performed with 16 clock pulses. Multiple byte read command is performed adding blocks of 8 clock pulses at the previous one. bit 0: READ bit. The value is 1. bit 1: MS bit. When 0, do not increment address, when 1, increment address in multiple reading. bit 2-7: address AD(5:0). This is the address field of the indexed register. bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first). bit 16-... : data DO(...-8). Further data in multiple byte reading. Figure 8. Multiple bytes SPI read protocol (2 bytes example) CS SPC SDI RW MS AD5 AD4 AD3 AD2 AD1 AD0 SDO DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 DO15DO14DO13DO12DO11DO10DO9 DO8 5.2.2 SPI write Figure 9. SPI write protocol CS SPC SDI DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 RW MS AD5 AD4 AD3 AD2 AD1 AD0 The SPI write command is performed with 16 clock pulses. Multiple byte write command is performed adding blocks of 8 clock pulses at the previous one. 26/53 Doc ID 018845 Rev 1 LSM320DL Digital interfaces bit 0: WRITE bit. The value is 0. bit 1: MS bit. When 0, do not increment address, when 1, increment address in multiple writing. bit 2 -7: address AD(5:0). This is the address field of the indexed register. bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSb first). bit 16-... : data DI(...-8). Further data in multiple byte writing. Figure 10. Multiple bytes SPI write protocol (2 bytes example) CS SPC SDI DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 DI15 DI14 DI13 DI12 DI11 DI10 DI9 DI8 RW MS AD5 AD4 AD3 AD2 AD1 AD0 5.2.3 SPI read in 3-wire mode 3-wire mode is entered by setting to ‘1’ bit SIM (SPI serial interface mode selection) in CTRL_REG4. Figure 11. SPI read protocol in 3-wire mode CS SPC SDI/O DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 RW MS AD5 AD4 AD3 AD2 AD1 AD0 The SPI read command is performed with 16 clock pulses: bit 0: READ bit. The value is 1. bit 1: MS bit. When 0, do not increment address, when 1, increment address in multiple reading. bit 2-7: address AD(5:0). This is the address field of the indexed register. bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first). Multiple read command is also available in 3-wire mode. Doc ID 018845 Rev 1 27/53 Register mapping 6 LSM320DL Register mapping Table 18 below provides a listing of the 8-bit registers embedded in the device and the related addresses: Table 18. Register address map Name Slave Address Register address Type Default Hex Reserved (do not modify) 001100xb CTRL_REG1_A 001100xb rw 20 010 0000 00000111 CTRL_REG2_A 001100xb rw 21 010 0001 00000000 CTRL_REG3_A 001100xb rw 22 010 0010 00000000 CTRL_REG4_A 001100xb rw 23 010 0011 00000000 CTRL_REG5_A 001100xb rw 24 010 0100 00000000 CTRL_REG6_A 001100xb rw 25 010 0101 00000000 REFERENCE_A 001100xb rw 26 010 0110 00000000 STATUS_REG_A 001100xb r 27 010 0111 00000000 OUT_X_L_A 001100xb r 28 010 1000 output OUT_X_H_A 001100xb r 29 010 1001 output OUT_Y_L_A 001100xb r 2A 010 1010 output OUT_Y_H_A 001100xb r 2B 010 1011 output OUT_Z_L_A 001100xb r 2C 010 1100 output OUT_Z_H_A 001100xb r 2D 010 1101 output FIFO_CTRL_REG 001100xb rw 2E 010 1110 00000000 FIFO_SRC_REG 001100xb r 2F 010 1111 INT1_CFG_A 001100xb rw 30 011 0000 00000000 INT1_SOURCE_A 001100xb r 31 011 0001 00000000 INT1_THS_A 001100xb rw 32 011 0010 00000000 INT1_DURATION_A 001100xb rw 33 011 0011 00000000 INT2_CFG_A 001100xb rw 34 011 0100 00000000 INT2_SOURCE_A 001100xb r 35 011 0101 00000000 INT2_THS_A 001100xb rw 36 011 0110 00000000 INT2_DURATION_A 001100xb rw 37 011 0111 00000000 CLICK_CFG_A 001100xb rw 38 011 1000 00000000 CLICK_SRC_A 001100xb rw 39 011 1001 00000000 CLICK_THS_A 001100xb rw 3A 011 1010 00000000 TIME_LIMIT_A 001100xb rw 3B 011 1011 00000000 28/53 00 - 1F Doc ID 018845 Rev 1 Comment Binary Reserved LSM320DL Table 18. Register mapping Register address map (continued) Register address Slave Address Type TIME_LATENCY_A 001100xb TIME_WINDOW_A 001100xb Reserved (do not modify) 001100xb Reserved 110100xb CTRL_REG1_G Name Default Comment Hex Binary rw 3C 011 1100 00000000 rw 3D 011 1101 00000000 3E-3F - - Reserved - 00-1E - - Reserved 110100xb rw 20 010 0000 00000111 CTRL_REG2_G 110100xb rw 21 010 0001 00000000 CTRL_REG3_G 110100xb rw 22 010 0010 00000000 CTRL_REG4_G 110100xb rw 23 010 0011 00000000 CTRL_REG5_G 110100xb rw 24 010 0100 00000000 REFERENCE_G 110100xb rw 25 010 0101 00000000 OUT_TEMP_G 110100xb r 26 010 0110 output STATUS_REG_G 110100xb r 27 010 0111 output OUT_X_L_G 110100xb r 28 010 1000 output OUT_X_H_G 110100xb r 29 010 1001 output Reserved 110100xb r 2A - - Reserved Reserved 110100xb r 2B - - Reserved OUT_Z_L_G 110100xb r 2C 010 1100 output OUT_Z_H_G 110100xb r 2D 010 1101 output FIFO_CTRL_REG_G 110100xb rw 2E 010 1110 00000000 FIFO_SRC_REG_G 110100xb r 2F 010 1111 output INT1_CFG_G 110100xb rw 30 011 0000 00000000 INT1_SRC_G 110100xb r 31 011 0001 output INT1_TSH_XH_G 110100xb rw 32 011 0010 00000000 INT1_TSH_XL_G 110100xb rw 33 011 0011 00000000 Reserved 110100xb rw 34 - - Reserved Reserved 110100xb rw 35 - - Reserved INT1_TSH_ZH_G 110100xb rw 36 011 0110 00000000 INT1_TSH_ZL_G 110100xb rw 37 011 0111 00000000 INT1_DURATION_G 110100xb rw 38 011 1000 00000000 Registers marked as Reserved must not be changed. The writing to those registers may cause permanent damage to the device. The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up. Doc ID 018845 Rev 1 29/53 Registers description 7 LSM320DL Registers description The device contains a set of registers which are used to control its behavior and to retrieve acceleration, angular rate and temperature data. The registers address, made of 7 bits, is used to identify them and to write the data through serial interface. 7.1 CTRL_REG1_A (20h) Table 19. CTRL_REG1_A register ODR3 ODR2 Table 20. ODR1 ODR0 LPen Zen Yen Xen CTRL_REG1_A description Data rate selection. Default value: 0 (0000: power-down; Others: refer to Table 21., “Data rate configuration”) ODR3-0 LPen Low power mode enable. Default value: 0 (0: normal mode; 1: low power mode) Zen Z axis enable. Default value: 1 (0: Z axis disabled; 1: Z axis enabled) Yen Y axis enable. Default value: 1 (0: Y axis disabled; 1: Y axis enabled) Xen X axis enable. Default value: 1 (0: X axis disabled; 1: X axis enabled) ODR is used to set power mode and ODR selection. In Table 21 all the frequencies resulting in a combination of ODR are reported. Table 21. Data rate configuration ODR3 30/53 ODR2 ODR1 ODR0 Power mode selection 0 0 0 0 Power down mode 0 0 0 1 Normal / low power mode (1 Hz) 0 0 1 0 Normal / low power mode (10 Hz) 0 0 1 1 Normal / low power mode (25 Hz) 0 1 0 0 Normal / low power mode (50 Hz) 0 1 0 1 Normal / low power mode (100 Hz) 0 1 1 0 Normal / low power mode (200 Hz) 0 1 1 1 Normal / low power mode (400 Hz) 1 0 0 0 Low power mode (1.620 kHz) 1 0 0 1 Normal (1.344 kHz) / Low Power mode (5.376 kHz) Doc ID 018845 Rev 1 LSM320DL 7.2 Registers description CTRL_REG2_A (21h) Table 22. CTRL_REG2_A register HPM1 HPM0 Table 23. HPCF1 FDS HPCLICK HPIS2 HPIS1 CTRL_REG2_A description HPM1 -HPM0 High pass filter mode selection. Default value: 00 Refer to Table 24 HPCF2 HPCF1 High pass filter cut-off frequency selection FDS Filtered data selection. Default value: 0 (0: internal filter bypassed; 1: data from internal filter sent to output register and FIFO) HPCLICK High pass filter enabled for CLICK function. (0: filter bypassed; 1: filter enabled) HPIS2 High pass filter enabled for AOI function on interrupt 2, (0: filter bypassed; 1: filter enabled) HPIS1 High pass filter enabled for AOI function on interrupt 1, (0: filter bypassed; 1: filter enabled) Table 24. High pass filter mode configuration HPM1 7.3 HPCF2 HPM0 High pass filter mode 0 0 Normal mode (reset reading HP_RESET_FILTER) 0 1 Reference signal for filtering 1 0 Normal mode 1 1 Autoreset on interrupt event CTRL_REG3_A (22h) Table 25. I1_CLICK CTRL_REG3_A register I1_AOI1 0(1) I1_DRDY1 I1_DRDY2 I1_WTM I1_OVERRUN -- 1. This bit must be set to ‘0’ for correct operation. Table 26. CTRL_REG3_A description I1_CLICK CLICK interrupt on INT1. Default value 0. (0: disable; 1: enable) I1_AOI1 AOI1 interrupt on INT1. Default value 0. (0: disable; 1: enable) Doc ID 018845 Rev 1 31/53 Registers description Table 26. 7.4 LSM320DL CTRL_REG3_A description (continued) I1_DRDY1 DRDY1 interrupt on INT1. Default value 0. (0: disable; 1: enable) I1_DRDY2 DRDY2 interrupt on INT1. Default value 0. (0: disable; 1: enable) I1_WTM FIFO Watermark interrupt on INT1. Default value 0. (0: disable; 1: enable) I1_OVERRUN FIFO Overrun interrupt on INT1. Default value 0. (0: disable; 1: enable) CTRL_REG4_A (23h) Table 27. 0(1) CTRL_REG4_A register BLE FS1 FS0 HR 0(1) 0(1) SIM 1. This bit must be set to ‘0’ for correct operation. Table 28. 7.5 CTRL_REG4_A description BLE Big/little endian data selection. Default value 0. (0: data LSB @ lower address; 1: data MSB @ lower address) FS1-FS0 Full scale selection. default value: 00 (00: +/- 2G; 01: +/- 4G; 10: +/- 8G; 11: +/- 16G) HR High resolution output mode: default value: 0 (0: high resolution disable; 1: high resolution enable) SIM SPI serial interface mode selection. Default value: 0 (0: 4-wire interface; 1: 3-wire interface). CTRL_REG5_A (24h) Table 29. BOOT CTRL_REG5_A register FIFO_EN -- -- LIR_INT1 D4D_INT1 0(1) 0(1) 1. This bit must be set to ‘0’ for correct operation. Table 30. 32/53 CTRL_REG5_A description BOOT Reboot memory content. Default value: 0 (0: normal mode; 1: reboot memory content) FIFO_EN FIFO enable. Default value: 0 (0: FIFO disable; 1: FIFO enable) LIR_INT1 Latch interrupt request on INT1_SRC register, with INT1_SRC register cleared by reading INT1_SRC itself. Default value: 0. (0: interrupt request not latched; 1: interrupt request latched) D4D_INT1 4D enable: 4D detection is enabled on INT1 when 6D bit on INT1_CFG is set to 1. Doc ID 018845 Rev 1 LSM320DL 7.6 Registers description CTRL_REG6_A (25h) Table 31. CTRL_REG6_A register I2_CLICKen I2_INT1 0(1) BOOT_I2 0(1) -- H_LACTIVE -- 1. This bit must be set to ‘0’ for correct operation. Table 32. 7.7 CTRL_REG6 description I2_CLICKen Click interrupt on INT2. Default value 0. I2_INT1 Interrupt 1 function enabled on INT2. Default 0. BOOT_I2 Boot on INT2. H_LACTIVE 0: interrupt active high; 1: interrupt active low. REFERENCE/DATACAPTURE_A (26h) Table 33. Ref7 Table 34. REFERENCE_A register Ref6 Ref4 Ref3 Ref2 Ref1 Ref0 REFERENCE register description Ref 7-Ref0 7.8 Ref5 Reference value for interrupt generation. Default value: 0 STATUS_REG_A (27h) Table 35. ZYXOR Table 36. STATUS_REG_A register ZOR YOR XOR ZYXDA ZDA YDA XDA STATUS_REG_A register description ZYXOR X, Y, and Z axis data overrun. Default value: 0 (0: no overrun has occurred; 1: a new set of data has overwritten the previous ones) ZOR Z axis data overrun. Default value: 0 (0: no overrun has occurred; 1: a new data for the Z-axis has overwritten the previous one) YOR Y axis data overrun. Default value: 0 (0: no overrun has occurred; 1: a new data for the Y-axis has overwritten the previous one) XOR X axis data overrun. Default value: 0 (0: no overrun has occurred; 1: a new data for the X-axis has overwritten the previous one) ZYXDA X, Y, and Z axis new data available. Default value: 0 (0: a new set of data is not yet available; 1: a new set of data is available) Doc ID 018845 Rev 1 33/53 Registers description Table 36. 7.9 LSM320DL STATUS_REG_A register description (continued) ZDA Z axis new data available. Default value: 0 (0: a new data for the Z-axis is not yet available; 1: a new data for the Z-axis is available) YDA Y axis new data available. Default value: 0 (0: a new data for the Y-axis is not yet available; 1: a new data for the Y-axis is available) OUT_X_L_A (28h), OUT_X_H_A (29h) X-axis acceleration data. The value is expressed in 2’s complement. 7.10 OUT_Y_L_A (2Ah), OUT_Y_H_A (2Bh) Y-axis acceleration data. The value is expressed in 2’s complement. 7.11 OUT_Z_L _A(2Ch), OUT_Z_H_A (2Dh) Z-axis acceleration data. The value is expressed in 2’s complement. 7.12 FIFO_CTRL_REG_A (2Eh) Table 37. FM1 FIFO_CTRL_REG_A register FM0 Table 38. TR FTH3 FTH2 FTH1 FIFO_CTRL_REG_A register description FM1-FM0 FIFO mode selection. Default value: 00 (see Table 39) TR Trigger selection. Default value: 0 0: trigger event linked to trigger signal on INT1 1: trigger event linked to trigger signal on INT2 FTH4:0 Default value: 0 Table 39. FIFO mode configuration FM1 34/53 FTH4 FM0 FIFO mode 0 0 Bypass mode 0 1 FIFO mode 1 0 Stream mode 1 1 Trigger mode Doc ID 018845 Rev 1 FTH0 LSM320DL 7.13 Registers description FIFO_SRC_REG_A (2Fh) Table 40. WTM 7.14 FIFO_SRC_REG_A register OVRN_FIFO EMPTY FSS4 FSS3 FSS2 FSS1 FSS0 INT1_CFG_A (30h) Table 41. AOI INT1_CFG_REG_A register 6D Table 42. ZHIE/ ZUPE ZLIE/ ZDOWNE YHIE/ YUPE YLIE/ YDOWNE XHIE/ XUPE XLIE/ XDOWNE INT1_CFG_REG_A description AOI AND/OR combination of interrupt events. Default value: 0. Refer to Table 43 6D 6-direction detection function enabled. Default value: 0. Refer to Table 43 ZHIE/ ZUPE Enable interrupt generation on Z high event or on direction recognition. Default value: 0 (0: disable interrupt request;1: enable interrupt request) ZLIE/ ZDOWNE Enable interrupt generation on Z low event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request) YHIE/ YUPE Enable interrupt generation on Y high event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request.) YLIE/ YDOWNE Enable interrupt generation on Y low event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request.) XHIE/ XUPE Enable interrupt generation on X high event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request.) XLIE/XDOWNE Enable interrupt generation on X low event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request.) Content of this register is loaded at boot. Write operation at this address is possible only after system boot. Table 43. Interrupt mode AOI 6D Interrupt mode 0 0 OR combination of interrupt events 0 1 6-direction movement recognition 1 0 AND combination of interrupt events 1 1 6-direction position recognition Difference between AOI-6D = ‘01’ and AOI-6D = ‘11’. Doc ID 018845 Rev 1 35/53 Registers description LSM320DL AOI-6D = ‘01’ is movement recognition. An interrupt is generated when orientation moves from unknown zone to known zone. The interrupt signal stays for a duration ODR. AOI-6D = ‘11’ is direction recognition. An interrupt is generated when orientation is inside a known zone. The interrupt signal stays until orientation is inside the zone. 7.15 INT1_SRC_A (31h) Table 44. INT1_SRC_A register 0 Table 45. IA ZH ZL YH YL XH XL INT1_SRC_A description IA Interrupt active. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupts have been generated) ZH Z high. Default value: 0 (0: no interrupt, 1: Z high event has occurred) ZL Z low. Default value: 0 (0: no interrupt; 1: Z low event has occurred) YH Y high. Default value: 0 (0: no interrupt, 1: Y high event has occurred) YL Y low. Default value: 0 (0: no interrupt, 1: Y low event has occurred) XH X high. Default value: 0 (0: no interrupt, 1: X high event has occurred) XL X low. Default value: 0 (0: no interrupt, 1: X low event has occurred) Interrupt 1 source register. Read only register. Reading at this address clears the INT1_SRC IA bit (and the interrupt signal on the INT 1 pin) and allows the refreshment of data in the INT1_SRC register if the latched option is chosen. 7.16 INT1_THS_A (32h) Table 46. INT1_THS_A register 0 Table 47. THS6 THS4 THS3 INT1_THS_A description THS6 - THS0 36/53 THS5 Interrupt 1 threshold. Default value: 000 0000 Doc ID 018845 Rev 1 THS2 THS1 THS0 LSM320DL 7.17 Registers description INT1_DURATION_A (33h) Table 48. INT1_DURATION_Aregister 0 Table 49. D6 D5 D4 D3 D2 D1 D0 INT1_DURATION_A description D6 - D0 Duration value. Default value: 000 0000 D6 - D0 bits set the minimum duration of the interrupt 1 event to be recognized. Duration steps and maximum values depend on the ODR chosen. 7.18 CLICK_CFG _A (38h) Table 50. -- Table 51. 7.19 CLICK_CFG_A register -- ZD ZS YD YS XD XS CLICK_CFG_A description ZD Enable interrupt double CLICK on Z axis. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) ZS Enable interrupt single CLICK on Z axis. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) YD Enable interrupt double CLICK on Y axis. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) YS Enable interrupt single CLICK on Y axis. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) XD Enable interrupt double CLICK on X axis. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) XS Enable interrupt single CLICK on X axis. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) CLICK_SRC_A (39h) Table 52. -- CLICK_SRC_A register IA DCLICK SCLICK Sign Doc ID 018845 Rev 1 Z Y X 37/53 Registers description Table 53. 7.20 LSM320DL CLICK_SRC_A description IA Interrupt active. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupts have been generated) DCLICK Double CLICK-CLICK enable. Default value: 0 (0: double CLICK-CLICK detection disable, 1: double CLICK-CLICK detection enable) SCLICK Single CLICK-CLICK enable. Default value: 0 (0: single CLICK-CLICK detection disable, 1: single CLICK-CLICK detection enable) Sign CLICK-CLICK Sign. 0: positive detection, 1: negative detection Z Z CLICK-CLICK detection. Default value: 0 (0: no interrupt, 1: Z high event has occurred) Y Y CLICK-CLICK detection. Default value: 0 (0: no interrupt, 1: Y high event has occurred) X X CLICK-CLICK detection. Default value: 0 (0: no interrupt, 1: X high event has occurred) CLICK_THS_A (3Ah) Table 54. -- Table 55. CLICK_THS_A register Ths6 -- Table 57. Ths2 Ths1 Ths0 TLI1 TLI0 TLA1 TLA0 CLICK-CLICK threshold. Default value: 000 0000 TIME_LIMIT_A register TLI6 TLI5 TLI4 TLI3 TLI2 TIME_LIMIT_A description TLI7-TLI0 CLICK-CLICK time limit. Default value: 000 0000 TIME_LATENCY_A (3Ch) Table 58. TLA7 38/53 Ths3 TIME_LIMIT_A (3Bh) Table 56. 7.22 Ths4 CLICK_SRC_A description Ths6-Ths0 7.21 Ths5 TIME_LATENCY_A register TLA6 TLA5 TLA4 TLA3 Doc ID 018845 Rev 1 TLA2 LSM320DL Registers description Table 59. TIME_LATENCY_A description TLA7-TLA0 7.23 TIME WINDOW_A (3Dh) Table 60. TW7 7.24 CLICK-CLICK time latency. Default value: 000 0000 TIME_WINDOW_A register TW6 TW5 TW4 Table 61. TIME_WINDOW_A description TW7-TW0 CLICK-CLICK time window TW3 TW2 TW1 TW0 CTRL_REG1_G (20h) Table 62. DR1 CTRL_REG1_G register DR0 BW1 BW0 PD Zen 0(1) Xen 1. This bit must be set to ‘0’ for correct operation. Table 63. CTRL_REG1_G description DR1-DR0 Output data rate selection. Refer to Table 64 BW1-BW0 Bandwidth selection. Refer to Table 64 PD Power-down mode enable. Default value: 0 (0: power-down mode, 1: normal mode or sleep mode) Zen Z axis enable. Default value: 1 (0: Z axis disabled; 1: Z axis enabled) Xen X axis enable. Default value: 1 (0: X axis disabled; 1: X axis enabled) DR is used to set ODR selection. BW is used to set Bandwidth selection. Table 64 shows all frequencies resulting in combination of DR / BW bits. Doc ID 018845 Rev 1 39/53 Registers description Table 64. LSM320DL DR and BW configuration setting DR BW ODR [Hz] Cut-off 00 00 100 12.5 00 01 100 25 00 10 100 25 00 11 100 25 01 00 200 12.5 01 01 200 25 01 10 200 50 01 11 200 70 10 00 400 20 10 01 400 25 10 10 400 50 10 11 400 110 11 00 800 30 11 01 800 35 11 10 800 50 11 11 800 110 Combination of PD, Zen, Xen are used to set the device in different modes (powerdown/normal/sleep mode) according to the following table. Table 65. 7.25 Power mode selection configuration Mode PD Zen Xen Power-down 0 - - Sleep 1 0 0 Normal 1 - - CTRL_REG2_G (21h) Table 66. (1) 0 CTRL_REG2_G register 0(1) HPM1 HPM1 HPCF3 1. Value loaded at boot. This value must not be changed. 40/53 Doc ID 018845 Rev 1 HPCF2 HPCF1 HPCF0 LSM320DL Registers description Table 67. CTRL_REG2_G description HPM1HPM0 High pass filter mode selection. Default value: 00 Refer to Table 68 HPCF3HPCF0 High pass filter cut-off frequency selection Refer to Table 69 Table 68. High pass filter mode configuration HPM1 HPM0 High pass filter mode 0 0 Normal mode (reset reading HP_RESET_FILTER 0 1 Reference signal for filtering 1 0 Normal mode 1 1 Autoreset an interrupt event Table 69. 7.26 High pass filter cut-off frequency configuration [Hz] HPCF-0 ODR = 100 Hz ODR = 200 Hz ODR = 400 Hz ODR = 800 Hz 0000 8 15 30 56 0001 4 8 15 30 0010 2 4 8 15 0011 1 2 4 8 0100 0.5 1 2 4 0101 0.2 0.5 1 2 0110 0.1 0.2 0.5 1 0111 0.05 0.1 0.2 0.5 1000 0.02 0.05 0.1 0.2 1001 0.01 0.02 0.05 0.1 CTRL_REG3_G (22h) Table 70. I1_Int1 Table 71. CTRL_REG1_G register I1_Boot H_Lactive PP_OD I2_DRDY I2_WTM I2_ORun I2_Empty CTRL_REG3_G description I1_Int1 Interrupt enable on INT1 pin. Default value 0. (0: disable; 1: enable) I1_Boot Boot status available on INT1. Default value 0. (0: disable; 1: enable) H_Lactive Interrupt active configuration on INT1. Default value 0. (0: high; 1:low) Doc ID 018845 Rev 1 41/53 Registers description Table 71. 7.27 LSM320DL CTRL_REG3_G description (continued) PP_OD Push-pull/open drain. Default value: 0. (0: push-pull; 1: open drain) I2_DRDY Date ready on DRDY/INT2. Default value 0. (0: disable; 1: enable) I2_WTM FIFO watermark interrupt on DRDY/INT2. Default value: 0. (0: disable; 1: enable) I2_ORun FIFO overrun interrupt on DRDY/INT2. Default value: 0. (0: disable; 1: enable) I2_Empty FIFO empty interrupt on DRDY/INT2. Default value: 0. (0: disable; 1: enable) CTRL_REG4_G (23h) Table 72. BDU CTRL_REG4_G register BLE FS1 FS0 -- 0(1) 0(1) SIM 1. This bit must be set to ‘0’ for correct operation. Table 73. 7.28 BDU Block data update. Default value: 0 (0: continuous update; 1: output registers not updated until MSB and LSB reading) BLE Big/little endian data selection. Default value 0. (0: data LSB @ lower address; 1: data MSB @ lower address) FS1-FS0 Full scale selection. Default value: 00 (00: 250 dps; 01: 500 dps; 10: 2000 dps; 11: 2000 dps) SIM SPI serial interface mode selection. Default value: 0 (0: 4-wire interface; 1: 3-wire interface). CTRL_REG5_G (24h) Table 74. BOOT Table 75. 42/53 CTRL_REG4_G description CTRL_REG5_G register FIFO_EN -- HPen INT1_Sel1 INT1_Sel0 CTRL_REG5_G description BOOT Reboot memory content. Default value: 0 (0: normal mode; 1: reboot memory content) FIFO_EN FIFO enable. Default value: 0 (0: FIFO disable; 1: FIFO enable) HPen High pass filter enable. Default value: 0 (0: HPF disabled; 1: HPF enabled, see Figure 12) Doc ID 018845 Rev 1 Out_Sel1 Out_Sel0 LSM320DL Registers description Table 75. CTRL_REG5_G description (continued) INT1_Sel1INT1_Sel0 INT1 selection configuration. Default value: 0 (see Table 77) Out_Sel1Out_Sel0 Out selection configuration. Default value: 0 (see Table 76) Figure 12. INT1_Sel and Out_Sel configuration block diagram Out_Sel 00 01 DataReg 0 LPF2 LPF1 ADC HPF FIFO 32x16x3 10 11 1 INT1_Sel HPen 10 11 01 Interrupt generator 00 AM09276V1 Table 76. Out_Sel configuration setting Hpen OUT_SEL1 OUT_SEL0 x 0 0 Data in DataReg and FIFO are non-highpass-filtered x 0 1 Data in DataReg and FIFO are high-passfiltered 0 1 x Data in DataReg and FIFO are low-passfiltered by LPF2 1 1 x Data in DataReg and FIFO are high-pass and low-pass-filtered by LPF2 Table 77. Description INT_SEL configuration setting Hpen INT_SEL1 INT_SEL2 x 0 0 Non-high-pass-filtered data are used for interrupt generation x 0 1 High-pass-filtered data are used for interrupt generation Doc ID 018845 Rev 1 Description 43/53 Registers description Table 77. 7.29 LSM320DL INT_SEL configuration setting (continued) Hpen INT_SEL1 INT_SEL2 Description 0 1 x Low-pass-filtered data are used for interrupt generation 1 1 x High-pass and low-pass-filtered data are used for interrupt generation REFERENCE/DATACAPTURE_G (25h) Table 78. Ref7 REFERENCE_G register Ref6 Table 79. Temp7 Ref2 Ref1 Ref0 Reference value for interrupt generation. Default value: 0 OUT_TEMP_G register Temp6 Table 81. Temp5 Temp4 Temp3 Temp2 Temp1 Temp0 OUT_TEMP_G register description Temp7-Temp0 Temperature data (1LSB/deg - 8 bit resolution). The value is expressed as two’s complement. STATUS_REG_G (27h) Table 82. ZXOR STATUS_REG_G register ZOR Table 83. 44/53 Ref3 OUT_TEMP_G (26h) Table 80. 7.31 Ref4 REFERENCE_G register description Ref 7-Ref0 7.30 Ref5 - XOR ZXDA ZDA -- XDA STATUS_REG_G description ZXOR X, Z-axis data overrun. Default value: 0 (0: no overrun has occurred, 1: new data has overwritten the previous one before it was read) ZOR Z-axis data overrun. Default value: 0 (0: no overrun has occurred, 1: a new data for the Z-axis has overwritten the previous one) XOR X-axis data overrun. Default value: 0 (0: no overrun has occurred, 1: a new data for the X-axis has overwritten the previous one) Doc ID 018845 Rev 1 LSM320DL Registers description Table 83. 7.32 STATUS_REG_G description (continued) ZXDA X, Z-axis new data available. Default value: 0 (0: a new set of data is not yet available; 1: a new set of data is available) ZDA Z-axis new data available. Default value: 0 (0: a new data for the Z-axis is not yet available; 1: a new data for the Z-axis is available) XDA X-axis new data available. Default value: 0 (0: a new data for the X-axis is not yet available; 1: a new data for the X-axis is available) OUT_X_L_G (28h), OUT_X_H_G (29h) X-axis angular rate data. The value is expressed as 2’s complement. 7.33 OUT_Z_L_G (2Ch), OUT_Z_H_G (2Dh) Z-axis angular rate data. The value is expressed as 2’s complement. 7.34 FIFO_CTRL_REG_G (2Eh) Table 84. REFERENCE_G register FM2 FM1 Table 85. WTM4 WTM3 WTM2 WTM1 WTM0 FSS1 FSS0 REFERENCE_G register description FM2-FM0 FIFO mode selection. Default value: 00 (see Table 86) WTM4-WTM0 FIFO threshold. Watermark level setting Table 86. FIFO mode configuration FM2 7.35 FM0 FM1 FM0 FIFO mode 0 0 0 Bypass mode 0 0 1 FIFO mode 0 1 0 Stream mode 0 1 1 Stream-to-FIFO mode 1 0 0 Bypass-to-stream mode FIFO_SRC_REG_G (2Fh) Table 87. WTM FIFO_SRC_G register OVRN EMPTY FSS4 Doc ID 018845 Rev 1 FSS3 FSS2 45/53 Registers description Table 88. 7.36 LSM320DL FIFO_SRC_G register description WTM Watermark status. (0: FIFO filling is lower than WTM level; 1: FIFO filling is equal or higher than WTM level) OVRN Overrun bit status. (0: FIFO is not completely filled; 1:FIFO is completely filled) EMPTY FIFO empty bit. (0: FIFO not empty; 1: FIFO empty) FSS4-FSS1 FIFO stored data level INT1_CFG_G (30h) Table 89. AND/OR INT1_CFG_G register LIR ZHIE ZLIE 0(1) 0(1) XHIE XLIE 1. This bit must be set to ‘0’ for correct operation. Table 90. INT1_CFG_G description AND/OR AND/OR combination of interrupt events. Default value: 0 (0: OR combination of interrupt events 1: AND combination of interrupt events LIR Latch interrupt request. Default value: 0 (0: interrupt request not latched; 1: interrupt request latched) Cleared by reading INT1_SRC reg. ZHIE Enable interrupt generation on Z high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) ZLIE Enable interrupt generation on Z low event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value lower than preset threshold) XHIE Enable interrupt generation on X high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) XLIE Enable interrupt generation on X low event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value lower than preset threshold) Configuration register for interrupt source. 7.37 INT1_SRC_G (31h) Table 91. 0 46/53 INT1_SRC_G register IA ZH ZL Doc ID 018845 Rev 1 -- -- XH XL LSM320DL Registers description Table 92. INT1_SRC_G description IA Interrupt active. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupts have been generated) ZH Z high. Default value: 0 (0: no interrupt; 1: Z high event has occurred) ZL Z low. Default value: 0 (0: no interrupt; 1: Z low event has occurred) XH X high. Default value: 0 (0: no interrupt; 1: X high event has occurred) XL X low. Default value: 0 (0: no interrupt; 1: X low event has occurred) Interrupt source register. Read only register. Reading at this address clears the INT1_SRC IA bit (and eventually the interrupt signal on the INT1 pin) and allows the refreshment of data in the INT1_SRC register if the latched option is chosen. 7.38 INT1_THS_XH_G (32h) Table 93. -- Table 94. INT1_THS_XH_G register THSX14 THSX11 THSX10 THSX9 THSX8 THSX1 THSX0 THSZ9 THSZ8 Interrupt threshold. Default value: 0000 0000 INT1_THS_XL_G (33h) Table 95. THSX7 Table 96. INT1_THS_XL_G register THSX6 THSX5 THSX4 THSX3 THSX2 INT1_THS_XL_G description THSX7 - THSX0 7.40 THSX12 INT1_THS_XH_G description THSX14 - THSX9 7.39 THSX13 Interrupt threshold. Default value: 0000 0000 INT1_THS_ZH_G (36h) Table 97. -- INT1_THS_ZH_G register THSZ14 THSZ13 THSZ12 THSZ11 Doc ID 018845 Rev 1 THSZ10 47/53 Registers description Table 98. LSM320DL INT1_THS_ZH_G description THSZ14 - THSZ9 7.41 Interrupt threshold. Default value: 0000 0000 INT1_THS_ZL_G (37h) Table 99. THSZ7 INT1_THS_ZL_G register THSZ6 THSZ5 THSZ4 THSZ3 THSZ2 THSZ1 THSZ0 D1 D0 Table 100. INT1_THS_ZL_G description THSZ7 - THSZ0 7.42 Interrupt threshold. Default value: 0000 0000 INT1_DURATION_G (38h) Table 101. INT1_DURATION_G register WAIT D6 D5 D4 D3 D2 Table 102. INT1_DURATION_G description WAIT WAIT enable. Default value: 0 (0: disable; 1: enable) D6 - D0 Duration value. Default value: 000 0000 D6 - D0 bits set the minimum duration of the interrupt event to be recognized. Duration steps and maximum values depend on the ODR chosen. WAIT bit has the following meaning: Wait =’0’: the interrupt falls immediately if signal crosses the selected threshold Wait =’1’: if signal crosses the selected threshold, the interrupt falls only after the duration has counted a number of samples at the selected data rate, written into the duration counter register. 48/53 Doc ID 018845 Rev 1 LSM320DL Registers description Figure 13. Wait disabled !-6 Figure 14. Wait enabled !-6 Doc ID 018845 Rev 1 49/53 Package information 8 LSM320DL Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions, and product status are available at: www.st.com. ECOPACK is an ST trademark. 50/53 Doc ID 018845 Rev 1 LSM320DL Package information Table 103. LGA 28L 7.5 x 4.4 x 1.1 mechanical data mm Dim. Min. Typ. Max. A1 1.1 A2 0.855 A3 0.2 D1 4.25 4.4 4.55 E1 7.25 7.5 7.55 N1 0.3 L1 5.4 L2 1.8 P2 1.2 T1 0.6 T2 0.4 M 0.1 d 0.3 k 0.05 h 0.1 Figure 15. LGA 28L 7.5 x 4.4 x 1.1 package drawing Pin 1 Indicator hC = E1 k k C d A L1 = N1 P2 A3 L2 D1 D M kE A2 E kD B Seating Plane T1 A1 T2 K TOP VIEW Doc ID 018845 Rev 1 51/53 Revision history 9 LSM320DL Revision history Table 104. Document revision history 52/53 Date Revision 18-May-2011 1 Changes Initial release. Doc ID 018845 Rev 1 LSM320DL Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2011 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com Doc ID 018845 Rev 1 53/53
LSM320DLTR 价格&库存

很抱歉,暂时无法提供与“LSM320DLTR”相匹配的价格&库存,您可以联系我们找货

免费人工找货