0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STV9936P

STV9936P

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

  • 描述:

    STV9936P - 12 ns TRIPLE-CHANNEL HIGH VOLTAGE VIDEO AMPLIFIER - STMicroelectronics

  • 数据手册
  • 价格&库存
STV9936P 数据手册
STV9553 12 ns TRIPLE-CHANNEL HIGH VOLTAGE VIDEO AMPLIFIER FEATURES s s s s s s s s s s s Triple-channel video amplifier Supply voltage up to 115 V 80V Output dynamic range Perfect for PICTURE BOOST application requiring high video amplitude Pinning for easy PCB layout Supports DC coupling (optimum cost saving) and AC coupling applications. Built-in Voltage Gain: 20 (Typ.) Rise and Fall Times: 12 ns (Typ.) Bandwidth: 29 MHz (Typ.) Very low stand-by power consumption Perfectly matched with the STV921x preamplifiers above is required, ensuring a maximum quality of the still pictures or moving video. Perfecly matched with the STV921x ST preamplifiers, it provides a highly performant and very cost effective video system. DESCRIPTION The STV9553 is a triple-channel video amplifier designed in a 120V-high voltage technology and able to drive in DC-coupling mode the 3 cathodes of a CRT monitor. The STV9553 supports PICTURE BOOST applications where video amplitude up to 50V or CLIPWATT 11 (Plastic Package) ORDER CODE: STV9553 PIN CONNECTIONS 11 10 9 8 7 6 5 4 3 2 1 OUT1 OUT2 OUT3 GNDP VDD GNDS GNDA IN3 VCC IN2 IN1 Version 4.0 February 2002 1/24 1 Table of Contents 1 2 3 4 5 6 BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 PIN DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 THERMAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 THEORY OF OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 6.1 6.2 7 8 9 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 POWER DISSIPATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 TYPICAL PERFORMANCE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 INTERNAL SCHEMATICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 10 APPLICATION HINTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 10.10 How to choose the high supply voltage value (VDD) in DC coupling mode . . . . . . . . 12 Arcing Protection: schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Arcing protection: layout and decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Video response optimization: schematics in DC-coupling mode . . . . . . . . . . . . . . . . . 14 Video response optimization: outputs networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Video response optimization: inputs networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Video response optimization: layout and decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . 15 AC - Coupling mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Stand-by mode, spot suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 11 PACKAGE MECHANICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2 2/24 2 STV9553 1 BLOCK DIAGRAM OUT1 GNDP 11 8 OUT2 10 OUT3 9 STV9553 VDD VDD 7 GNDP VDD GNDP VCC 3 V REF 6 GNDS 1 5 2 IN2 4 IN3 IN1 GNDA 2 PIN DESCRIPTION Pin 1 2 3 4 5 6 7 8 9 10 11 Name IN1 IN2 VCC IN3 GNDA GNDS VDD GNDP OUT3 OUT2 OUT1 Video Input (channel 1) Video Input (channel 2) Low Supply Voltage Video Input (channel 3) Ground Analog Ground Substrat High Supply Voltage Ground Power Video output (channel 3) Video output (channel 2) VIdeo output (channel 1) Function 3/24 3 STV9553 3 ABSOLUTE MAXIMUM RATINGS Symbol VDD VCC VESD IOD IOG VIN Max VIN Min TJ TSTG High supply voltage Low supply voltage ESD susceptibility Human Body Model (100pF discharged through 1.5KΩ) EIAJ norm (200pF discharged through 0Ω) Output source current (pulsed < 50µs) Output sink current (pulsed < 50µs) Maximum Input Voltage Minimum Input Voltage Junction Temperature Storage Temperature Parameter Value 120 16.5 2 300 80 80 V CC + 0.3 - 0.5 150 -20 + 150 Unit V V kV V mA mA V V °C °C 4 THERMAL DATA Symbol Rth (j-c) R th (j-a) Parameter Junction-Case Thermal Resistance (Max.) Junction-Ambient Thermal Resistance (Typ.) Value 3 35 Unit °C/W °C/W 4/24 3 STV9553 5 ELECTRICAL CHARACTERISTICS Symbol VDD VCC IDD IDDS ICC VOUT dV OUT/dVDD dV OUT/dT d∆VOUT/dT R IN VSATH V SATL G LE VREF Parameter High supply voltage Low supply voltage VDD supply current VDD stand-by supply current VCC supply current DC output voltage High voltage supply rejection Output voltage drift versus temperature Output voltage matching versus temperature (Note 2) Video input resistor Output saturation voltage to supply Output saturation voltage to GND Video Gain Linearity Error Internal voltage reference VOUT = 50V VCC : switched off (300Ω), it is possible to increase the bandwidth by increasing L1. 10.6 Video response optimization: inputs networks The input network also plays an important role in the device dynamic behaviour. We recommend to use the reference input network #1, which is described in Figure 17, but 2 other networks (#2 and #3) can be used to better match the required performances and the video board layout. Refer to the application note referenced AN1510 for the complete description of these input networks. 10.7 Video response optimization: layout and decoupling The decoupling of VCC and VDD through good quality HF capacitors (respectively C10 and C12) close to the device is necessary to improve the dynamic performance of the video signal. Careful attention has to be given to the three output channels of the amplifier. Capacitor: The parasitic capacitive load on the amplifier outputs must be as small as possible. Figure 9 from Section 8 clearly shows the deterioration of the tR/tF when the capacitive load increases. Reducing this capacitive load is achieved by moving away the output tracks from the other tracks (especially ground) and by using thin tracks ( 5.5ns, the PreAmplifier bandwidth register (BW, Register 13) must be set to minimum value (0 dec) (*): To be connected as close as possible to the device (**): R1 must be not be higher than 100Ω (***): R19 must be mandatorily used (****): Input Networks #2 and #3 can be used as well The advantage of such an architecture is to use smaller VDD and therefore to have smaller power consumption. This is due to the fact that the STV9553 provides only the video signal and not the cut-off adjustment. The disadvantage is to have an application with more components (DC restore circuitry). Note that it is mandatory to keep the output video signal (point C) inside the linear area of the amplifier (from 17V to VDD - 15V). 16/24 STV9553 10.9 Stand-by mode, spot suppression The usual way to set a monitor in stand-by mode is to switch-off the Vcc (12V). The STV9553 has an extremely low power consumption (IDDS = 60µA when VCC
STV9936P 价格&库存

很抱歉,暂时无法提供与“STV9936P”相匹配的价格&库存,您可以联系我们找货

免费人工找货