0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STUSB4500LQTR

STUSB4500LQTR

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    QFN24

  • 描述:

  • 数据手册
  • 价格&库存
STUSB4500LQTR 数据手册
STUSB4500L Datasheet Standalone USB Type-C™ sink port controller Features • • • Auto-run Type-C™ sink controller (5 V) Dead battery mode support Integrated VBUS switch gate drivers (PMOS) • Integrated VBUS voltage monitoring • • Short-to-VBUS protections on CC pins High voltage capability on VBUS pins • • Source power budget reporting: (default / 1.5 A / 3 A) current at 5 V VBUS powered: – – • • • Product status link Zero consumption on local battery or application VDD = [4.1 V; 22 V] Temperature range: -40 °C up to 105 °C ESD: 3 kV HBM - 1.5 kV CDM Certified: – USB Type-C™ rev 1.4 – Power sinking device (TID #1455) STUSB4500L Applications Product summary Order code Description STUSB4500LQTR STUSB4500LBJR Standalone USB Type-C controller (auto-run mode) QFN-24 EP (4x4) Package WLCSP-25 (2.6x2.6x0.5) Marking 4500L • • • • • • • Printers, camcorders, cameras IoT, drones, accessories and battery powered devices Computer accessories (keyboards, mouse) Toys, gaming, POS, scanner, LED lighting Healthcare, e-cigarettes, handheld devices 5 V DC barrel, USB STD-B and micro-B replacement Any 5 V Type-C sink device Description The STUSB4500L is a USB Type-C controller that addresses 5 V-only sink devices up to 3 A (15 W max.). This device supports dead battery mode and is suited for sink devices powered from dead battery state. It is able to operate without any external software support for quick application power-on and immediate charging process start. At type-C connection, the STUSB4500L seeks CC pin for SOURCE termination and monitors VBUS voltage in order to protect the application from an incorrect SOURCE operation. When VBUS is within the appropriate range, the STUSB4500L powers the application by closing the input switch. The available current advertised by the SOURCE is reported to the application in order to align the sinking current. Port status can be optionally monitored by the software through I²C interface. Thanks to its 20 V technology, it implements high voltage features to protect the CC pins against short-circuits to VBUS. DS13102 - Rev 6 - February 2022 For further information contact your local STMicroelectronics sales office. www.st.com STUSB4500L Functional description 1 Functional description The STUSB4500L is a USB Type-C™ IC controller addressing 5 V sink applications. It supports dead battery mode to allow a system to be powered from a VBUS power source directly. The STUSB4500L major role is to: 1. Detect the connection between two USB Type-C ports (attach detection) 2. Establish a valid source-to-sink connection 3. Identify the attached device: source or debug accessory 4. Resolve cable orientation and twist connections to establish USB 3 data routing (MUX control) if any 5. Configure the incoming VBUS power path 6. Monitor the VBUS power path 7. Report the available power advertised by the source 8. Handle the high voltage protections The STUSB4500L also provides: 1.1 • • Dead battery mode Internal and/or external VBUS discharge paths • • Debug accessory mode detection Customization of the device configuration through NVM to support specific applications Block overview Figure 1. Functional block diagram VDD VSYS VREG_2V7 Internal supply VREG_1V2 voltage monitoring VBUS status VBUS_VS_DISCH Discharge path VBUS_EN_SNK DISCH A_B_SIDE ADDR[1..0] SCL SDA I²C slave ALERT ATTACH RP_3A; RP_1A5 Port C controller CC line access CC1DB CC1 CC2 CC2DB Control GPIO RESET POR GND DS13102 - Rev 6 page 2/31 STUSB4500L Inputs/outputs 2 Inputs/outputs 2.1 Pinout VREG_2V7 VSYS VREG_1V2 RP_3A ALERT 1 24 23 22 21 20 19 CC1 2 NU 3 CC2 4 CC2DB VBUS_VS_DISCH 17 A_B_SIDE 16 VBUS_EN_SNK 15 GPIO 5 14 RP_1A5 6 13 ADDR1 10 11 12 ADDR0 9 ATTACH 8 GND 7 SDA EP SCL RESET 18 DISCH CC1DB VDD Figure 2. QFN-24 pin connections (top view) Figure 3. WLCSP-25 pin connections (top view) 1 DS13102 - Rev 6 2 3 4 5 A VBUS_VS _DISCH RP_3A VREG _1V2 VREG _2V7 VDD B VSYS ALERT - CC1DB CC1 C VBUS_ EN_SNK A_B_ SIDE - CC2DB CC2 D GPIO ADDR1 ADDR0 RESET SCL E RP_1A5 ATTACH GND DISCH SDA page 3/31 STUSB4500L Pinout Table 1. Pin function list QFN CSP Name Type 1 B4 CC1DB HV AIO Dead battery enable on CC1 pin To CC1 pin if used or ground 2 B5 CC1 HV AIO Type-C configuration channel 1 To Type-C receptacle A5 3 B3, C3 NU - - To ground 4 C5 CC2 HV AIO Type-C configuration channel 2 To Type-C receptacle B5 5 C4 CC2DB HV AIO Dead battery enable on CC2 pin To CC2 pin if used or ground 6 D4 RESET DI Reset input, active high From system I2C To I²C master, ext. pull-up or floating (if not used 7 D5 SCL DI 8 E5 SDA DI/OD 9 E4 DISCH HV AI/OD 10 E3 GND GND 11 E2 ATTACH OD 12 D3 ADDR0 Description clock input Typical connection I2C data input/output, active low open drain To I²C master, ext. pull-up or floating (if not used Internal discharge path or external discharge path enable, active low open drain From power system (internal path) or to the discharge path switch (external path), ext. pullup Ground Ground Attachment detection, active low open drain To MCU if any, ext. pull-up I²C device address setting Static, to ground or ext. pull-up for address selection, DI to ground if no connection to MCU I²C device address setting Static, to ground or ext. pull-up for address selection, 13 D2 ADDR1 DI 14 E1 RP_1A5 OD 1.5 A source flag, active low open drain To power system, ext. pull-up 15 D1 GPIO OD General purpose output, active low open drain To system, ext. pull-up 16 C1 VBUS_EN_SNK HV OD VBUS sink power path enable, active low open drain To power switch or to power system, ext. pull-up 17 C2 A_B_SIDE OD Cable orientation, active low open drain USB super speed MUX select, ext. pull-up 18 A1 VBUS_VS_DISCH HV AI VBUS voltage monitoring and discharge path From VBUS, receptacle side 19 B2 ALERT OD I2C interrupt, active low open drain To I²C master, ext. pull-up 20 A2 RP_3A HV OD 3 A source flag, active low open drain To power switch or to power system, ext. pull-up 21 A3 VREG_1V2 PWR 1.2 V internal regulator output 1 µF typ. decoupling capacitor 22 B1 VSYS PWR Power supply from system From power system, connect to ground if not used 23 A4 VREG_2V7 PWR 2.7 V internal regulator output 1 µF typ. decoupling capacitor 24 A5 VDD HV PWR Power supply from USB power line From VBUS, receptacle side EP - EP GND Exposed pad is connected to ground To ground DS13102 - Rev 6 to ground if no connection to MCU page 4/31 STUSB4500L Pin description Table 2. Pin function descriptions 2.2 2.2.1 Type Description D Digital A Analog O Output pad I Input pad IO Bidirectional pad OD Open drain output PD Pull-down PU Pull-up HV High voltage PWR Power GND Ground Pin description CC1 / CC2 CC1 and CC2 are the configuration channel pins used for connection and attachment detection, plug orientation determination. CC1 and CC2 are HiZ during reset. 2.2.2 CC1DB / CC2DB CC1DB and CC2DB are enabled by dead battery mode by connecting CC1DB and CC2DB respectively to CC1 and CC2. Thanks to this connection, the pull-down terminations on the CC pins are present by default even if the device is not supplied (see Section 3.3 Dead battery mode). Warning: CC1DB and CC2DB must be connected to ground when dead battery mode is not supported, then Vsys must be used. 2.2.3 RESET Active high reset. 2.2.4 I²C interface pins Table 3. I2C interface pin list Name Description SCL I²C clock, need external pull-up SDA I²C data, need external pull-up ALERT ADDR0, ADDR1 I²C interrupt, need external pull-up I²C device address bits (see Section 4 I²C Interface) Warning: ADDR0 and ADDR1 pins must be connected to ground when there is no connection to an MCU. DS13102 - Rev 6 page 5/31 STUSB4500L Pin description 2.2.5 DISCH This input/output pin can be used to implement a discharge path for highly capacitive VBUS line on power system side. When used as input, the discharge is internal and a serial resistor must connected to the pin to limit the discharge current through the pin. Maximum discharge current is 500 mA. The pin can be also used as an open drain output to control an external VBUS discharge path when higher discharge current is required by the application, for instance. The pin is activated at the same time as the internal discharge path on VBUS_VS_DISCH pin. The discharge is activated automatically during cable disconnection and error recovery state. The discharge time is programmable by NVM (see Section 5 Start-up configuration). 2.2.6 GND Ground. 2.2.7 ATTACH This pin is asserted when a valid source-to-sink connection is established. It is also asserted when a connection to a debug accessory device is detected. 2.2.8 RP_3A/RP_1A5 These pins report by default the status of the USB source current capabilities. Table 4. Source current capability Pin name VBUS_EN_SNK RP_3A RP_1A5 Note: DS13102 - Rev 6 Value Hi-Z 0 Hi-Z 0 Hi-Z 0 Description No source attached Source attached No source attached or source supplies default USB Type-C current at 5 V Source supplies 3.0 A USB Type-C current at 5 V No source attached or source supplies default USB Type-C current at 5 V. Source supplies 1.5 A USB Type-C current at 5 V. RP_3A and RP_1A5 signals are valid when a SOURCE is attached. page 6/31 STUSB4500L Pin description 2.2.9 GPIO This pin is an active low open drain output that can be configured by NVM as per table below (see Section 5 Start-up configuration). Table 5. GPIO pin configuration NVM parameter GPIO_CFG[1:0] Pin name Pin function Value Software controlled GPIO. 00b SW_CTRL_GPIO 01b ERROR_RECOVERY 10b DEBUG Hardware fault detection 11b SINK_POWER (default) 2.2.10 Hi-Z The output state is defined by the value of I2C register bit #0 at address 2Dh 0 Hi-Z (see Section 3.4 Hardware fault management) 0 Debug accessory detection Hi-Z (see Section 3.6 Debug accessory mode detection) 0 Indicates USB Type-C current capability advertised by the source Hi-Z 0 Description When bit #0 value is 0b (at start-up) When bit #0 value is 1b No hardware fault detected Hardware fault detected No debug accessory detected Debug accessory detected Source supplies default or 1.5 A USB Type-C current at 5 V Source supplies 3.0 A USB Type-C current at 5 V VBUS_EN_SNK This pin allows the incoming VBUS power from the USB Type-C receptacle to be enabled when a source is connected according to different operating conditions stated in the table below. VBUS_EN_SNK pin is a high voltage open drain output that allows a PMOS transistor to be directly driven to enable the VBUS power path. 2.2.11 A_B_SIDE This output pin provides the cable orientation. It is used to establish USB SuperSpeed signal routing. This signal is not required in case of USB 2.0 support. Table 6. USB data MUX select Value 2.2.12 Description HiZ CC1 pin is attached to CC line 0 CC2 pin is attached to CC line VBUS_VS_DISCH This input pin is used to sense VBUS presence, monitor VBUS voltage, and discharge VBUS from the USB Type-C receptacle side. A serial resistor connected to the pin must be used to limit the discharge current through the pin. Maximum discharge current is 50 mA. The discharge is activated automatically during cable disconnection, and error recovery state. The discharge time is programmable by NVM (see Section 5 Start-up configuration). 2.2.13 VREG_1V2 This pin is used only for external decoupling of the 1.2 V internal regulator. The recommended decoupling capacitor is: 1 µF typ. (0.5 µF min., 10 µF max.) DS13102 - Rev 6 page 7/31 STUSB4500L Pin description 2.2.14 VSYS This is the low power supply from the system, if there is any. It can be connected directly to a single cell Lithium battery or to the system power supply delivering 3.3 V up to 5 V. It is recommended to connect the pin to ground when it is not used. 2.2.15 VREG_2V7 This pin is used only for external decoupling of the 2.7 V internal regulator. The recommended decoupling capacitor is: 1 µF typ. (0.5 µF min., 10 µF max.) 2.2.16 VDD This is the main STUSB4500L power supply. Whatever the application is VBUS powered or not, VDD mandatory connection is to USB power line (VBUS). The STUSB4500L can indeed work in dead battery mode, even for self-powered application, in order to reduce power consumption to ZERO when the port is not attached, therefore having no impact on application power leakage. DS13102 - Rev 6 page 8/31 STUSB4500L Description of the features 3 Description of the features 3.1 CC interface The STUSB4500L controls the connection to the configuration channel (CC) pins, CC1 and CC2, through two main blocks: the CC line interface block and the CC control logic block. The CC line interface block is used to: • • • Set pull-down termination mode on the CC pins Monitor the CC pin voltage values related to the attachment detection thresholds Protect the CC pins against overvoltage The CC control logic block is used to: • • • 3.2 3.2.1 • • • • Execute the Type-C FSM related to the sink power role with debug accessory support Determine the electrical state for each CC pin related to the detected thresholds Evaluate the conditions related to the CC pin states and the VBUS voltage value to transition from one state to another in the Type-C FSM Advertise a valid source-to-sink connection Determine the identity of the attached device: source or debug accessory Determine cable orientation to allow external routing of the USB data Manage USB Type-C power capability on VBUS: USB default, medium or high current mode • Handle hardware faults VBUS power path control VBUS monitoring The VBUS monitoring block supervises from the VBUS_VS_DISCH input pin the VBUS voltage on the USB Type-C receptacle side. It is used to check that VBUS is within a valid voltage range to establish a valid source-to-sink connection and to enable safely the VBUS power path through the VBUS_EN_SNK pin. It allows detection of unexpected VBUS voltage conditions such as undervoltage or overvoltage related to the valid VBUS voltage range. When such conditions occur, the STUSB4500L reacts as follows: • • At attachment, it prevents the source-to-sink connection to be established and the VBUS power path to be asserted After attachment, it goes into unattached state and it disables the VBUS power path The valid VBUS voltage range is defined by a low limit VTHUSB and a high limit VMONUSBH (overvoltage condition): • • 3.2.2 VTHUSB low limit is fixed by hardware at 3.3 V in order to detect a VBUS rising edge (connection) or falling edge (disconnection) The minimum value of VMONUSBH is VBUS +5% and can be shifted by fraction of 1% from VBUS+5% to VBUS+20%. The value is preset by default in the NVM (see Section 7.3 Electrical and timing characteristics) and can be changed independently through NVM programming (see Section 5 Start-up configuration) VBUS discharge The monitoring block also handles the VBUS discharge paths connected to the VBUS_VS_DISCH pin for the USB Type-C receptacle side and to the DISCH pin for the power system side. The discharge paths are activated at the same time when disconnection is detected or when the device goes into the error recovery state (see Section 3.4 Hardware fault management ). At detachment, during error recovery state, the discharge is activated for TDISUSB0V time. The discharge time durations are also preset by default in the NVM (see Section 7.3 Electrical and timing characteristics). The discharge time durations can be changed through NVM programming (see Section 5 Startup configuration). The VBUS discharge feature is enabled by default in the NVM and can be disabled through NVM programming (see Section 5 Start-up configuration). DS13102 - Rev 6 page 9/31 STUSB4500L Dead battery mode 3.2.3 VBUS power path assertion The STUSB4500L can control the assertion of the VBUS power path from the USB Type-C receptacle, directly or indirectly, through the VBUS_EN_SNK pin. The table below summarizes the operating conditions that determine the electrical value of the VBUS_EN_SNK pin during system operation. Table 7. VBUS_EN_SNK pin behavior depending on the operating conditions Value Operating conditions Connection stage VBUS monitoring conditions on VBUS_VS_DISCH pin VBUS < VMONUSBH 0 At attachment or during operation and VBUS > VTHUSB VBUS > VMONUSBH Hi-Z At detachment or during ErrorRecovery or VBUS < VTHUSB Type-C state column refers to the Type-C FSM states as defined in the USB Type-C standard specification. 3.3 Dead battery mode Dead battery mode allows systems powered by a battery to be supplied by the VBUS when the battery is discharged and therefore to start the battery charging process without any external support. This mode is also used in systems that are powered through the VBUS only. Dead battery mode operates only if the CC1DB and CC2DB pins are connected respectively to the CC1 and CC2 pins. Thanks to these connections, the STUSB4500L presents a pull-down termination on its CC pins and advertises itself as a sink even if the device is not supplied. When a source system connects to a USB Type-C port, it detects the pull-down termination, establish the source-to-sink connection, and provide the VBUS. The STUSB4500L is then supplied thanks to the VDD pin connected to VBUS on the USB Type-C receptacle side. The STUSB4500L can finalize the connection and enable the power path on VBUS thanks to the VBUS_EN_SNK pin to allow the system to be powered. 3.4 Hardware fault management During system operation, the STUSB4500L handles some pre-identified hardware fault conditions. When such conditions happen, the circuit goes into an ErrorRecovery state as defined in the USB Type-C standard specifications. The error recovery state is equivalent to force a detach event. When entering this state, the device de-asserts the VBUS power path by disabling the VBUS_EN_SNK, RP_3A and RP_1A5 pins, and it removes the terminations from the CC pins. Then, it transitions to the unattached state. The STUSB4500L goes into error recovery state when at least one condition listed below is met: • If an overtemperature is detected (junction temperature above maximum TJ) • If an overvoltage is detected on the CC pins (voltage on CC pins above VOVP) The detection of a hardware fault is advertised through the GPIO pin when configured in ERROR_RECOVERY mode. See Section 7 Electrical characteristics for threshold values. 3.5 High voltage protections The STUSB4500L can be used in systems or connected to systems that handle high voltage on the VBUS power path. The device integrates an internal circuitry on the CC pins that tolerates high voltage and ensures protection up to 22 V in case of unexpected short-circuits with the VBUS as per figure below. DS13102 - Rev 6 page 10/31 STUSB4500L Debug accessory mode detection Figure 4. Short-to-VBUS 3.6 Debug accessory mode detection The STUSB4500L detects a connection to a debug and test system (DTS) as defined in the USB Type-C standard specification. The debug accessory detection is advertised through the GPIO pin when configured in DEBUG mode. A debug accessory device is detected when both the CC1 and CC2 pins are pulled up by an Rp resistor from the connected device. The voltage levels on the CC1 and CC2 pins give the orientation and current capability as described in the table below. The GPIO pin configured in DEBUG mode is asserted to advertise the DTS detection and the A_B_SIDE pin indicates the orientation of the connection. Table 8. Orientation and current capability detection in sink power role A_B_SIDE pin CC1 pin (CC2 pin) (CC1 pin) Charging current configuration 1 Rp 3 A Rp 1.5 A Default Hi-Z (0) 2 Rp 1.5 A Rp default 1.5 A Hi-Z (0) 3 Rp 3 A Rp default 3.0 A Hi-Z (0) Rp Rp def/1.5 A/3 A def/1.5 A/3 A Default Hi-Z (Hi-Z) 4 DS13102 - Rev 6 CC2 pin # CC1/CC2 (CC2/CC1) page 11/31 STUSB4500L I²C Interface 4 I²C Interface 4.1 Read and write operations The I²C interface is used to configure, control and read the operation status of the device. It is compatible with the Philips I²C Bus® (version 2.1). The I²C is a slave serial interface based on two signals: • • SCL - serial clock line: input clock used to shift data SDA - serial data line: input/output bidirectional data transfers A filter rejects the potential spikes on the bus data line to preserve data integrity. The bidirectional data line supports transfers up to 400 Kbit/s (fast mode). The data are shifted to and from the chip on the SDA line, MSB first. The first bit must be high (START) followed by the 7-bit device address and the read/write control bit. Four 7-bit device address are available for the STUSB4500 thanks to the external programming of DevADDR0 and DevADDR1 bits through ADDR0 and ADDR1 pins setting i.e. 0x28 or 0x29 or 0x2A or 0x2B. It allows four STUSB4500 devices to be connected on the same I2C bus. Table 9. Device address format Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 DevADDR6 DevADDR5 DevADDR4 DevADDR3 DevADDR2 DevADDR1 DevADDR0 R/W 0 1 0 1 0 ADDR1 ADDR0 0/1 Table 10. Register address format Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 RegADDR7 RegADDR6 RegADDR5 RegADDR4 RegADDR3 RegADDR2 RegADDR1 RegADDR0 Table 11. Register data format Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 DATA7 DATA6 DATA5 DATA4 DATA3 DATA2 DATA1 DATA0 Figure 5. Read operation Master Start Slave Device addr W A 7 bits Reg address A Restart Device addr 8 bits R A Reg data 7 bits A 8 bits Start bit = SDA falling when SCL = 1 Stop bit = SDA rising when SCL = 1 Restart bit = start after a start Acknowledge = SDA forced low during a SCL clock Reg data A Reg data 8 bits 8 bits Address n+1 Address n+2 Ᾱ Stop Figure 6. Write operation Start Device addr W A Reg address 7 bits Start bit = SDA falling when SCL = 1 Stop bit = SDA rising when SCL = 1 Restart bit = start after a start DS13102 - Rev 6 8 bits A Reg data 8 bits A Reg data A Reg data 8 bits 8 bits Address n+1 Address n+2 A Stop page 12/31 STUSB4500L Timing specifications 4.2 Timing specifications The device uses a standard slave I²C channel at speed up to 400 kHz. Table 12. I²C timing parameters - VDD = 5 V Symbol Fscl Parameter Min. SCL clock frequency Typ. Max. Unit 0 400 kHz thd,sta Hold time (repeated) START condition 0.6 - tlow LOW period of the SCL clock 1.3 - thigh HIGH period of the SCL clock 0.6 - tsu,dat Setup time for repeated START condition 0.6 - thd,dat Data hold time 0.04 tsu,dat Data setup time μs 0.9 - 100 - tr Rise time of both SDA and SCL signals 20 + 0.1 Cb 300 tf Fall time of both SDA and SCL signals 20 + 0.1 Cb 300 tsu,sto Set-up time for STOP condition 0.6 - tbuf Bus free time between a STOP and START condition 1.3 - Cb Capacitive load for each bus line - 400 ns μs pF Figure 7. I²C timing diagram tf Vih SDA Vil thd,sta tr tsu,dat thigh SCL tlow DS13102 - Rev 6 thd,dat tsu,sto page 13/31 STUSB4500L Start-up configuration 5 Start-up configuration 5.1 User-defined parameters The STUSB4500L has a set of user-defined parameters that can be customized by NVM re-programming through the I2C interface. This feature allows the customer to change the preset configuration of the USB Type-C interface and to define a new configuration to meet specific application requirements addressing various use cases, or specific implementations. The NVM re-programming overrides the initial default setting to define a new default setting that is used at power-up or after a reset. The default setting is copied at power-up, or after a reset, from the embedded NVM into I2C registers. The values copied in the I2C registers are used by the STUSB4500L during the system operation. The NVM re-programming is possible with a customer password. The I2C registers must be re-initialized after each NVM re-programming to make effective the new parameters setting either through power-off and power-up sequence, or through reset. 5.2 Default start-up configuration The table below lists the user-defined parameters and indicates the default start-up configuration of the STUSB4500L. Table 13. STUSB4500L user-defined parameters and default settings Parameter name SHIFT_VBUS_HIGH_LIMIT Parameter description Coefficient to shift up nominal VBUS high voltage limit applicable to 5 V Reset value (default) Value 1010b 0000b to (10%) 1111b Description 0% ≤ VSHUSBH ≤ 15% of VBUS by increment of 1% Default VSHUSBH = 10% 1 ≤ TDISPAR0V ≤ 15 by increment of 1 VBUS_DISCH_TIME_TO_0V Coefficient used to compute 1001b VBUS discharge time to 0 V (9) 0001b to Unit discharge time: 84 ms (typ.) 1111b Default coefficient TDISPAR0V = 9, discharge time TDISUSB0V= 756 ms VBUS_DISCH_DISABLE GPIO_CFG[1:0] DS13102 - Rev 6 VBUSdischarge deactivation on VBUS_VS_DISCH and DISCH pins Selects GPIO pin configuration (see Section 2.2.9 GPIO ) 0b 11b 0b VBUS discharge enabled 1b VBUS discharge disabled 00b SW_CTRL_GPIO 01b ERROR_RECOVERY 10b DEBUG 11b SINK_POWER (default) page 14/31 STUSB4500L Application 6 Application The sections below are not part of the ST product specifications. They are intended to give a generic application overview to be used by the customer as a starting point for further implementation and customization. ST does not warrant compliance with customer specifications. Full system implementation and validation are under the customer’s responsibility. 6.1 6.1.1 General information Power supplies The STUSB4500L can be supplied in three different ways depending on the targeted application: • Through the VDD pin only for applications powered by VBUS that operate with dead battery mode support • Through the VSYS pin only for AC powered applications with a system power supply delivering from 3.3 V up to 5 V Through the VDD and VSYS pins either for applications powered by a battery with dead battery mode support or for applications powered by VBUS with a system power supply delivering 3.3 V or 5 V. When both VDD and VSYS power supplies are present, the low power supply VSYS is selected when VSYS voltage is above 3.1 V. Otherwise VDD is selected • When possible, please prefer VDD supply only, and connect it to VBUS in order to minimize application power consumption. In this case, VSYS is not used and must be connected to GND. 6.1.2 Connection to MCU or application processor The STUSB4500L connection to an MCU or an application processor is optional. However, an I²C interface with an interrupt allows a simple connection to most of MCU and SOC of the market. When a connection through the I²C interface is implemented, it provides an extensive functionality during the system operation. For instance, it may be used to: 1. Define the port configuration during system boot (in case the NVM parameters are not customized during manufacturing) 2. Provide a diagnostic of the Type-C connection in real time At power-up or after a reset, the first software access to the I2C registers of the STUSB4500L can be done only after TLOAD as shown in the figure below. TLOAD corresponds to the time required to initialize the I2C registers with the default values from the embedded NVM. At power-up, the loading phase starts when the voltage level on the VREG_1V2 output pin of the 1.2 V internal regulator reaches 1.08 V to release the internal POR signal. After a reset, the loading phase starts when the signal on the RESET pin is released. Figure 8. I2C register initialization sequence at power-up or after a reset At power-up Power On Reset I2C registers loading from NVM VSYS or VDD After a reset I2C access Reset I2C registers loading from NVM I2C access VSYS or VDD 1.08 V VREG_1V2 VREG_1V2 POR RESET I2C (SCL,SDA) I2C (SCL,SDA) TLOAD DS13102 - Rev 6 TLOAD page 15/31 STUSB4500L Typical application 6.2 Typical application VBUS STL9P3LLH6 VBUS_SYS Figure 9. Implementation example L1 VBUS_SYS C4 R2 1K 2V7 B12 B11 VBUS B10 B9 B8 VBUS USB_DM B7 USB_DP B6 B5 ESDA25P35 CC2 B4 B3 B2 D1 B1 GND GND Rx+1 Tx+1 Rx-1 Tx-1 Vbus Vbus Sbu2 CC1 D-2 D+1 D+2 D-1 CC2 Sbu1 Vbus Tx-2 Tx+2 GND Vbus USB3 TYPE C Rx-2 Rx+2 GND J1 A1 USB3-C 1V2 C3 1µF 21 GND A2 A3 22 GND A4 3 CC1 A5 A6 USB_DP A7 USB_DM VBUS A8 10 GND A9 1 2 4 A10 5 A11 A12 6 SCL 7 SDA 8 VREG_1V2 VBUS_VS_DISCH VSYS RP_3A Not_Used VBUS_EN_SNK GND A_B_SIDE CC1DB DISCH CC1 GPIO CC2 RP_1A5 CC2DB ADDR1 ADDR0 RESET SCL SDA ATTACH ALERT 18 GND GND BatteryCharger Inductor 10mH Cap 100pF USB_DM VSYS INM _ILIM R4 (Optional) 1K GND R5 130 GND ILIM_3A0 20 ILIM_3A0 16 17 R6 130 9 15 ILIM _1A5 14 ILIM _1A5 13 GPIO can be configured to flag hardware fault, if system needs to be informed 12 11 R10 520 19 Alert GND 0 D2 ESDA25L VDD VREG_2V7 24 USB_DP R3 20K C1 1µF U_stusb4500L 23 GND_EP C2 1µF R1 100K STUSB4500L GND GND GND GND GND V3V3 V3V3 R7 10K R8 10K R9 10K SDA SCL Alert MCU OPTIONAL Note: DS13102 - Rev 6 The STUSB4500L can be connected to an application processor using I²C interface. This connection is optional. page 16/31 VSYS STUSB4500L Electrical characteristics 7 Electrical characteristics 7.1 Absolute maximum ratings All voltages are referenced to GND. Table 14. Absolute maximum ratings Symbol Parameter Value VDD Supply voltage on VDD pin 28 VSYS Supply voltage on VSYS pin 6 High voltage on CC pins 22 High voltage on VBUS pins 28 VCC1, VCC2 VCC1DB, VCC2DB Unit VVBUS_EN_SNK VVBUS_VS_DISCH VDISCH VRP_3A V VSCL, VSDA VALERT VRESET VATTACH Operating voltage on I/O pins VA_B_SIDE -0.3 to 6 VRP_1A5 VGPIO VADDR0, VADDR1 TSTG Storage temperature TJ Maximum junction temperature ESD 7.2 -55 to 150 °C 145 HBM 3 CDM 1.5 kV Operating conditions Table 15. Operating conditions Symbol Parameter Value VDD Supply voltage on VDD pin 3.3 to 6 VSYS Supply voltage on VSYS pin 3.0 to 5.5 VCC1, VCC2 VCC1DB, VCC2DB CC pins 0 to 5.5 V VVBUS_EN_SNK VVBUS_VS_DISCH VDISCH Unit High voltage pins 0 to 22 Operating voltage on I/O pins 0 to 4.5 VRP_3A VSCL, VSDA DS13102 - Rev 6 page 17/31 STUSB4500L Operating conditions Symbol Parameter Value Unit VALERT VRESET VATTACH VA_B_SIDE V VRP_1A5 VGPIO VADDR0, VADDR1 TA DS13102 - Rev 6 Operating temperature -40 to 105 °C page 18/31 STUSB4500L Electrical and timing characteristics 7.3 Electrical and timing characteristics Unless otherwise specified: VDD = 5 V, TA = 25 °C, all voltages are referenced to GND. Table 16. Electrical characteristics Symbol Parameter Conditions IDD (SNK) Current consumption TLOAD I2C registers loading time from NVM Device connected to VBUS VDD @ VBUS level Min. Typ. Max. Unit 110 160 210 µA 30 ms +10% kΩ At power-up or after a reset CC1 and CC2 pins Rd CC pull-down resistors -40 °C < TA < +105 °C RINCC CC input impedance Terminations off 200 VTH0.2 Detection threshold 1 Min. IP-USB detection by sink on Rd, min CC voltage for connected sink 0.15 0.20 0.25 V VTH0.66 Detection threshold 2 Min. I P_1.5 detection by sink on Rd 0.61 0.66 0.71 V VTH1.23 Detection threshold 3 Min. I P_3.0 detection by sink on Rd 1.16 1.23 1.31 V VTH2.6 Detection threshold 4 Max. CC voltage for connected sink 2.45 2.60 2.75 V VOVP Overvoltage protection on CC pins 5.82 6 6.18 V 3.3 3.4 V 50 mA -10% 5.1 kΩ VBUS_VS_DISCH pin monitoring and driving VTHUSB VBUS disconnection threshold VDD@ 5 V IDISUSB VBUS discharge current Through external resistor connected to VBUS_VS_DISCH pin 3.2 At detachment, during error recovery state. TDISUSB0V VBUS discharge Coefficient TDISPAR0V programmable by NVM, time to 0 V 70 84 100 *TDISPAR0V *TDISPAR0V *TDISPAR0V ms Default TDISPAR0V = 9, TDISUSB0V = 756 ms VBUS+5% is nominal high voltage limit, VMONUSBH VBUS monitoring high voltage limit Shift coefficient VSHUSBH is programmable by NVM from 0% to 15% of VBUS by step of 1% VBUS+5% V +VSHUSBH Default VSHUSBH = 10%, VMONUSBH = VBUS+15% DISCH pin driving IDISPWR Power system discharge current Through external resistor connected to DISCH pin 500 mA Digital input/output (SCL, SDA, ALERT, RESET, ATTACH, A_B_SIDE, RP_1A5, GPIO, ADDR0, ADDR1) VIH High level input voltage VIL Low level input voltage VOL Low level output voltage 1.2 Ioh = 3 mA V 0.35 V 0.4 V 0.4 V 20 V open drain outputs (VBUS_EN_SNK, DISCH, RP_3A) VOL DS13102 - Rev 6 Low level output voltage Ioh = 3 mA page 19/31 STUSB4500L Package information 8 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. 8.1 QFN-24 EP (4x4) package information Figure 10. QFN-24 EP (4x4) package information E D A A1 TOP VIEW C SEATING PLANE SIDE VIEW 0.08 C e E2 K b Pin#1 ID D2 L BOTTOM VIEW DS13102 - Rev 6 page 20/31 STUSB4500L QFN-24 EP (4x4) package information Table 17. QFN-24 EP (4x4) package mechanical data Ref. mm Inches Min. Typ Max. Min. Typ. Max. A 0.80 0.90 1.00 0.031 0.035 0.039 A1 0.00 0.02 0.05 0.000 0.001 0.002 b 0.18 0.25 0.30 0.007 0.0010 0.012 D 3.95 4.00 4.05 0.156 0.157 0.159 D2 2.55 2.70 2.80 0.100 0.106 0.110 E 3.95 4.00 4.05 0.156 0.157 0.159 E2 2.55 2.70 2.80 0.100 0.106 0.110 e 0.45 0.50 0.55 0.018 0.020 0.022 K 0.15 - - 0.006 - - L 0.30 0.40 0.50 0.012 0.016 0.020 Figure 11. QFN-24 EP (4x4) recommended footprint DS13102 - Rev 6 page 21/31 STUSB4500L WLCSP (2.6x2.6x0.5) 25 bumps package information 8.2 WLCSP (2.6x2.6x0.5) 25 bumps package information Figure 12. WLCSP (2.6x2.6x0.5) package outline DS13102 - Rev 6 page 22/31 STUSB4500L WLCSP (2.6x2.6x0.5) 25 bumps package information Table 18. WLCSP (2.6x2.6x0.5) package mechanical data Symbol mm Min. Typ. Max. A 0.456 0.50 0.544 A1 0.179 195 0.211 A2 0.255 0.28 0.305 A3 0.022 0.025 0.028 E 2.563 2.593 2.623 D 2.563 2.593 2.623 E1 1.6 BSC D1 1.6 BSC e 0.4 BSC b n 0.245 0.295 25 Tolerance of form and position Note: aaa 0.03 bbb 0.06 ccc 0.05 ddd 0.015 WLCSP stands for wafer level chip scale package. The typical ball diameter before mounting is 0.25 mm. The terminal A1 corner must be identified on the top surface by using a laser marking dot. Figure 13. WLCSP (2.6x2.6x0.5) recommended footprint DS13102 - Rev 6 page 23/31 STUSB4500L Thermal information 8.3 Thermal information Table 19. Thermal information Symbol DS13102 - Rev 6 Parameter Value RθJA Junction-to-ambient thermal resistance 37 RθJC Junction-to-case thermal resistance 5 Unit °C/W page 24/31 STUSB4500L Terms and abbreviations 9 Terms and abbreviations Table 20. List of terms and abbreviations Term Accessory mode Debug accessory mode. It is defined by the presence of pull-up resistors Rp/Rp on CC1/CC2 pins in sink power role. DFP Downstream facing port, specifically associated with the flow of data in a USB connection. Typically the ports on a HOST or the ports on a hub to which devices are connected. In its initial state, the DFP sources VBUS and optionally VCONN, and supports data. DRP Dual-role port. A port that can operate as either a source or a sink. The port role may be changed dynamically. Sink Port asserting Rd on the CC pins and consuming power from the VBUS. Source UFP DS13102 - Rev 6 Description Port asserting Rp on the CC pins and providing power over the VBUS. Upstream facing port, specifically associated with the flow of data in a USB connection. The port on a device or a hub that connects to a host or the DFP of a hub. In its initial state, the UFP sinks VBUS and supports data. page 25/31 STUSB4500L Revision history Table 21. Document revision history DS13102 - Rev 6 Date Revision Changes 10-Oct-2019 1 Initial release. 22-Oct-2019 2 Added Figure 13. WLCSP (2.6x2.6x0.5) recommended footprint. 29-Apr-2020 3 Added Section 3.5 High voltage protections. 08-Jun-2020 4 Updated Figure 13. WLCSP (2.6x2.6x0.5) recommended footprint. 15-Jun-2021 5 Updated Section Features and Section Description. 15-Feb-2022 6 Updated Figure 9. Implementation example page 26/31 STUSB4500L Contents Contents 1 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1 2 3 4 5 Block overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Inputs/outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 2.1 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.1 CC1 / CC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.2 CC1DB / CC2DB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.3 RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.4 I²C interface pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.5 DISCH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.6 GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.7 ATTACH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.8 RP_3A/RP_1A5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.9 GPIO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.10 VBUS_EN_SNK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.11 A_B_SIDE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.12 VBUS_VS_DISCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.13 VREG_1V2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.14 VSYS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.15 VREG_2V7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.16 VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Description of the features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1 CC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 VBUS power path control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2.1 VBUS monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2.2 VBUS discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2.3 VBUS power path assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3 Dead battery mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.4 Hardware fault management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.5 High voltage protections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.6 Debug accessory mode detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 I²C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 4.1 Read and write operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.2 Timing specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Start-up configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 DS13102 - Rev 6 page 27/31 STUSB4500L Contents 6 5.1 User-defined parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.2 Default start-up configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 6.1 6.2 7 8 9 General information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 6.1.1 Power supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 6.1.2 Connection to MCU or application processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Typical application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 7.1 Absolute maximum ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 7.2 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 7.3 Electrical and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 8.1 QFN-24 EP (4x4) package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 8.2 WLCSP (2.6x2.6x0.5) 25 bumps package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 8.3 Thermal information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Terms and abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 DS13102 - Rev 6 page 28/31 STUSB4500L List of tables List of tables Table 1. Table 2. Pin function list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Pin function descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. I2C interface pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Source current capability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GPIO pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . USB data MUX select. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VBUS_EN_SNK pin behavior depending on the operating conditions Orientation and current capability detection in sink power role . . . . . Device address format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Register address format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Register data format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I²C timing parameters - VDD = 5 V . . . . . . . . . . . . . . . . . . . . . . . . STUSB4500L user-defined parameters and default settings . . . . . . Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . QFN-24 EP (4x4) package mechanical data . . . . . . . . . . . . . . . . . WLCSP (2.6x2.6x0.5) package mechanical data . . . . . . . . . . . . . . Thermal information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . List of terms and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DS13102 - Rev 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 . 6 . 7 . 7 10 11 12 12 12 13 14 17 17 19 21 23 24 25 26 page 29/31 STUSB4500L List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Functional block diagram . . . . . . . . . QFN-24 pin connections (top view) . . . WLCSP-25 pin connections (top view) . Short-to-VBUS . . . . . . . . . . . . . . . . . . Read operation. . . . . . . . . . . . . . . . . Write operation . . . . . . . . . . . . . . . . . I²C timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . 3 . 3 11 12 12 13 Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. I2C register initialization sequence at power-up or after a reset . Implementation example . . . . . . . . . . . . . . . . . . . . . . . . . . . QFN-24 EP (4x4) package information. . . . . . . . . . . . . . . . . . QFN-24 EP (4x4) recommended footprint . . . . . . . . . . . . . . . WLCSP (2.6x2.6x0.5) package outline. . . . . . . . . . . . . . . . . . WLCSP (2.6x2.6x0.5) recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 16 20 21 22 23 DS13102 - Rev 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 30/31 STUSB4500L IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2021 STMicroelectronics – All rights reserved DS13102 - Rev 6 page 31/31
STUSB4500LQTR 价格&库存

很抱歉,暂时无法提供与“STUSB4500LQTR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
STUSB4500LQTR
  •  国内价格 香港价格
  • 4000+11.301454000+1.36280

库存:11827

STUSB4500LQTR
  •  国内价格 香港价格
  • 1+17.052941+2.05634
  • 10+15.2769610+1.84219
  • 25+14.4428025+1.74160
  • 100+12.51706100+1.50938
  • 250+11.87546250+1.43201
  • 500+11.30154500+1.36281

库存:11827