0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STM8AL3188TCX

STM8AL3188TCX

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    LQFP48_7X7MM

  • 描述:

    ICMCU8BIT64KBFLASH48LQFP

  • 数据手册
  • 价格&库存
STM8AL3188TCX 数据手册
STM8AL318x STM8AL3L8x Automotive 8-bit ultra-low-power MCU, 64-Kbyte Flash, RTC, LCD, data EEPROM, timers, USARTs, I2C, SPIs, ADC, DAC, COMPs Datasheet - production data Features • AEC-Q100 grade 1 qualified • Operating conditions – Operating power supply range 1.8 V to 3.6 V (down to 1.65 V at power down) – Temp. range: -40 to 85 or 125 °C • Low-power features – 5 low-power modes: Wait, Low-power run (5.9 µA), Low-power wait (3 µA), Activehalt with full RTC (1.4 µA), Halt (400 nA) – Consumption: 200 µA/MHz+330 µA – Fast wake up from Halt mode (4.7 µs) – Ultra-low leakage per I/0: 50 nA • Advanced STM8 core – Harvard architecture and 3-stage pipeline – Max freq: 16 MHz, 16 CISC MIPS peak – Up to 40 external interrupt sources • Reset and supply management – Low power, ultra safe BOR reset with 5 programmable thresholds – Ultra-low-power POR/PDR – Programmable voltage detector (PVD) • Clock management – 32 kHz and 1-16 MHz crystal oscillators – Internal 16 MHz factory-trimmed RC and 38 kHz low consumption RC – Clock security system • Low-power RTC – BCD calendar with alarm interrupt, – Digital calibration with +/- 0.5ppm accuracy – Advanced anti-tamper detection • DMA – 4 ch. for ADC, DACs, SPIs, I2C, USARTs, Timers, 1 ch. for memory-to-memory • LCD: 8x40 or 4x44 w/ step-up converter LQFP80 14x14 mm LQFP64 10x10 mm LQFP48 7x7 mm • 12-bit ADC up to 1 Msps / 28 channels, – Temp. sensor and internal ref. voltage • Memories – Up to 64 Kbytes of Flash with up to 2 Kbytes of data EEPROM with ECC and RWW – Flexible write/read protection modes – Up to 4 Kbytes of RAM • 2x12-bit DAC (dual mode) with output buffer • 2 ultra-low-power comparators – 1 with fixed threshold and 1 rail to rail – Wakeup capability • Timers – Three 16-bit timers with 2 channels (IC, OC, PWM), quadrature encoder – One 16-bit advanced control timer with 3 channels, supporting motor control – One 8-bit timer with 7-bit prescaler – One window and one independent watchdog – Beeper timer with 1, 2 or 4 kHz frequencies • Communication interfaces – Two synchronous serial interface (SPI) – Fast I2C 400 kHz SMBus and PMBus – Three USARTs (IrDA, LIN 1.3, LIN2.0) • Up to 67 I/Os, all mappable on interrupt vectors • Fast on-chip programming and non-intrusive debugging with SWIM, Bootloader using USART • 96-bit unique ID July 2017 This is information on a product in full production. DocID027179 Rev 7 1/132 www.st.com STM8AL318x STM8AL3L8x Table 1. Device summary 2/132 Reference Part number STM8AL318x STM8AL3188, STM8AL3189, STM8AL318A STM8AL3L8x STM8AL3L88, STM8AL3L89, STM8AL3L8A DocID027179 Rev 7 STM8AL318x STM8AL3L8x Contents Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3 2.1 STM8AL ultra-low-power 8-bit family benefits . . . . . . . . . . . . . . . . . . . . . .11 2.2 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Central processing unit STM8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 3.2.1 Advanced STM8 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.2 Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3.1 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.4 Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.5 Low-power real-time clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.6 LCD (Liquid crystal display) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.7 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.8 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.9 Analog-to-digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.10 Digital-to-analog converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.11 Ultra-low-power comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.12 System configuration controller and routing interface . . . . . . . . . . . . . . . 22 3.13 Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.14 3.15 3.13.1 16-bit advanced control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.13.2 16-bit general purpose timers (TIM2, TIM3, TIM5) . . . . . . . . . . . . . . . . 23 3.13.3 8-bit basic timer (TIM4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Watchdog timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.14.1 Window watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.14.2 Independent watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 DocID027179 Rev 7 3/132 5 Contents STM8AL318x STM8AL3L8x 3.16 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.16.1 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.16.2 I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.16.3 USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.17 Infrared (IR) interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.18 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5 Memory and register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.1 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.2 Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6 Interrupt vector mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 7 Option byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 8 Unique ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 9 Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 9.1 4/132 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 9.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 9.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 9.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 9.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 9.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 9.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 9.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 9.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 9.3.2 Embedded reset and power control block characteristics 9.3.3 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 9.3.4 Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 9.3.5 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 9.3.6 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 9.3.7 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 9.3.8 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 9.3.9 LCD controller (STM8AL3L8x only) . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 DocID027179 Rev 7 . . . . . . . . . . 69 STM8AL318x STM8AL3L8x 9.4 10 Contents 9.3.10 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 9.3.11 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 9.3.12 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 9.3.13 12-bit DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 9.3.14 12-bit ADC1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 9.3.15 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 10.1 LQFP80 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118 10.2 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 10.3 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 11 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 12 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 DocID027179 Rev 7 5/132 5 List of tables STM8AL318x STM8AL3L8x List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. 6/132 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 High-density STM8AL3x8x low-power device features and peripheral counts . . . . . . . . . . 13 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Legend/abbreviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 High-density STM8AL3x8x pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Flash and RAM boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Factory conversion registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 I/O port hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 CPU/SWIM/debug module/interrupt controller registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Option byte addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Option byte description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Unique ID registers (96 bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Operating lifetime (OLF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 69 Total current consumption in Run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Total current consumption in Wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Total current consumption and timing in low-power run mode at VDD = 1.65 V to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Total current consumption in low-power wait mode at VDD = 1.65 V to 3.6 V . . . . . . . . . . 77 Total current consumption and timing in Active-halt mode at VDD = 1.65 V to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal . . 79 Total current consumption and timing in Halt mode at VDD = 1.65 to 3.6 V . . . . . . . . . . . 81 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Current consumption under external reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 HSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 LSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 LSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Flash program memory/data EEPROM memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Flash program memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Data memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Output driving current (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Output driving current (true open drain ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Output driving current (PA0 with high sink LED driver capability). . . . . . . . . . . . . . . . . . . . 94 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 SPI1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 DocID027179 Rev 7 STM8AL318x STM8AL3L8x Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. List of tables I2C characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 LCD characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Reference voltage characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 DAC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 DAC output on PB4-PB5-PB6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 ADC1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 ADC1 accuracy with VDDA = 3.3 V to 2.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 ADC1 accuracy with VDDA = 2.4 V to 3.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 ADC1 accuracy with VDDA = VREF+ = 1.8 V to 2.4 V. . . . . . . . . . . . . . . . . . . . . . . . . . . 112 EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 DocID027179 Rev 7 7/132 7 List of figures STM8AL318x STM8AL3L8x List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. 8/132 High-density STM8AL3x8x device block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Clock tree diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 STM8AL318A 80-pin package pinout (without LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 STM8AL3L8A 80-pin package pinout (with LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 STM8AL3189 64-pin pinout (without LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 STM8AL3L89 64-pin pinout (with LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 STM8AL3188 48-pin pinout (without LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 STM8AL3L88 48-pin pinout (with LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Power supply thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Typical IDD(RUN) from RAM vs. VDD (HSI clock source), fCPU =16 MHz(1) . . . . . . . . . . . . . 72 Typical IDD(RUN) from Flash vs. VDD (HSI clock source), fCPU = 16 MHz(1) . . . . . . . . . . . . 73 Typical IDD(Wait) from RAM vs. VDD (HSI clock source), fCPU = 16 MHz(1) . . . . . . . . . . . . . 75 Typical IDD(Wait) from Flash (HSI clock source), fCPU = 16 MHz(1) . . . . . . . . . . . . . . . . . . . 75 Typical IDD(LPR) vs. VDD (LSI clock source), all peripherals OFF . . . . . . . . . . . . . . . . . . . . 76 Typical IDD(LPW) vs. VDD (LSI clock source), all peripherals OFF(1) . . . . . . . . . . . . . . . . . . 77 Typical IDD(AH) vs. VDD (LSI clock source) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Typical IDD(Halt) vs. VDD (internal reference voltage OFF) . . . . . . . . . . . . . . . . . . . . . . . . 81 HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 LSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Typical HSI frequency vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Typical LSI clock source frequency vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Typical VIL and VIH vs. VDD (standard I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Typical VIL and VIH vs. VDD (true open drain I/Os). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Typical pull-up resistance RPU vs. VDD with VIN=VSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Typical pull-up current Ipu vs. VDD with VIN=VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Typical VOL @ VDD = 3.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Typical VOL @ VDD = 1.8 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Typical VOL @ VDD = 3.0 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Typical VOL @ VDD = 1.8 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Typical VDD - VOH @ VDD = 3.0 V (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Typical VDD - VOH @ VDD = 1.8 V (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Typical NRST pull-up resistance RPU vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Typical NRST pull-up current Ipu vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Recommended NRST pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 SPI1 timing diagram - slave mode and CPHA=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 SPI1 timing diagram - slave mode and CPHA=1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 SPI1 timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Typical application with I2C bus and timing diagram(1)) . . . . . . . . . . . . . . . . . . . . . . . . . . 102 ADC1 accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 114 Power supply and reference decoupling (VREF+ connected to VDDA) . . . . . . . . . . . . . . 114 LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . 118 LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 DocID027179 Rev 7 STM8AL318x STM8AL3L8x Figure 48. Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. List of figures LQFP80 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . 122 LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 LQFP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 125 LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 LQFP48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 DocID027179 Rev 7 9/132 9 Introduction 1 STM8AL318x STM8AL3L8x Introduction This document describes the features, pinout, mechanical data and ordering information of the high-density STM8AL318x and STM8AL3L8x devices (microcontrollers with 64 Kbyte Flash memory density). These devices are referred to as high-density devices in STM8L051/L052 Value Line, STM8L151/L152, STM8L162, STM8AL31, STM8AL3L MCU lines reference manual (RM0031) and in the STM8L and STM8AL Flash programming manual (PM0054). For more details on the whole STMicroelectronics ultra-low-power family please refer to Section 3: Functional overview on page 14. For information on the debug module and SWIM (single wire interface module), refer to the STM8 SWIM communication protocol and debug module user manual (UM0470). For information on the STM8 core, please refer to the STM8 CPU programming manual (PM0044). 10/132 DocID027179 Rev 7 STM8AL318x STM8AL3L8x 2 Description Description The high-density STM8AL3x8x ultra-low-power devices feature an enhanced STM8 CPU core providing increased processing power (up to 16 MIPS at 16 MHz) while maintaining the advantages of a CISC architecture with improved code density, a 24-bit linear addressing space and an optimized architecture for low-power operations. The family includes an integrated debug module with a hardware interface (SWIM) which allows non-intrusive in-application debugging and ultrafast Flash programming. All high-density STM8AL3x8x microcontrollers feature embedded data EEPROM and lowpower low-voltage single-supply program Flash memory. The devices incorporate an extensive range of enhanced I/Os and peripherals, a 12-bit ADC, two DACs, two comparators, a real-time clock, 8x40 or 4x44-segment LCD, four 16-bit timers, one 8-bit timer, as well as standard communication interfaces such as two SPIs, an I2C interface, and three USARTs. One 8x40 or 4x44-segment LCD is available on the STM8AL3L8x devices. The modular design of the peripheral set allows the same peripherals to be found in different ST microcontroller families including 32-bit families. This makes any transition to a different family very easy, and simplified even more by the use of a common set of development tools. 2.1 STM8AL ultra-low-power 8-bit family benefits High-density STM8AL3x8x devices are part of the STM8AL automotive ultra-low-power 8-bit family providing the following benefits: • • • • Integrated system – 64 Kbytes of high-density embedded Flash program memory – 2 Kbytes of data EEPROM – 4 Kbytes of RAM – Internal high-speed and low-power low speed RC. – Embedded reset Ultra-low-power consumption – 1 µA in Active-halt mode – Clock gated system and optimized power management – Capability to execute from RAM for Low-power wait mode and Low-power run mode Advanced features – Up to 16 MIPS at 16 MHz CPU clock frequency – Direct memory access (DMA) for memory-to-memory or peripheral-to-memory access. Short development cycles – Application scalability across a common family product architecture with compatible pinout, memory map and modular peripherals. – Wide choice of development tools DocID027179 Rev 7 11/132 60 Description STM8AL318x STM8AL3L8x STM8AL ultra-low-power microcontrollers operates either from 1.8 to 3.6 V (down to 1.65 V at power-down) or from 1.65 to 3.6 V. They are available in the -40 to +85 °C and -40 to +125 °C temperature ranges. These features make the STM8AL ultra-low-power microcontroller families suitable for a wide range of applications. The devices are offered in three different packages from 48 to 80 pins. Different sets of peripherals are included depending on the device. Refer to Section 3 for an overview of the complete range of peripherals proposed in this family. All STM8AL ultra-low-power products are based on the same architecture with the same memory mapping and a coherent pinout. Figure 1 shows the block diagram of the high-density STM8AL3x8x families. 12/132 DocID027179 Rev 7 STM8AL318x STM8AL3L8x 2.2 Description Device overview Table 2. High-density STM8AL3x8x low-power device features and peripheral counts Features STM8AL3xx8 STM8AL3xx9 Flash (Kbyte) 64 Data EEPROM (Kbyte) LCD Timers Communication interfaces STM8AL3xxA 2 8x28 or 4x32(1) 8x36 or 4x40(1) 8x40 or 4x44(1) Basic 1 (8-bit) 1 (8-bit) 1 (8-bit) General purpose 3 (16-bit) 3 (16-bit) 3 (16-bit) Advanced control 1 (16-bit) 1 (16-bit) 1 (16-bit) SPI 2 2 2 I2C 1 1 1 USART 3 3 3 GPIOs 41 (2) 54(2) 68(2) 12-bit synchronized ADC (number of channels) 1 (25) 1 (28) 1 (28) Number of channels 2 2 2 2 2 2 Comparators (COMP1/COMP2) 2 2 2 12-Bit DAC Others RTC, window watchdog, independent watchdog, 16-MHz and 38-kHz internal RC, 1- to 16-MHz and 32-kHz external oscillator CPU frequency Operating voltage 16 MHz 1.8 to 3.6 V (down to 1.65 V at power-down) with BOR -40 to +85 °C / -40 to +125 °C Operating temperature Packages LQFP48 LQFP64 LQFP80 1. STM8AL3L8x versions only. 2. The number of GPIOs given in this table includes the NRST/PA1 pin but the application can use the NRST/PA1 pin as general purpose output only (PA1). DocID027179 Rev 7 13/132 60 Functional overview 3 STM8AL318x STM8AL3L8x Functional overview Figure 1. High-density STM8AL3x8x device block diagram 26&B,1 26&B287 #9'' 0+]RVFLOODWRU 0+]LQWHUQDO5& 26&B,1 26&B287 N+]RVFLOODWRU 9'' &ORFN FRQWUROOHU DQG&66 92/75(* &ORFNV WRFRUHDQG SHULSKHUDOV N+]LQWHUQDO5& 5(6(7 ,QWHUUXSWFRQWUROOHU 'HEXJPRGXOH 6:,0 ELW7LPHU FKDQQHOV ELW7LPHU FKDQQHOV ELW7LPHU 39' ELW7LPHU FKDQQHOV ELW7LPHU ,5B7,0 ,QIUDUHGLQWHUIDFH '0$ FKDQQHOV 6&/6'$ 60% ,ð& 63,B026,63,B0,62 63,B6&.63,B166 63,B026,63,B0,62 63,B6&.63,B166 86$57B5;86$57B7; 86$57B&. 86$57B5;86$57B7; 86$57B&. 86$57B5;86$57B7; 86$57B&. 9 9 ''$ 66$ 63, 63, 86$57 .E\WH5$0 3RUW$ 3$>@ 3RUW% 3%>@ 3RUW& 3&>@ 3RUW' 3'>@ 3RUW( 3(>@ 3RUW) 3)>@ 3RUW* 3*>@ 3RUW+ 3+>@ 3RUW, 3,>@ 86$57 #9 9 ''$ 66$ ELW$'& 7HPSVHQVRU %HHSHU 57& 95(),17RXW ,QWHUQDOUHIHUHQFH YROWDJH &203B,13 &203B,13 &203B,10 '$& $) 9  WR9 /&' %((3 $/$50&$/,% 7$03 ,:'* N+]FORFN &203 ::'* &203 ELW'$& ELW'$& ,) '$& $) 39'B,1 .E\WH SURJUDPPHPRU\ .E\WH GDWD((3520 86$57 $'&B,1[ 9 ''5() 9 665() 1567 %25 $ G G U HV V F R Q W U RO DQ G G DW DE X VHV FKDQQHOV 9 '' 9 WR 9 9 66 3253'5 670&RUH 6:,0  3RZHU /&'GULYHU [RU[ 6(*[&20[ ELW'$& ELW'$& /&'ERRVWHU 069 1. Legend: AF: alternate function ADC: Analog-to-digital converter BOR: Brownout reset DMA: Direct memory access 14/132 DocID027179 Rev 7 STM8AL318x STM8AL3L8x Functional overview DAC: Digital-to-analog converter I²C: Inter-integrated circuit multimaster interface IWDG: Independent watchdog LCD: Liquid crystal display POR/PDR: Power on reset / power-down reset RTC: Real-time clock SPI: Serial peripheral interface SWIM: Single wire interface module USART: Universal synchronous asynchronous receiver transmitter WWDG: Window watchdog 3.1 Low-power modes The high-density STM8AL3x8x devices support five low-power modes to achieve the best compromise between low-power consumption, short startup time and available wakeup sources: • Wait mode: CPU clock is stopped, but selected peripherals keep running. An internal or external interrupt or a Reset is used to exit the microcontroller from Wait mode (WFE or WFI mode). • Low-power run mode: The CPU and the selected peripherals are running. Execution is done from RAM with a low speed oscillator (LSI or LSE). Flash memory and data EEPROM are stopped and the voltage regulator is configured in ultra-low-power mode. The microcontroller enters Low-power run mode by software and exits from this mode by software or by a reset. All interrupts must be masked and are not used to exit the microcontroller from this mode. • Low-power wait mode: This mode is entered when executing a Wait for event in Lowpower run mode. It is similar to Low-power run mode except that the CPU clock is stopped. The wakeup from this mode is triggered by a Reset or by an internal or external event (peripheral event generated by the timers, serial interfaces, DMA controller (DMA1), comparators and I/O ports). When the wakeup is triggered by an event, the system goes back to Low-power run mode. All interrupts must be masked and arenot used to exit the microcontroller from this mode. • Active-halt mode: CPU and peripheral clocks are stopped, except RTC. The wakeup is triggered by RTC interrupts, external interrupts or reset. • Halt mode: CPU and peripheral clocks are stopped, the device remains powered on. The RAM content is preserved. The wakeup is triggered by an external interrupt or reset. A few peripherals have also a wakeup from Halt capability. Switching off the internal reference voltage reduces power consumption. Through software configuration it is also possible to wake up the device without waiting for the internal reference voltage wakeup time to have a fast wakeup time of 5 µs. DocID027179 Rev 7 15/132 60 Functional overview STM8AL318x STM8AL3L8x 3.2 Central processing unit STM8 3.2.1 Advanced STM8 Core The 8-bit STM8 core is designed for code efficiency and performance with an Harvard architecture and a 3-stage pipeline. It contains 6 internal registers which are directly addressable in each execution context, 20 addressing modes including indexed indirect and relative addressing, and 80 instructions. Architecture and registers • Harvard architecture • 3-stage pipeline • 32-bit wide program memory bus - single cycle fetching most instructions • X and Y 16-bit index registers - enabling indexed addressing modes with or without offset and read-modify-write type data manipulations • 8-bit accumulator • 24-bit program counter - 16 Mbyte linear memory space • 16-bit stack pointer - access to a 64 Kbyte level stack • 8-bit condition code register - 7 condition flags for the result of the last instruction Addressing • 20 addressing modes • Indexed indirect addressing mode for lookup tables located anywhere in the address space • Stack pointer relative addressing mode for local variables and parameter passing Instruction set 3.2.2 • 80 instructions with 2-byte average instruction size • Standard data movement and logic/arithmetic functions • 8-bit by 8-bit multiplication • 16-bit by 8-bit and 16-bit by 16-bit division • Bit manipulation • Data transfer between stack and accumulator (push/pop) with direct stack access • Data transfer using the X and Y registers or direct memory-to-memory transfers Interrupt controller The high-density STM8AL3x8x devices feature a nested vectored interrupt controller: 16/132 • Nested interrupts with 3 software priority levels • 32 interrupt vectors with hardware priority • Up to 40 external interrupt sources on 11 vectors • Trap and reset interrupts DocID027179 Rev 7 STM8AL318x STM8AL3L8x Functional overview 3.3 Reset and supply management 3.3.1 Power supply scheme The device requires a 1.65 V to 3.6 V operating supply voltage (VDD). The external power supply pins must be connected as follows: 3.3.2 • VSS1, VDD1, VSS2, VDD2, VSS3, VDD3, VSS4, VDD4= 1.65 to 3.6 V: external power supply for I/Os and for the internal regulator. Provided externally through VDD pins, the corresponding ground pin is VSS. VSS1/VSS2/VSS3/VSS4 and VDD1/VDD2/VDD3/VDD4 must not be left unconnected. • VSSA, VDDA = 1.65 to 3.6 V: external power supplies for analog peripherals (minimum voltage to be applied to VDDA is 1.8 V when the ADC1 is used). VDDA and VSSA must be connected to VDD and VSS, respectively. • VREF+, VREF- (for ADC1): external reference voltage for ADC1. Must be provided externally through VREF+ and VREF- pin. • VREF+ (for DAC1/2): external voltage reference for DAC1 and DAC2 must be provided externally through VREF+. Power supply supervisor The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR), coupled with a brownout reset (BOR) circuitry. At power-on, BOR is always active, and ensures proper operation starting from 1.8 V. As soon as the 1.8 V BOR threshold is reached, the option byte loading process starts, either to confirm or modify the default thresholds, or to disable BOR permanently. In this latter case, the VDD min value at power down is 1.65 V. Five BOR thresholds are available through option byte, starting from 1.8 V to 3 V. To reduce the power consumption in Halt mode, it is possible to automatically switch off the internal reference voltage (and consequently the BOR) in Halt mode. The device remains in reset state when VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for any external reset circuit. The device features an embedded programmable voltage detector (PVD) that monitors the VDD/VDDA power supply and compares it to the VPVD threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt is generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher than the VPVD threshold. The interrupt service routine generates then a warning message and/or put the MCU into a safe state. The PVD is enabled by software. DocID027179 Rev 7 17/132 60 Functional overview 3.3.3 STM8AL318x STM8AL3L8x Voltage regulator The high-density STM8AL3x8x devices embed an internal voltage regulator for generating the 1.8 V power supply for the core and peripherals. This regulator has two different modes: • Main voltage regulator mode (MVR) for Run, Wait for interrupt (WFI) and Wait for event (WFE) modes. • Low-power voltage regulator mode (LPVR) for Halt, Active-halt, Low-power run and Low-power wait modes. When entering Halt or Active-halt modes, the system automatically switches from the MVR to the LPVR in order to reduce current consumption. 3.4 Clock management The clock controller distributes the system clock (SYSCLK) coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. Features 18/132 • Clock prescaler: to get the best compromise between speed and current consumption, the clock frequency to the CPU and peripherals has to be adjusted by a programmable prescaler • Safe clock switching: Clock sources are adaptable safely on the fly in run mode through a configuration register. • Clock management: To reduce power consumption, the clock controller stops the clock to the core, individual peripherals or memory. • System clock sources: 4 different clock sources are available to drive the system clock: – 1-16 MHz High speed external crystal (HSE) – 16 MHz High speed internal RC oscillator (HSI) – 32.768 Low speed external crystal (LSE) – 38 kHz Low speed internal RC (LSI) • RTC and LCD clock sources: the above four sources are available to clock the RTC and the LCD, whatever the system clock. • Startup clock: After reset, the microcontroller restarts by default with an internal 2 MHz clock (HSI/8). The prescaler ratio and clock source is adjustable by the application program as soon as the code execution starts. • Clock security system (CSS): This feature is enabled by software. If a HSE clock failure occurs, the system clock is automatically switched to HSI. • Configurable main clock output (CCO): This outputs an external clock for use by the application. DocID027179 Rev 7 STM8AL318x STM8AL3L8x Functional overview Figure 2. Clock tree diagram &66 26&B287 26&B,1 +6(  +6(26& 0+] 6@ 26&B287 57& SUHVFDOHU  /6(26&  N+] 26&B,1 /&'SHULSKHUDO FORFNHQDEOH ELW 57&&/. &66B/6(  57&&/. &&2 &&2 SUHVFDOHU   WR/&' +DOW /&'&/. FRQILJXUDEOH FORFNRXWSXW  WR57& +6, /6, +6( /6( 6Ɖ Z ƵŶ > ^ / Ăůů ŽĨĨ ;ŵ  Ϳ ϴϱΣ ͲϰϬΣ Ϭ͘Ϭϭ Ϭ͘ϬϬϱ Ϭ ϭ͘ϴ Ϯ Ϯ͘Ϯ Ϯ͘ϰ Ϯ͘ϲ Ϯ͘ϴ s  ;s Ϳ 76/132 DocID027179 Rev 7 ϯ ϯ͘Ϯ ϯ͘ϰ ϯ͘ϲ D^ϭϵϭϭϬsϭ STM8AL318x STM8AL3L8x Electrical parameters Table 24. Total current consumption in low-power wait mode at VDD = 1.65 V to 3.6 V Symbol Conditions(1) Parameter Supply current in IDD(LPW) low-power wait mode LSI RC osc. (at 38 kHz) all peripherals OFF LSE external clock(4) (32.768 kHz) Typ. Max. TA = -40 °C to 25 °C 3.00 3.30(2) TA = 85 °C 4.40 9.00(3) TA = 125 °C 11.00 18.00(3) TA = -40 °C to 25 °C 2.35 2.70(2) TA = 85 °C 3.10 3.70(2) TA = 125 °C 12.0 14.0(2) Unit μA 1. No floating I/Os. 2. Guaranteed by characterization results. 3. Tested at 85°C for temperature range A or 125°C for temperature range C. 4. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (IDD LSE) must be added. Refer to Table 33. Figure 18. Typical IDD(LPW) vs. VDD (LSI clock source), all peripherals OFF(1) ƒ&  ƒ& ƒ& ƒ& ƒ& )$$,P7FIRAM ,3)ALLOFF M!               6$$ 6 .47 1. Typical current consumption measured with code executed from RAM. DocID027179 Rev 7 77/132 117 Electrical parameters STM8AL318x STM8AL3L8x In the following table, data are based on characterization results, unless otherwise specified. Table 25. Total current consumption and timing in Active-halt mode at VDD = 1.65 V to 3.6 V Symbol Conditions(1) Parameter LCD OFF(3) IDD(AH) Supply current in Active-halt mode LSI RC (at 38 kHz) LCD ON (static duty/ external VLCD) (4) LCD ON (1/4 duty/ external VLCD) (5) LCD ON (1/4 duty/ internal VLCD) (6) LCD OFF(8) IDD(AH) Supply current in Active-halt mode LSE external clock (32.768 kHz) (7) LCD ON (static duty/ external VLCD) (4) LCD ON (1/4 duty/ external VLCD) (5) LCD ON (1/4 duty/ internal VLCD) (6) IDD(WUFAH) 78/132 Supply current during wakeup time from Activehalt mode (using HSI) - - DocID027179 Rev 7 Typ. Max.(2) TA = -40 °C to 25 °C 0.90 2.10 TA = 85 °C 1.50 3.40 TA = 125 °C 5.10 12.00 TA = -40 °C to 25 °C 1.40 3.10 TA = 85 °C 1.90 4.30 TA = 125 °C 5.50 13.00 TA = -40 °C to 25 °C 1.90 4.30 TA = 85 °C 2.40 5.40 TA = 125 °C 6.00 15.00 TA = -40 °C to 25 °C 3.90 8.75 TA = 85 °C 4.50 10.20 TA = 125 °C 6.80 16.30 TA = -40 °C to 25 °C 0.50 1.20 TA = 85 °C 0.90 2.10 TA = 125 °C 4.80 11.00 TA = -40 °C to 25 °C 0.85 1.90 TA = 85 °C 1.30 3.20 TA = 125 °C 5.00 12.00 TA = -40 °C to 25 °C 1.50 2.50 TA = 85 °C 1.80 4.20 TA = 125 °C 5.70 14.00 TA = -40 °C to 25 °C 3.40 7.60 TA = 85 °C 3.90 9.20 TA = 125 °C 6.30 15.20 2.40 - - Unit μA μA mA STM8AL318x STM8AL3L8x Electrical parameters Table 25. Total current consumption and timing in Active-halt mode at VDD = 1.65 V to 3.6 V (continued) Conditions(1) Symbol Parameter tWU_HSI(AH)(9)(10) Wakeup time from Active-halt mode to Run mode (using HSI) - - tWU_LSI(AH)(9)(10) Wakeup time from Active-halt mode to Run mode (using LSI) - - Typ. Max.(2) Unit - 4.70 7.00 μs - 150.0 - μs 1. No floating I/O, unless otherwise specified. 2. Guaranteed by characterization results. 3. RTC enabled. Clock source = LSI 4. RTC enabled, LCD enabled with external VLCD = 3 V, static duty, division ratio = 256, all pixels active, no LCD connected. 5. RTC enabled, LCD enabled with external VLCD, 1/4 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected. 6. LCD enabled with internal LCD booster VLCD = 3 V, 1/4 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected. 7. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (IDD LSE) must be added. Refer to Table 33 8. RTC enabled. Clock source = LSE 9. Wakeup time until start of interrupt vector fetch. The first word of interrupt routine is fetched 4 CPU cycles after tWU. 10. ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register. Table 26. Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal Symbol Condition(1) Parameter VDD = 1.8 V IDD(AH) (2) Supply current in Active-halt mode VDD = 3 V VDD = 3.6 V Typ. LSE 1.15 LSE/32(3) 1.05 LSE 1.30 LSE/32(3) 1.20 LSE 1.45 LSE/32(3) 1.35 Unit µA 1. No floating I/O, unless otherwise specified. 2. Based on measurements on bench with 32.768 kHz external crystal oscillator. 3. RTC clock is LSE divided by 32. DocID027179 Rev 7 79/132 117 Electrical parameters STM8AL318x STM8AL3L8x Figure 19. Typical IDD(AH) vs. VDD (LSI clock source)  ƒ& ƒ& ƒ& )$$!(ALT M!  ƒ& ƒ&              6$$ 6 -36 80/132 DocID027179 Rev 7 STM8AL318x STM8AL3L8x Electrical parameters In the following table, data are based on characterization results, unless otherwise specified. Table 27. Total current consumption and timing in Halt mode at VDD = 1.65 to 3.6 V Condition(1) Symbol Parameter IDD(Halt) Supply current in Halt mode (ultra-low-power ULP bit =1 in the PWR_CSR2 register) Typ. Max. TA = -40 °C to 25 °C 0.4 0.9(2) TA = 85 °C 0.9 2.8(3) TA = 125 °C 4.4 13(3) IDD(WUHalt) Supply current during wakeup time from Halt mode (using HSI) - 2.4 - tWU_HSI(Halt)(4)(5) Wakeup time from Halt to Run mode (using HSI) - 4.7 7(2) Wakeup time from Halt mode to Run mode (using LSI) - 150 - tWU_LSI(Halt) (4)(5) Unit µA mA µs 1. TA = -40 to 125 °C, no floating I/O, unless otherwise specified. 2. Guaranteed by characterization results. 3. Tested at 85 °C for temperature range A or 125°C for temperature range C. 4. ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register. 5. Wakeup time until start of interrupt vector fetch. The first word of interrupt routine is fetched 4 CPU cycles after tWU. Figure 20. Typical IDD(Halt) vs. VDD (internal reference voltage OFF)  ƒ&  ƒ& )$$(ALTBGOFFM!  ƒ& ƒ&  ƒ&                    6$$ 6 -36 DocID027179 Rev 7 81/132 117 Electrical parameters STM8AL318x STM8AL3L8x Current consumption of on-chip peripherals Table 28. Peripheral current consumption Symbol Typ. Parameter VDD = 3.0 V IDD(TIM1) TIM1 supply current(1) 10 IDD(TIM2) TIM2 supply current (1) 7 IDD(TIM3) TIM3 supply current (1) 7 IDD(TIM5) TIM5 supply current (1) 7 IDD(TIM4) TIM4 timer supply current (1) 3 IDD(USART1) USART1 supply current (2) 5 IDD(USART2) USART2 supply current (2) 5 IDD(USART3) USART3 supply current (2) 5 IDD(SPI1) SPI1 supply current (2) 3 IDD(SPI2) SPI2 supply current (2) 3 IDD(I2C1) I2C1 supply current (2) 4 IDD(DMA1) DMA1 supply current(2) 3 IDD(WWDG) WWDG supply current(2) 1 Peripherals ON(3) 63 IDD(ALL) IDD(ADC1) ADC1 supply current(4) 1500 IDD(DAC) DAC supply current(5) 370 IDD(COMP1) Comparator 1 supply current(6) IDD(COMP2) Comparator 2 supply current(6) IDD(PVD/BOR) IDD(BOR) IDD(IDWDG) µA/MHz 0.160 Slow mode 2 Fast mode 5 Power voltage detector and brownout Reset unit supply current (7) 2.6 Brownout Reset unit supply current (7) 2.4 Independent watchdog supply current Unit including LSI supply current 0.45 excluding LSI supply current 0.05 µA 1. Data based on a differential IDD measurement between all peripherals OFF and a timer counter running at 16 MHz. The CPU is in Wait mode in both cases. No IC/OC programmed, no I/O pins toggling. Not tested in production. 2. Data based on a differential IDD measurement between the on-chip peripheral in reset configuration and not clocked and the on-chip peripheral when clocked and not kept under reset. The CPU is in Wait mode in both cases. No I/O pins toggling. Not tested in production. 3. Peripherals listed above the IDD(ALL) parameter ON: TIM1, TIM2, TIM3, TIM4, TIM5, USART1, USART2, USART3, SPI1, SPI2, I2C1, DMA1, WWDG. 4. Data based on a differential IDD measurement between ADC in reset configuration and continuous ADC conversion. 82/132 DocID027179 Rev 7 STM8AL318x STM8AL3L8x Electrical parameters 5. Data based on a differential IDD measurement between DAC in reset configuration and continuous DAC conversion of VDD /2. Floating DAC output. 6. Data based on a differential IDD measurement between COMP1 or COMP2 in reset configuration and COMP1 or COMP2 enabled with static inputs. Supply current of internal reference voltage excluded. 7. Including supply current of internal reference voltage. Table 29. Current consumption under external reset Symbol IDD(RST) Parameter Supply current under external reset (1) Conditions PB1/PB3/PA5 pins are externally tied to VDD Typ. VDD = 1.8 V 48 VDD = 3 V 80 VDD = 3.6 V 95 Unit µA 1. All pins except PA0, PB0 and PB4 are floating under reset. PA0, PB0 and PB4 are configured with pull-up under reset. PB1, PB3 and PA5 must be tied externally under reset to avoid the consumption due to their schmitt trigger. 9.3.4 Clock and timing characteristics HSE external clock (HSEBYP = 1 in CLK_ECKCR) Subject to general operating conditions for VDD and TA. Table 30. HSE external clock characteristics Symbol fHSE_ext(1) Parameter External clock source frequency VHSEH OSC_IN input pin highlevel voltage VHSEL OSC_IN input pin lowlevel voltage Cin(HSE)(1) OSC_IN input capacitance ILEAK_HSE Conditions OSC_IN input leakage current - Min. Typ. Max. Unit 1 - 16 MHz 0.7 x VDD - VDD VSS - 0.3 x VDD - 2.6 - pF - - ±500 nA V VSS < VIN < VDD 1. Guaranteed by design. DocID027179 Rev 7 83/132 117 Electrical parameters STM8AL318x STM8AL3L8x LSE external clock (LSEBYP=1 in CLK_ECKCR) Subject to general operating conditions for VDD and TA. Table 31. LSE external clock characteristics Symbol fLSE_ext Parameter Min. Typ. Max. Unit - kHz External clock source frequency 32.768 - - VDD(1) VLSEH OSC32_IN input pin high-level voltage 0.7xVDD(1) VLSEL OSC32_IN input pin low-level voltage VSS(1) - 0.3xVDD(1) OSC32_IN input capacitance - 0.6 - pF OSC32_IN input leakage current - - ±500 nA Cin(LSE) ILEAK_LSE V 1. Guaranteed by characterization results. HSE crystal/ceramic resonator oscillator The HSE clock can be supplied with a 1 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...). Table 32. HSE oscillator characteristics Symbol Conditions Min. Typ. Max. Unit High speed external oscillator frequency - 1 - 16 MHz RF Feedback resistor - - 200 - kΩ (1)(2) Recommended load capacitance - - 20 - pF C = 20 pF, fOSC = 16 MHz - - 2.5 (startup) 0.7 (stabilized)(3) fHSE C IDD(HSE) gm tSU(HSE)(4) Parameter HSE oscillator power consumption - - 2.5 (startup) 0.46 (stabilized)(3) - 3.5(3) - - mA/V 1 - ms Oscillator transconductance Startup time mA C = 10 pF, fOSC =16 MHz VDD is stabilized 1. C=CL1=CL2 is approximately equivalent to 2 x crystal CLOAD. 2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with small Rm value. Refer to crystal manufacturer for more details 3. Guaranteed by design. 4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 16 MHz oscillation. This value is measured for a standard crystal resonator and it varies significantly with the crystal manufacturer. 84/132 DocID027179 Rev 7 STM8AL318x STM8AL3L8x Electrical parameters Figure 21. HSE oscillator circuit diagram 5P /P I+6(WRFRUH &2 &P 5) &/ 26&,1 JP 5HVRQDWRU 5HVRQDWRU &RQVXPSWLRQ FRQWURO 26&287 &/ 670 069 HSE oscillator critical gm formula g mcrit = ( 2 × Π × f HSE ) 2 × R m ( 2Co + C ) 2 Rm: Motional resistance (see crystal specification), Lm: Motional inductance (see crystal specification), Cm: Motional capacitance (see crystal specification), Co: Shunt capacitance (see crystal specification), CL1=CL2=C: Grounded external capacitance gm >> gmcrit LSE crystal/ceramic resonator oscillator The LSE clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...). DocID027179 Rev 7 85/132 117 Electrical parameters STM8AL318x STM8AL3L8x Table 33. LSE oscillator characteristics Symbol Parameter fLSE Low speed external oscillator frequency RF Feedback resistor C(1)(2) IDD(LSE) Conditions Min. Typ. Max. Unit - - 32.768 - kHz ΔV = 200 mV - 1.2 - MΩ - - 8 - pF VDD = 1.8 V - 450 - VDD = 3 V - 600 - - Recommended load capacitance LSE oscillator power consumption VDD = 3.6 V Oscillator transconductance gm tSU(LSE) (4) - Startup time 3 VDD is stabilized nA 750 - (3) - - µA/V - 1 - s 1. C=CL1=CL2 is approximately equivalent to 2 x crystal CLOAD. 2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with a small Rm value. Refer to crystal manufacturer for more details. 3. Guaranteed by design. 4. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation. This value is measured for a standard crystal resonator and it varies significantly with the crystal manufacturer. Figure 22. LSE oscillator circuit diagram 5P /P I/6( &2 &P 5) &/ 26&,1 JP 5HVRQDWRU 5HVRQDWRU &/ &RQVXPSWLRQ FRQWURO 26&287 670 06Y9 Internal clock sources Subject to general operating conditions for VDD, and TA. High speed internal RC oscillator (HSI) In the following table, data are based on characterization results, not tested in production, unless otherwise specified. 86/132 DocID027179 Rev 7 STM8AL318x STM8AL3L8x Electrical parameters Table 34. HSI oscillator characteristics Symbol fHSI ACCHSI Conditions(1) Parameter Min. Typ. Max. Unit MHz Frequency VDD = 3.0 V - 16 - HSI oscillator user trimming accuracy Trimmed by the application for any VDD and TA conditions -1 - 1 -5 - 5 Trimming code ≠ multiple of 16 - 0.4 0.7(2) Trimming code = multiple of 16 - - ± 1.5(2) HSI oscillator accuracy VDD ≤1.8 V≤ VDD ≤ 3.6 V (factory calibrated) -40 °C ≤TA ≤ 125 °C % TRIM HSI user trimming step(2) tsu(HSI) HSI oscillator setup time (wakeup time) - - 3.7 6 (3) µs IDD(HSI) HSI oscillator power consumption - - 100 140(3) µA % 1. VDD = 3.0 V, TA = -40 to 125 °C unless otherwise specified. 2. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0). Refer to the AN3101 “STM8L15x internal RC oscillator calibration” application note for more details. 3. Guaranteed by design. Figure 23. Typical HSI frequency vs. VDD   +6,IUHTXHQF\>0+]@      ƒ&  ƒ&  ƒ&          9''>9@ DocID027179 Rev 7       DLF 87/132 117 Electrical parameters STM8AL318x STM8AL3L8x Low speed internal RC oscillator (LSI) In the following table, data are based on characterization results, not tested in production, unless otherwise specified. Table 35. LSI oscillator characteristics Symbol fLSI Parameter Conditions(1) Min. Typ. Max. Unit - 26 38 56 kHz Frequency tsu(LSI) LSI oscillator wakeup time D(LSI) LSI oscillator frequency drift(3) 0 °C ≤TA ≤ 85 °C (2) - - 200 -12 - 11 µs % 1. VDD = 1.65 V to 3.6 V, TA = -40 to 125 °C unless otherwise specified. 2. Guaranteed by design. 3. This is a deviation for an individual part, once the initial frequency has been measured. Figure 24. Typical LSI clock source frequency vs. VDD  ƒ& ƒ& ƒ&  ƒ& 2#+ #HECK -(Z ƒ&               6$$ 6 -36 9.3.5 Memory characteristics TA = -40 to 125 °C unless otherwise specified. Table 36. RAM and hardware registers Symbol VRM Parameter Data retention mode (1) Conditions Min. Typ. Max. Unit Halt mode (or Reset) 1.65 - - V 1. Minimum supply voltage without losing data stored in RAM (in Halt mode or under Reset) or in hardware registers (only in Halt mode). Guaranteed by characterization results. 88/132 DocID027179 Rev 7 STM8AL318x STM8AL3L8x Electrical parameters Flash memory Table 37. Flash program memory/data EEPROM memory Symbol VDD tprog Iprog Parameter Conditions Min. fSYSCLK = 16 MHz 1.65 - 3.6 V Programming time for 1 or 128 byte (block) erase/write cycles (on programmed byte) - - 6 - ms Programming time for 1 to 128 byte (block) write cycles (on erased byte) - - 3 - ms TA=+25 °C, VDD = 3.0 V - TA=+25 °C, VDD = 1.8 V - Operating voltage (all modes, read/write/erase) Programming/ erasing consumption Typ. Max. - 0.7 - Unit mA Table 38. Flash program memory Symbol Parameter Conditions Min. Max. Unit TWE Temperature for writing and erasing - -40 125 °C NWE Flash program memory endurance (erase/write cycles)(1) TA= 25 °C 1000 - cycles tRET Data retention time TA= 25 °C 40 - TA= 55 °C 20 - years 1. The physical granularity of the memory is 4 byte, so cycling is performed on 4 byte even when a write/erase operation addresses a single byte. Data memory Table 39. Data memory Symbol Parameter TWE Temperature for writing and erasing NWE Data memory endurance (erase/write cycles)(1) tRET Data retention time Conditions Min. Max. Unit - -40 125 °C TA= 25 °C 300 k - TA= -40 to 125 °C 100 k(2) - TA= 25 °C 40(2) (3) - TA= 55 °C (2) (3) - 20 cycles years 1. The physical granularity of the memory is 4 byte, so cycling is performed on 4 byte even when a write/erase operation addresses a single byte. 2. More information on the relationship between data retention time and number of write/erase cycles is available in a separate technical document. 3. Retention time for 256B of data memory after up to 1000 cycles at 125 °C. DocID027179 Rev 7 89/132 117 Electrical parameters 9.3.6 STM8AL318x STM8AL3L8x I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDD (for standard pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibility to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error, out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation, LCD levels, etc.). The test results are given in the following table. Table 40. I/O current injection susceptibility Functional susceptibility Symbol IINJ 9.3.7 Description Negative injection Positive injection Injected current on true open-drain pins -5 +0 Injected current on all 5 V tolerant (FT) pins -5 +0 Injected current on any other pin -5 +5 Unit mA I/O port pin characteristics General characteristics Subject to general operating conditions for VDD and TA unless otherwise specified. All unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor. 90/132 DocID027179 Rev 7 STM8AL318x STM8AL3L8x Electrical parameters Table 41. I/O static characteristics Symbol VIL VIH Vhys Ilkg Conditions(1) Parameter Input low-level voltage Input high-level voltage Schmitt trigger voltage hysteresis (3) Input leakage current (4) Min. Typ. Max. Unit Vss-0.3 - 0.3 x VDD V Input voltage on true open-drain pins (PC0 and PC1) with VDD < 2 V - 5.2(2) Input voltage on true open-drain pins (PC0 and PC1) with VDD ≥ 2 V - 5.5(2) Input voltage on all pins Input voltage on fivevolt tolerant (FT) pins with VDD < 2 V 0.70 x VDD V - 5.2(2) Input voltage on fivevolt tolerant (FT) pins with VDD ≥ 2 V - 5.5(2) Input voltage on any other pin - VDD+0.3(2) Standard I/Os - 200 - True open drain I/Os - 200 - VSS≤VIN≤VDD Standard I/Os - - 50 VSS≤VIN≤VDD True open drain I/Os - - 200 VSS≤VIN≤VDD PA0 with high sink LED driver capability - - 200 30(6) 45 60(6) kΩ - 5 - pF RPU Weak pull-up equivalent resistor(5) VIN=VSS CIO I/O pin capacitance - mV nA 1. VDD = 3.0 V, TA = -40 to 125 °C unless otherwise specified. 2. If VIH maximum is not respected, the injection current must be limited externally to IINJ(PIN) maximum. 3. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested. 4. The max. value may be exceeded if negative current is injected on adjacent pins. 5. RPU pull-up equivalent resistor based on a resistive transistor (corresponding IPU current characteristics described in Figure 28). 6. Guaranteed by characterization results. DocID027179 Rev 7 91/132 117 Electrical parameters STM8AL318x STM8AL3L8x Figure 25. Typical VIL and VIH vs. VDD (standard I/Os)  ƒ& ƒ&  9,/DQG9,+>9@ ƒ&           9''>9@ DLF Figure 26. Typical VIL and VIH vs. VDD (true open drain I/Os)  ƒ& ƒ&  9,/DQG9,+>9@ ƒ&         9''>9@   DLE 92/132 DocID027179 Rev 7 STM8AL318x STM8AL3L8x Electrical parameters Figure 27. Typical pull-up resistance RPU vs. VDD with VIN=VSS  ƒ&  3XOOXSUHVLVWDQFH>NŸ@  ƒ& ƒ&                9''>9@ DLE Figure 28. Typical pull-up current Ipu vs. VDD with VIN=VSS  ƒ& ƒ&  3XOOXSFXUUHQW>—$@ ƒ&                   9''>9@ DLE Output driving current Subject to general operating conditions for VDD and TA unless otherwise specified. DocID027179 Rev 7 93/132 117 Electrical parameters STM8AL318x STM8AL3L8x Table 42. Output driving current (high sink ports) I/O Symbol Type Output low-level voltage for an I/O pin Standard VOL (1) Parameter VOH (2) Output high-level voltage for an I/O pin Conditions Min. Max. Unit IIO = +2 mA, VDD = 3.0 V - 0.45 V IIO = +2 mA, VDD = 1.8 V - 0.45 V IIO = +10 mA, VDD = 3.0 V - 0.7 V IIO = -2 mA, VDD = 3.0 V VDD-0.45 - V IIO = -1 mA, VDD = 1.8 V VDD-0.45 - V IIO = -10 mA, VDD = 3.0 V VDD-0.7 - V 1. The IIO current sunk must always respect the absolute maximum rating specified in Table 16 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 2. The IIO current sourced must always respect the absolute maximum rating specified in Table 16 and the sum of IIO (I/O ports and control pins) must not exceed IVDD. Table 43. Output driving current (true open drain ports) Open drain I/O Symbol Type VOL (1) Parameter Output low-level voltage for an I/O pin Conditions Min. Max. IIO = +3 mA, VDD = 3.0 V - 0.45 IIO = +1 mA, VDD = 1.8 V - Unit V 0.45 1. The IIO current sunk must always respect the absolute maximum rating specified in Table 16 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. Table 44. Output driving current (PA0 with high sink LED driver capability) IR I/O Symbol Type VOL (1) Parameter Output low-level voltage for an I/O pin Conditions Min. Max. Unit IIO = +20 mA, VDD = 2.0 V - 0.45 V 1. The IIO current sunk must always respect the absolute maximum rating specified in Table 16 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 94/132 DocID027179 Rev 7 STM8AL318x STM8AL3L8x Electrical parameters Figure 29. Typical VOL @ VDD = 3.0 V (high sink Figure 30. Typical VOL @ VDD = 1.8 V (high sink ports) ports)     #  #  #  #   6/, ;6= 6/, ;6=   #  #  #  #                    )/, ;M!=         )/,;M!= AI AI Figure 31. Typical VOL @ VDD = 3.0 V (true open Figure 32. Typical VOL @ VDD = 1.8 V (true open drain ports) drain ports)    #  #  #  #    #  #  #  #  6/, ;6= 6/, ;6=                    )/, ;M!=     )/, ;M!= BJ AI Figure 33. Typical VDD - VOH @ VDD = 3.0 V (high Figure 34. Typical VDD - VOH @ VDD = 1.8 V (high sink ports) sink ports)     #  #  #  #   #  #  #  #  6$$ 6/( ;6= 6$$ 6/( ;6=                     )/( ;M!=          ) /( ;M!= AI DocID027179 Rev 7 BJ 95/132 117 Electrical parameters STM8AL318x STM8AL3L8x NRST pin Subject to general operating conditions for VDD and TA unless otherwise specified. Table 45. NRST pin characteristics Symbol Parameter Conditions Min. Typ. Max. VIL(NRST) NRST input low-level voltage - VSS(1) - 0.8(1) VIH(NRST) NRST input high-level voltage (1) - 1.4(1) - VDD(1) IOL = 2 mA for 2.7 V ≤VDD ≤ 3.6 V - - IOL = 1.5 mA for VDD < 2.7 V - VOL(NRST) VHYST NRST output low-level voltage (1) V 0.4(1) - 10%VDD (2)(3) - - mV - 30(1) 45 60(1) kΩ NRST input filtered pulse - - - 50(3) NRST input not filtered pulse - 300(3) - - NRST input hysteresis - NRST pull-up equivalent resistor VF(NRST) VNF(NRST) RPU(NRST) Unit ns 1. Guaranteed by characterization results. 2. 200 mV min. 3. Guaranteed by design. Figure 35. Typical NRST pull-up resistance RPU vs. VDD  ƒ& 3XOOXSUHVLVWDQFH>NŸ@  ƒ& ƒ&            9''>9@     DLE 96/132 DocID027179 Rev 7 STM8AL318x STM8AL3L8x Electrical parameters Figure 36. Typical NRST pull-up current Ipu vs. VDD  ƒ&  ƒ& 3XOOXSFXUUHQW>—$@ ƒ&                    9''>9@ DLE The reset network shown in Figure 37 protects the device against parasitic resets. The user must ensure that the level on the NRST pin goes below the VIL max. level specified in Table 45. Otherwise the reset is not taken into account internally. For power consumptionsensitive applications, the capacity of the external reset capacitor has to be reduced to limit the charge/discharge current. If the NRST signal is used to reset the external circuitry, the user must pay attention to the charge/discharge time of the external capacitor to meet the reset timing conditions of the external devices. The minimum recommended capacity is 10 nF. Figure 37. Recommended NRST pin configuration 9'' 538 ([WHUQDO UHVHW FLUFXLW 2SWLRQDO 1 567 )LOWHU ,QWHUQDOUHVHW 670 X) 069 DocID027179 Rev 7 97/132 117 Electrical parameters 9.3.8 STM8AL318x STM8AL3L8x Communication interfaces SPI1 - Serial peripheral interface Unless otherwise specified, the parameters given in Table 46 are derived from tests performed under ambient temperature, fSYSCLK frequency and VDD supply voltage conditions summarized in Section 9.3.1. Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO). Table 46. SPI1 characteristics Symbol Conditions(1) Min. Max. Master mode 0 8 Slave mode 0 8 SPI1 clock rise and fall time Capacitive load: C = 30 pF - 30 tsu(NSS)(2) NSS setup time Slave mode 4 x 1/fSYSCLK - th(NSS)(2) NSS hold time Slave mode 80 - SCK high and low time Master mode, fMASTER = 8 MHz, fSCK= 4 MHz 105 145 Master mode 30 - Slave mode 3 - Master mode 15 - Slave mode 0 - fSCK 1/tc(SCK) tr(SCK) tf(SCK) (2) tw(SCKH) tw(SCKL)(2) Parameter SPI1 clock frequency tsu(MI) (2) tsu(SI)(2) Data input setup time th(MI) (2) th(SI)(2) Data input hold time ta(SO)(2)(3) Data output access time Slave mode - 3x 1/fSYSCLK tdis(SO)(2)(4) 30 - Data output disable time Slave mode (2) Data output valid time Slave mode (after enable edge) - 60 tv(MO)(2) Data output valid time Master mode (after enable edge) - 20 Slave mode (after enable edge) 15 - Master mode (after enable edge) 1 - tv(SO) th(SO)(2) th(MO)(2) Data output hold time 1. Parameters are given by selecting 10 MHz I/O output frequency. 2. Guaranteed by characterization results or by design. 3. Min. time is for the minimum time to drive the output and max. time is for the maximum time to validate the data. 4. Min. time is for the minimum time to invalidate the output and max. time is for the maximum time to put the data in Hi-Z. 98/132 DocID027179 Rev 7 Unit MHz ns STM8AL318x STM8AL3L8x Electrical parameters Figure 38. SPI1 timing diagram - slave mode and CPHA=0 Figure 39. SPI1 timing diagram - slave mode and CPHA=1(1) 166LQSXW 6&.LQSXW W68 166 &3+$  &32/  &3+$  &32/  WZ 6&.+ WZ 6&./ WK 62 WY 62 WD 62 0,62 287387 06%287 %,7287 WU 6&. WI 6&. WGLV 62 /6%287 WK 6, WVX 6, 026, ,1387 WK 166 WF 6&. 06%,1 %,7,1 /6%,1 DLE 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. DocID027179 Rev 7 99/132 117 Electrical parameters STM8AL318x STM8AL3L8x Figure 40. SPI1 timing diagram - master mode(1) +LJK 166LQSXW 6&.2XWSXW &3+$  &32/  6&.2XWSXW WF 6&. &3+$  &32/  &3+$  &32/  &3+$  &32/  WVX 0, 0,62 ,13 87 WZ 6&.+ WZ 6&./ 06%,1 WU 6&. WI 6&. %,7,1 /6%,1 WK 0, 026, 287387 06%287 % , 7287 WY 02 /6%287 WK 02 DLF 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. 100/132 DocID027179 Rev 7 STM8AL318x STM8AL3L8x Electrical parameters I2C - Inter IC control interface Subject to general operating conditions for VDD, fSYSCLK, and TA unless otherwise specified. The STM8AL I2C interface (I2C1) meets the requirements of the Standard I2C communication protocol described in the following table with the restriction mentioned below: Refer to I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL). Table 47. I2C characteristics Standard mode I2C Symbol Parameter Fast mode I2C(1) Min.(2) Max. (2) Min. (2) Max. (2) tw(SCLL) SCL clock low time 4.7 - 1.3 - tw(SCLH) SCL clock high time 4.0 - 0.6 - tsu(SDA) SDA setup time 250 - 100 - th(SDA) SDA data hold time 0 - 0 900 tr(SDA) tr(SCL) SDA and SCL rise time - 1000 - 300 tf(SDA) tf(SCL) SDA and SCL fall time - 300 - 300 th(STA) START condition hold time 4.0 - 0.6 - tsu(STA) Repeated START condition setup time 4.7 - 0.6 - tsu(STO) STOP condition setup time 4.0 - 0.6 - STOP to START condition time (bus free) 4.7 - 1.3 - - 400 - 400 tw(STO:STA) Cb Capacitive load for each bus line Unit μs ns μs pF 1. fSYSCLK must be at least equal to 8 MHz to achieve max fast I2C speed (400 kHz). 2. Data based on standard I2C protocol requirement, not tested in production. Note: For speeds around 200 kHz, the achieved speed has a ± 5% tolerance. For other speed ranges, the achieved speed has a ± 2% tolerance. The above variations depend on the accuracy of the external components used. DocID027179 Rev 7 101/132 117 Electrical parameters STM8AL318x STM8AL3L8x Figure 41. Typical application with I2C bus and timing diagram(1)) 9'' NŸ 9'' NŸ ,&EXV 670 Ÿ 6'$ Ÿ 6&/ 5HSHDWHG VWDUW 67$57 WVX 67$ WZ 67267$ 6'$ WI 6'$ WU 6'$ WVX 6'$ WK 6'$ 67$57 6723 6&/ WK 67$ WZ 6&/+ WZ 6&// WU 6&/ WI 6&/ WVX 672 06Y9 1. Measurement points are done at CMOS levels: 0.3 x VDD and 0.7 x VDD 102/132 DocID027179 Rev 7 STM8AL318x STM8AL3L8x 9.3.9 Electrical parameters LCD controller (STM8AL3L8x only) In the following table, data are guaranteed by design, not tested in production. Table 48. LCD characteristics Symbol Parameter Min. Typ. Max. VLCD LCD external voltage - - 3.6 VLCD0 LCD internal reference voltage 0 - 2.6 - VLCD1 LCD internal reference voltage 1 - 2.7 - VLCD2 LCD internal reference voltage 2 - 2.8 - VLCD3 LCD internal reference voltage 3 - 3.0 - VLCD4 LCD internal reference voltage 4 - 3.1 - VLCD5 LCD internal reference voltage 5 - 3.2 - VLCD6 LCD internal reference voltage 6 - 3.4 - VLCD7 LCD internal reference voltage 7 - 3.5 - CEXT VLCD external capacitance 0.1 1 2 at VDD = 1.8 V - 3 - at VDD = 3 V - 3 - IDD Supply current(1) Supply current (1) Unit V µF µA RHN(2) High value resistive network (low drive) - 6.6 - MΩ (3) Low value resistive network (high drive) - 240 - kΩ V33 Segment/Common higher level voltage - - VLCDx V34 Segment/Common 3/4 level voltage - 3/4VLCDx - V23 Segment/Common 2/3 level voltage - 2/3VLCDx - V12 Segment/Common 1/2 level voltage - 1/2VLCDx - V13 Segment/Common 1/3 level voltage - 1/3VLCDx - V14 Segment/Common 1/4 level voltage - 1/4VLCDx - V0 Segment/Common lowest level voltage 0 - - RLN V 1. LCD enabled with 3 V internal booster (LCD_CR1 = 0x08), 1/4 duty, 1/3 bias, division ratio= 64, all pixels active, no LCD connected. 2. RHN is the total high value resistive network. 3. RLN is the total low value resistive network. VLCD external capacitor (STM8AL3L8x only) The application achieves a stabilized LCD reference voltage when connecting an external capacitor CEXT to the VLCD pin. CEXT is specified in Table 48. DocID027179 Rev 7 103/132 117 Electrical parameters 9.3.10 STM8AL318x STM8AL3L8x Embedded reference voltage In the following table, data are based on characterization results, not tested in production, unless otherwise specified. Table 49. Reference voltage characteristics Symbol IREFINT TS_VREFINT(1)(2) IBUF(1) VREFINT out Parameter Conditions Min. Typ. Max. Unit Internal reference voltage consumption - - 1.4 - µA ADC sampling time when reading the internal reference voltage - - 5 10 µs Internal reference voltage buffer consumption (used for ADC) - - 13.5 25 µA Reference voltage output - Internal reference voltage low-power buffer consumption (used for comparators or output) 1.202 (3) 1.224 - - Buffer output current - Reference voltage output load tVREFINT(1) tBUFEN(1)(2) ILPBUF(1) IREFOUT(1)(4) CREFOUT ACCVREFINT(5) STABVREFINT STABVREFINT 1.242 (3) V 730 1200 nA - - 1 µA - - - 50 pF Internal reference voltage startup time - - 2 3 ms Internal reference voltage buffer startup time once enabled - - - 10 µs Accuracy of VREFINT stored in the VREFINT_Factory_CONV byte - - - ±5 mV - 20 50 ppm/°C Stability of VREFINT over temperature -40 °C ≤TA ≤ 125 °C Stability of VREFINT over temperature 0 °C ≤TA ≤ 50 °C - - 20 ppm/°C Stability of VREFINT after 1000 hours - - - TBD ppm 1. Guaranteed by design. 2. Defined when ADC output reaches its final value ±1/2LSB 3. Tested in production at VDD = 3 V ±10 mV. 4. To guarantee less than 1% VREFOUT deviation 5. Measured at VDD = 3 V ±10 mV. This value takes into account VDD accuracy and ADC conversion accuracy. 104/132 DocID027179 Rev 7 STM8AL318x STM8AL3L8x 9.3.11 Electrical parameters Temperature sensor In the following table, data are based on characterization results, not tested in production, unless otherwise specified. Table 50. TS characteristics Symbol Parameter Min. Typ. Max. Unit V125 (1) Sensor reference voltage at 125°C ±5 °C, 0.640 0.660 0.680 V TL VSENSOR linearity with temperature - ±1 ±2 °C Avg_slope IDD(TEMP) Average slope 1.59 Consumption (2) 1.62 - TSTART(3) Temperature sensor startup time - TS_TEMP ADC sampling time when reading the temperature sensor - 1.65 3.4 6 (2) mV/°C (2) µA - 10(2) µs 5 10(2) µs 1. Tested in production at VDD = 3 V ±10 mV. The 8 LSB of the V125 ADC conversion result are stored in the TS_Factory_CONV_V125 byte. 2. Guaranteed by design. 3. Defined for ADC output reaching its final value ±1/2LSB. 9.3.12 Comparator characteristics In the following table, data are guaranteed by design, not tested in production. Table 51. Comparator 1 characteristics Symbol Parameter Conditions Min(1) Typ Max(1) Unit 3.6 V VDDA Analog supply voltage - 1.65 R400K R400K value - - 400 - R10K R10K value - - 10 - Comparator 1 input voltage range - 0.6 Comparator startup time - - 7 10 - - 3 10 - - ±3 ±10 mV 0 1.5 10 mV/1000 h - 160 260 nA VIN tSTART td Propagation delay Voffset Comparator offset dVoffset/dt ICOMP1 (2) Comparator offset variation in worst voltage stress conditions Current consumption(3) VDDA = 3.6 V VIN+ = 0 V VIN- = VREFINT TA = 25 ° C - VDDA kΩ V µs 1. Guaranteed by characterization results . 2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the noninverting input set to the reference. 3. Comparator consumption only. Internal reference voltage not included. DocID027179 Rev 7 105/132 117 Electrical parameters STM8AL318x STM8AL3L8x In the following table, data are guaranteed by design, not tested in production, unless otherwise specified. Table 52. Comparator 2 characteristics Symbol VDDA VIN Parameter Min Analog supply voltage - 1.65 - 3.6 V Comparator 2 input voltage range - 0 - VDDA V Fast mode - 15 20 Slow mode - 20 25 1.65 V ≤VDDA ≤2.7 V - 1.8 3.5 2.7 V ≤VDDA ≤3.6 V - 2.5 6 1.65 V ≤VDDA ≤2.7 V - 0.8 2 2.7 V ≤VDDA ≤3.6 V - 1.2 4 - - ±4 ±20 mV VDDA = 3.3V TA = 0 to 50 ° C V- = VREF+, 3/4 VREF+, 1/2 VREF+, 1/4 VREF+. - 15 30 ppm /°C Fast mode - 3.5 5 Slow mode - 0.5 2 tSTART Comparator startup time td slow Propagation delay(2) in slow mode td fast Propagation delay(2) in fast mode Voffset Comparator offset error dThreshold/dt ICOMP2 Typ Max(1) Unit Conditions Threshold voltage temperature coefficient Current consumption(3) 1. Guaranteed by characterization results. 2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the noninverting input set to the reference. 3. Comparator consumption only. Internal reference voltage (necessary for comparator operation) is not included. 106/132 DocID027179 Rev 7 µs µA STM8AL318x STM8AL3L8x 9.3.13 Electrical parameters 12-bit DAC characteristics In the following table, data are guaranteed by design, not tested in production. Table 53. DAC characteristics Symbol Parameter Conditions Min. Typ. Max. Unit VDDA Analog supply voltage - 1.8 - 3.6 VREF+ Reference supply voltage - 1.8 - VDDA VREF+ = 3.3 V, no load, middle code (0x800) - 130 220 VREF+ = 3.3 V, no load, worst code (0x000) - 220 350 VDDA = 3.3 V, no load, middle code (0x800) - 210 320 VDDA = 3.3 V, no load, worst code (0x000) - 320 520 - -40 - 125 Resistive load DACOUT buffer ON 5 - Output impedance DACOUT buffer OFF - 8 10 kΩ - - - 50 pF DACOUT buffer ON 0.2 - VDDA - 0.2 V DACOUT buffer OFF 0 - VREF+ -1 LSB V Settling time (full scale: for a 12bit input code transition between the lowest and the highest input codes when DAC_OUT reaches the final value ±1LSB) RL ≥5 kΩ, CL≤ 50 pF - 7 12 µs Max frequency for a correct DAC_OUT (@95%) change Update rate when small variation of the input code (from code i to i+1LSB). RL ≥ 5 kΩ, CL ≤50 pF - - 1 Msps IVREF IVDDA TA RL(1) (2) RO CL (3) DAC_OUT (4) tsettling Current consumption on VREF+ supply Current consumption on VDDA supply Temperature range Capacitive load DAC_OUT voltage V µA °C kΩ tWAKEUP Wakeup time from OFF state. Input code between lowest and highest possible codes. RL ≥5 kΩ, CL≤50 pF - 9 15 µs PSRR+ Power supply rejection ratio (to VDDA) (static DC measurement) RL≥ 5 kΩ, CL≤50 pF - -60 -35 dB 1. Resistive load between DACOUT and GNDA 2. Output on PF0 or PF1 3. Capacitive load at DACOUT pin 4. It gives the output excursion of the DAC DocID027179 Rev 7 107/132 117 Electrical parameters STM8AL318x STM8AL3L8x In the following table, data are based on characterization results, not tested in production. Table 54. DAC accuracy Symbol Parameter Typ. Max.(1) 1.5 3 1.5 3 2 4 2 4 ±10 ±25 No load DACOUT buffer OFF ±5 ±8 DACOUT buffer OFF ±1.5 ±5 Conditions RL ≥5 kΩ, CL≤50 pF DNL DACOUT buffer ON(3) Differential non linearity(2) No load DACOUT buffer OFF RL ≥5 kΩ, CL≤ 50 pF INL DACOUT buffer ON(3) Integral non linearity(4) No load DACOUT buffer OFF RL ≥5 kΩ, CL≤ 50 pF Offset Offset1 DACOUT buffer ON(3) Offset error(5) Offset error at Code 1 (6) RL ≥5 kΩ, CL≤ 50 pF Gain error Gain DACOUT buffer ON(3) error(7) No load DACOUT buffer OFF RL ≥5 kΩ, CL≤ 50 pF TUE DACOUT buffer ON(3) Total unadjusted error No load -DACOUT buffer OFF Unit 12-bit LSB +0.1/-0.2 +0.2/-0.5 % +0/-0.2 +0/-0.4 12 30 8 12 12-bit LSB 1. Not tested in production. 2. Difference between two consecutive codes - 1 LSB. 3. In 48-pin package devices the DAC2 output buffer must be kept off and no load must be applied on the DAC_OUT2 output. 4. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023. 5. Difference between the value measured at Code (0x800) and the ideal value = VREF+/2. 6. Difference between the value measured at Code (0x001) and the ideal value. 7. Difference between the ideal slope of the transfer function and the measured slope computed from Code 0x000 and 0xFFF when buffer is ON, and from Code giving 0.2 V and (VDDA -0.2) V when buffer is OFF. 108/132 DocID027179 Rev 7 STM8AL318x STM8AL3L8x Electrical parameters In the following table, data are guaranteed by design, not tested in production. Table 55. DAC output on PB4-PB5-PB6(1) Symbol Rint Parameter Internal resistance between DAC output and PB4-PB5-PB6 output Conditions Max 2.7 V < VDD < 3.6 V 1.4 2.4 V < VDD < 3.6 V 1.6 2.0 V < VDD < 3.6 V 3.2 1.8 V < VDD < 3.6 V 8.2 Unit kΩ 1. 32 or 28-pin packages only. The DAC channel is routed either on PB4, PB5 or PB6 using the routing interface I/O switch registers. DocID027179 Rev 7 109/132 117 Electrical parameters 9.3.14 STM8AL318x STM8AL3L8x 12-bit ADC1 characteristics In the following table, data are guaranteed by design, not tested in production. Table 56. ADC1 characteristics Symbol Parameter VDDA Analog supply voltage VREF+ Reference supply voltage VREF- Conditions Min. Typ. Max. Unit - 1.8 - 3.6 V 2.4 V ≤VDDA≤ 3.6 V 2.4 - VDDA V 1.8 V≤VDDA≤ 2.4 V VDDA V Lower reference voltage - VSSA V IVDDA Current on the VDDA input pin - - - - IVREF+ Current on the VREF+ input pin 1000 400 - - 1450 µA 700 (peak)(1) µA 450 (average)(1) µA VAIN Conversion voltage range - 0(2) - VREF+ TA Temperature range - -40 - 125 °C on PF0/1/2/3 fast channels - - 50(3) kΩ on all other channels - - on PF0/1/2/3 fast channels - on all other channels - 2.4 V≤VDDA≤3.6 V without zooming 0.320 - 16 MHz 1.8 V≤VDDA≤2.4 V with zooming 0.320 - 8 MHz VAIN on PF0/1/2/3 fast channels - - 1(3)(4) MHz VAIN on all other channels - - 760(3)(4) kHz RAIN CADC fADC fCONV External resistance on VAIN Internal sample and hold capacitor ADC sampling clock frequency 12-bit conversion rate 16 - pF - fTRIG External trigger frequency - - - tconv 1/fADC tLAT External trigger latency - - - 3.5 1/fSYSCLK 110/132 DocID027179 Rev 7 STM8AL318x STM8AL3L8x Electrical parameters Table 56. ADC1 characteristics (continued) Symbol tS Parameter Sampling time tconv 12-bit conversion time tWKUP Conditions Min. Typ. Max. VAIN PF0/1/2/3 fast channels VDDA < 2.4 V 0.43(3)(4) - - VAIN PF0/1/2/3 fast channels 2.4 V ≤VDDA≤ 3.6 V 0.22(3)(4) - - VAIN on slow channels VDDA < 2.4 V 0.86(3)(4) - - VAIN on slow channels 2.4 V ≤VDDA≤ 3.6 V 0.41(3)(4) - - - Unit µs 12000000 / fADC + tS 16 MHz 1(3) - Wakeup time from OFF state - - - 3 tIDLE(5) Time before a new conversion - - - ∞ s tVREFINT Internal reference voltage startup time - - - refer to Table 49 ms - 1. The current consumption through VREF is composed of two parameters: - one constant (max 300 µA) - one variable (max 400 µA), only during sampling time + 2 first conversion pulses. So, peak consumption is 300+400 = 700 µA and average consumption is 300 + [(4 sampling + 2) /16] x 400 = 450 µA at 1Msps 2. VREF- must be tied to ground. 3. Minimum sampling and conversion time is reached for maximum RAIN= 0.5 kΩ.. 4. Value obtained for continuous conversion on fast channel. 5. In the RM0031, tIDLE defines the time between 2 conversions, or between ADC ON and the first conversion. tIDLE is not relevant for this device. DocID027179 Rev 7 111/132 117 Electrical parameters STM8AL318x STM8AL3L8x In the following three tables, data are guaranteed by characterization result, not tested in production. Table 57. ADC1 accuracy with VDDA = 3.3 V to 2.5 V Symbol Typ. Max.(1) 1 1.6 Differential non linearity fADC = 8 MHz 1 1.6 fADC = 4 MHz 1 1.5 fADC = 16 MHz 1.2 2 fADC = 8 MHz 1.2 1.8 fADC = 4 MHz 1.2 1.7 fADC = 16 MHz 2.2 3.0 fADC = 8 MHz 1.8 2.5 fADC = 4 MHz 1.8 2.3 fADC = 16 MHz 1.5 2 fADC = 8 MHz 1 1.5 fADC = 4 MHz 0.7 1.2 1 1.5 Parameter Conditions fADC = 16 MHz DNL INL Integral non linearity TUE Total unadjusted error Offset Offset error fADC = 16 MHz Gain Gain error fADC = 8 MHz Unit LSB LSB fADC = 4 MHz 1. Guaranteed by characterization results. Table 58. ADC1 accuracy with VDDA = 2.4 V to 3.6 V Symbol Parameter Typ. Max.(1) Unit 1 2 LSB 1.7 3 LSB DNL Differential non linearity INL Integral non linearity TUE Total unadjusted error 2 4 LSB Offset Offset error 1 2 LSB Gain Gain error 1.5 3 LSB 1. Guaranteed by characterization results. Table 59. ADC1 accuracy with VDDA = VREF+ = 1.8 V to 2.4 V Symbol 112/132 Parameter Typ. Max.(1) Unit DNL Differential non linearity 1 2 LSB INL Integral non linearity 2 3 LSB TUE Total unadjusted error 3 5 LSB DocID027179 Rev 7 STM8AL318x STM8AL3L8x Electrical parameters Table 59. ADC1 accuracy with VDDA = VREF+ = 1.8 V to 2.4 V (continued) Symbol Parameter Typ. Max.(1) Unit Offset Offset error 2 3 LSB Gain Gain error 2 3 LSB 1. Guaranteed by characterization results. Figure 42. ADC1 accuracy characteristics 9''$ 95() RUGHSHQGLQJRQSDFNDJH >/6%,'($/    (*    ([DPSOHRIDQDFWX DOWUDQVIH UFXUYH  7KHLGHDOWUDQVIHUFX UYH  (QGSRLQWFRUUHODWLRQOLQH  (7 7RWDOXQDGMXVWHG(UURUPD[LPXPGHYLDWLRQ EHWZHHQWKHDFWXDODQGWKHLGHDOWUDQVIHUFXUYHV (2 2IIVHW(UURUGHYLDWLRQEHWZHHQWKHILUVWDFWXDO WUDQVLWLRQDQGWKHODVWDFWXDORQH (* *DLQ(UURUGHYLDWLRQEHWZHHQWKHODVWLGHDO WUDQVLWLRQDQGWKHODVWDFWXDORQH (' 'LIIHUHQWLDO/LQHDULW\(UURUPD[LPXPGHYLDWLRQ EHWZHHQDFWXDOVWHSVDQGWKHLGHDORQH (/ ,QWHJUDO/LQHDULW\(UURUPD[LPXPGHYLDWLRQ EHWZHHQDQ\DFWXDOWUDQVLWLRQDQGWKHHQGSRLQW FRUUHODWLRQOLQH  (7      (2  (/  ('  /6%,'($/   966$            9''$ DLH Figure 43. Typical connection diagram using the ADC 670$/[[[ 9'' 6DPSOHDQGKROG$'& FRQYHUWHU 97 9 5$,1  5$'& $,1[ 97 9 9$,1 &SDUDVLWLF  ELW FRQYHUWHU &$'&  ,/ “ Q$ 069 1. Refer to Table 56 for the values of RAIN and CADC. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy this, fADC should be reduced. General PCB design guidelines Power supply decoupling should be performed as shown in Figure 44 or Figure 45, depending on whether VREF+ is connected to VDDA or not. Good quality ceramic 10 nF capacitors should be used. They should be placed as close as possible to the chip. DocID027179 Rev 7 113/132 117 Electrical parameters STM8AL318x STM8AL3L8x Figure 44. Power supply and reference decoupling (VREF+ not connected to VDDA) 670$/ 9 5() —)Q) 9 ''$ —)Q) 9 66$9 5() 069 Figure 45. Power supply and reference decoupling (VREF+ connected to VDDA) 670$/ 95()9''$ —)Q) 95()±966$ 069 114/132 DocID027179 Rev 7 STM8AL318x STM8AL3L8x 9.3.15 Electrical parameters EMC characteristics Susceptibility tests are performed on a sample basis during product characterization. Functional EMS (electromagnetic susceptibility) Based on a simple running application on the product (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs). • ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms to the ANSI/ESDA/JEDEC JS001, JESD22-A115 and ANSI/ESD S5.3.1. • FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 61000 standard. A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709. Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Prequalification trials: Most of the common failures (unexpected reset and program counter corruption) are reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress is applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software is hardened to prevent unrecoverable errors occurring (see application note AN1015). Table 60. EMS data Symbol Parameter Conditions VFESD VDD = 3.3 V, TA = +25 °C, Voltage limits to be applied on any I/O pin to induce a functional fCPU= 16 MHz, disturbance conforms to IEC 61000 VEFTB Fast transient voltage burst limits VDD = 3.3 V, TA = +25 °C, to be applied through 100 pF on Using HSI fCPU = 16 MHz, VDD and VSS pins to induce a conforms to IEC 61000 Using HSE functional disturbance DocID027179 Rev 7 Level/ Class 2B 4A 2B 115/132 117 Electrical parameters STM8AL318x STM8AL3L8x Electromagnetic interference (EMI) Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm IEC61967-2 which specifies the board and the loading of each pin. Table 61. EMI data (1) Symbol SEMI Parameter Peak level Conditions VDD = 3.6 V, TA = +25 °C, LQFP80 conforming to IEC61967-2 Max vs. Monitored frequency band Unit 16 MHz 0.1 MHz to 30 MHz 10 30 MHz to 130 MHz 4 130 MHz to 1 GHz 1 EMI Level dBμV 1.5 - 1. Guaranteed by characterization results. Absolute maximum ratings (electrical sensitivity) Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Two models are simulated: human body model and charge device model. This test conforms to the ANSI/ESDA/JEDEC JS-001, JESD22-A115 and ANSI/ESD S5.3.1. Table 62. ESD absolute maximum ratings Symbol Ratings Conditions Class VESD(HBM) Electrostatic discharge voltage (human body model) TA = 25 °C, conforming to ANSI/ESDA/ JEDEC JS-001 2 2000 VESD(CDM) Electrostatic discharge voltage (charge device model) TA = 25 °C, conforming to ANSI/ESD S5.3.1 C4B 500 VESD(MM) Electrostatic discharge voltage (machine model) TA = 25 °C, conforming to JESD22-A115 M2 200 1. Guaranteed by characterization results. 116/132 Maximum Unit value (1) DocID027179 Rev 7 V STM8AL318x STM8AL3L8x Electrical parameters Static latch-up • LU: 3 complementary static tests are required on 10 parts to assess the latch-up performance. A supply overvoltage (applied to each power supply pin) and a current injection (applied to each input, output and configurable I/O pin) are performed on each sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181. Table 63. Electrical sensitivities Symbol LU Parameter Class (1) Conditions TA = 125 °C Static latch-up class A 1. Class description: the class is an STMicroelectronics internal specification. The class limits are higher than the JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B class strictly covers all the JEDEC criteria (international standard). 9.4 Thermal characteristics The maximum chip junction temperature (TJmax) must never exceed the values given in Table 19: General operating conditions on page 68. The maximum chip-junction temperature, TJmax, in degree Celsius, may be calculated using the following equation: TJmax = TAmax + (PDmax x ΘJA) Where: • TAmax is the maximum ambient temperature in ° C • ΘJA is the package junction-to-ambient thermal resistance in ° C/W • PDmax is the sum of PINTmax and PI/Omax (PDmax = PINTmax + PI/Omax) • PINTmax is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power. • PI/Omax represents the maximum power dissipation on output pins Where: PI/Omax = Σ (VOL*IOL) + Σ((VDD-VOH)*I OH), taking into account the actual VOL/IOL and VOH/IOH of the I/Os at low and high-level in the application. Table 64. Thermal characteristics(1) Symbol Parameter Value Unit ΘJA Thermal resistance junction-ambient LQFP48 - 7 x 7 mm 65 °C/W ΘJA Thermal resistance junction-ambient LQFP 64- 10 x 10 mm 48 °C/W ΘJA Thermal resistance junction-ambient LQFP 80- 14 x 14 mm 38 °C/W 1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection environment. DocID027179 Rev 7 117/132 117 Package information 10 STM8AL318x STM8AL3L8x Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 10.1 LQFP80 package information Figure 46. LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package outline C ! ! ! 3%!4).' 0,!.% # MM '!5'%0,!.% # ! CCC , $ K , $ $     0).  )$%.4)&)#!4)/. % % % B    E 3?-% 1. Drawing is not to scale. 118/132 DocID027179 Rev 7 STM8AL318x STM8AL3L8x Package information Table 65. LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package mechanical data(1) millimeters inches Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.220 0.320 0.380 0.0087 0.0126 0.0150 c 0.090 - 0.200 0.0035 - 0.0079 D 15.800 16.000 16.200 0.6220 0.6299 0.6378 D1 13.800 14.000 14.200 0.5433 0.5512 0.5591 D3 - 12.350 - - 0.4862 - E 15.800 16.000 16.200 0.6220 0.6299 0.6378 E1 13.800 14.000 14.200 0.5433 0.5512 0.5591 E3 - 12.350 - - 0.4862 - e - 0.650 - - 0.0256 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0° 3.5° 7° 0° 3.5° 7° ccc - - 0.100 - - 0.0039 1. Values in inches are converted from mm and rounded to 4 decimal digits. DocID027179 Rev 7 119/132 129 Package information STM8AL318x STM8AL3L8x Figure 47. LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package recommended footprint                4@'1 1. Dimensions are expressed in millimeters. Device marking for LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. 120/132 DocID027179 Rev 7 STM8AL318x STM8AL3L8x Package information Figure 48. LQFP80 marking example (package top view) 6WDQGDUG67ORJR 3 3URGXFWLGHQWLILFDWLRQ  5HYLVLRQFRGH 45.""5$ 'DWHFRGH : 88 3LQLGHQWLILHU 069 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. DocID027179 Rev 7 121/132 129 Package information 10.2 STM8AL318x STM8AL3L8x LQFP64 package information Figure 49. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline PP *$8*(3/$1( F $ $ $ 6($7,1*3/$1( & $ FFF & ' ' ' . / /      3,1 ,'(17,),&$7,21 ( ( ( E    H :B0(B9 1. Drawing is not to scale. Table 66. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol 122/132 Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D - 12.000 - - 0.4724 - D1 - 10.000 - - 0.3937 - D3 - 7.500 - - 0.2953 - E - 12.000 - - 0.4724 - E1 - 10.000 - - 0.3937 - DocID027179 Rev 7 STM8AL318x STM8AL3L8x Package information Table 66. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max E3 - 7.500 - - 0.2953 - e - 0.500 - - 0.0197 - K 0° 3.5° 7° 0° 3.5° 7° L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 50. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package recommended footprint                 AIC 1. Dimensions are expressed in millimeters. DocID027179 Rev 7 123/132 129 Package information STM8AL318x STM8AL3L8x Device marking for LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 51. LQFP64 marking example (package top view) 3URGXFWLGHQWLILFDWLRQ  45."5$ 'DWHFRGH : 88 6WDQGDUG67ORJR 5HYLVLRQFRGH 3LQLGHQWLILHU 3 069 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. 124/132 DocID027179 Rev 7 STM8AL318x STM8AL3L8x LQFP48 package information Figure 52. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline 3%!4).' 0,!.% # C ! ! ! MM '!5'%0,!.% CCC # $ + ! $ , , $      0). )$%.4)&)#!4)/. % % B % 10.3 Package information    E "?-%?6 1. Drawing is not to scale. DocID027179 Rev 7 125/132 129 Package information STM8AL318x STM8AL3L8x Table 67. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 8.800 9.000 9.200 0.3465 0.3543 0.3622 D1 6.800 7.000 7.200 0.2677 0.2756 0.2835 D3 - 5.500 - - 0.2165 - E 8.800 9.000 9.200 0.3465 0.3543 0.3622 E1 6.800 7.000 7.200 0.2677 0.2756 0.2835 E3 - 5.500 - - 0.2165 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0° 3.5° 7° 0° 3.5° 7° ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. 126/132 DocID027179 Rev 7 STM8AL318x STM8AL3L8x Package information Figure 53. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package recommended footprint                    AID 1. Dimensions are expressed in millimeters. DocID027179 Rev 7 127/132 129 Package information STM8AL318x STM8AL3L8x Device marking for LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 54. LQFP48 marking example (package top view) 3URGXFWLGHQWLILFDWLRQ  45."5$ 'DWHFRGH : 88 6WDQGDUG67ORJR 5HYLVLRQFRGH 3LQLGHQWLILHU 3 069 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. 128/132 DocID027179 Rev 7 STM8AL318x STM8AL3L8x 11 Ordering information Ordering information Table 68. Ordering information scheme Example: STM8 AL 31 8 A T C Y Device family STM8 microcontroller Product type AL = automotive low-power(1) Device subfamily 31: standard devices 3L: devices with LCD Program memory size 8 = 64 Kbytes of Flash memory Pin count A = 80 pins 9 = 64 pins 8 = 48 pins Package T = LQFP Temperature range C = -40 to 125 °C A = -40 to 85 °C Packing Y = tray X = Tape and reel compliant with EIA 481-C 1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q002 or equivalent. For a list of available options (e.g. memory size, package) and orderable part numbers or for further information on any aspect of this device, please go to www.st.com or contact the nearest ST sales office. DocID027179 Rev 7 129/132 129 Revision history 12 STM8AL318x STM8AL3L8x Revision history Table 69. Document revision history Date Revision 03-Feb-2015 1 Initial release. 2 Added: – Figure 50: LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package recommended footprint, – Figure 48: LQFP80 marking example (package top view), – Figure 51: LQFP64 marking example (package top view), – Figure 54: LQFP48 marking example (package top view). Corrected OPT0 default value in Table 12: Option byte addresses. 27-Jul-2015 3 Updated – the document confidentiality level to “Public”, – Table 1: Device summary, replacing STM8AL318AT with STM8AL318A. 19-Aug-2015 4 Datasheet status changed to “production data”. 5 – Updated Table 5: High-density STM8AL3x8x pin description: two pin names changed from PI0/RTC_TAMP1/[SPI2_NSS]/[TIM3_CH3 to PI0/RTC_TAMP1/[SPI2_NSS]/[TIM3_CH1 and from PF2/ADC1_IN26/[SPI2_SCK]/[USART3_SCK] to PF2/ADC1_IN26/[SPI1_SCK]/[USART3_SCK] – Updated device marking part of Section 10.1: LQFP80 package information, Section 10.2: LQFP64 package information and Section 10.3: LQFP48 package information – Updated Section 9.2: Absolute maximum ratings – Updated table footnotes in Chapter 9: Electrical parameters – Updated Figure 12: Power supply thresholds 22-Apr-2015 1-Dec-2016 130/132 Changes DocID027179 Rev 7 STM8AL318x STM8AL3L8x Revision history Table 69. Document revision history (continued) Date 5-Dec-2016 25-Jul-2017 Revision Changes 6 – Updated Table 5: High-density STM8AL3x8x pin description: pin name changed from PC3/USART1_TX/LCD_SEG23(3)/ADC1_IN5/COMP _IN3M/COMP2_INM/COMP1_INP to PC3/USART1_TX/LCD_SEG23(3)/ADC1_IN5/COMP 2_INM/COMP1_INP. 7 – Updated introductory text on Section : LSE external clock (LSEBYP=1 in CLK_ECKCR) and Section : LSE crystal/ceramic resonator oscillator – Updated section naming and footnotes on Section : Device marking for LQFP80 - 80-pin, 14 x 14 mm lowprofile quad flat package, Section : Device marking for LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package and Section : Device marking for LQFP48 48-pin, 7 x 7 mm low-profile quad flat package. DocID027179 Rev 7 131/132 131 STM8AL318x STM8AL3L8x IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2017 STMicroelectronics – All rights reserved 132/132 DocID027179 Rev 7
STM8AL3188TCX 价格&库存

很抱歉,暂时无法提供与“STM8AL3188TCX”相匹配的价格&库存,您可以联系我们找货

免费人工找货