0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TSV7722IST

TSV7722IST

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    TSSOP8

  • 描述:

    HIGH BANDWIDTH (22MHZ) LOW OFFSE

  • 数据手册
  • 价格&库存
TSV7722IST 数据手册
TSV7721, TSV7722, TSV7723 Datasheet High bandwidth (22 MHz) low offset (200 μV) 5 V op amp Features TSV7722 DFN8 2x2 mm TSV7721 SOT23 -5 • • • • • • • • • TSV7723 MiniSO10 TSV7722 MiniSO8 TSV7722 SO8 Gain bandwidth product 22 MHz, unity gain stable High accuracy input offset voltage: 50 µV typ., 200 µV max. Low input bias current: 2 pA typ. Low input voltage noise density: 7 nV/√Hz Wide supply voltage range: 1.8 V to 5.5 V Output rail-to-rail Input common-mode range includes low rail Automotive grade and shutdown versions available Benefits: – High frequency signal conditioning – Optimized accuracy for low-side current sensing Applications • • • • Low-side current measurement Photodiode amplifiers Automotive current measurement and sensor signal conditioning Strain gauges signal conditioning TSV7721 TSV7722 TSV7723 Automotive Maturity status link Channel Description 1 1 Package SOT23-5 • SOT23-5 2 DFN8 2 MiniSO8 2 SO8 2 • MiniSO8 2 • SO8 2 The TSV7721, TSV7722 and TSV7723 are single and dual 22 MHz-bandwidth unitygain-stable amplifiers. The input offset voltage of 200 µV max. (50 µV typ.) at room temperature, optimized for common-mode close to ground makes the TSV772x ideal for low-side current measurements. The TSV772x can operate from 1.8 V to 5.5 V single supply and it is fully specified on a load of 47 pF, therefore allowing easy usage as A/D converters input buffer. The TSV772x series offers rail-to-rail output, excellent speed/power consumption ratio, and 22 MHz gain bandwidth product, while consuming just 1.7 mA at 5 V. The devices also feature an ultra-low input bias current that enables connection to photodiodes and other sensors where current is the key value to be measured. These features make the TSV772x series ideal for high-accuracy, high-bandwidth sensor interfaces. MiniSO10 Related products TSV792 Rail-to-rail amplifier with higher GBW 50 MHz TSB7192 22 MHz amplifier with 36 V supply voltage DS13614 - Rev 5 - November 2021 For further information contact your local STMicroelectronics sales office. www.st.com TSV7721, TSV7722, TSV7723 Pin description 1 Pin description 1.1 TSV7721 single operational amplifier Figure 1. Pin connections (top view) OUT 1 VCC- 2 IN+ 3 5 VCC+ 4 IN- SOT23-5 Table 1. Pin description DS13614 - Rev 5 Pin n° Pin name Description 1 OUT Output channel 2 VCC- Negative supply voltage 3 IN+ Non-inverting input channel 4 IN- Inverting input channel 5 VCC+ Positive supply voltage page 2/39 TSV7721, TSV7722, TSV7723 TSV7722 dual operational amplifier 1.2 TSV7722 dual operational amplifier Figure 2. Pin connections (top view) OUT1 1 8 VCC+ OUT1 1 IN1- 2 7 OUT2 IN1- 2 8 VCC+ 7 OUT2 NC IN1+ 3 6 IN2- IN1+ 3 6 IN2- VCC- 4 5 IN2+ VCC- 4 5 IN2+ MiniSO8 and SO8 DFN8 2 x 2 mm (1) 1. The exposed pad of the DFN8 2x2 can be connected to VCC- or left floating. Table 2. Pin description DS13614 - Rev 5 Pin n° Pin name Description 1 OUT1 Output channel 1 2 IN1- Inverting input channel 1 3 IN1+ Non-inverting input channel 1 4 VCC- Negative supply voltage 5 IN2+ Non-inverting input channel 2 6 IN2- Inverting input channel 2 7 OUT2 Output channel 2 8 VCC+ Positive supply voltage page 3/39 TSV7721, TSV7722, TSV7723 TSV7723 dual operational amplifier with shutdown option 1.3 TSV7723 dual operational amplifier with shutdown option Figure 3. Pin connections (top view) Table 3. Pin description DS13614 - Rev 5 Pin n° Pin name Description 1 OUT1 Output channel 1 2 IN1- Inverting input channel 1 3 IN1+ Non-inverting input channel 1 4 VCC- Negative supply voltage 5 EN1 6 EN2 7 IN2+ Non-inverting input channel 2 8 IN2- Inverting input channel 2 9 OUT2 Output channel 2 10 VCC+ Positive supply voltage Enable input channel 1 (amplifier in shutdown mode when EN pin connected to VCC-) Enable input channel 2 (amplifier in shutdown mode when EN pin connected to VCC-) page 4/39 TSV7721, TSV7722, TSV7723 Absolute maximum ratings and operating conditions 2 Absolute maximum ratings and operating conditions Table 4. Absolute maximum ratings Symbol Parameter Value Unit -0.3 to 6.0 V VCC Supply voltage (referred to VCC- pin) (1) Vid Differential input voltage (2) ± VCC V VIN Input pins input voltage (3) VCC- - 0.3 V to VCC+ + 0.3 V V IIN Input pins input current (4) ± 10 mA Tstg Storage temperature -65 to 150 °C Thermal resistance junction-to-ambient (5) Rth-ja Tj ESD SOT23-5 250 DFN8 (2 mm x 2 mm) 76 MiniSO8 127 MiniSO10 113 SO8 113 Maximum junction temperature HBM: human body model (6) CDM: charged device model (7) °C / W 150 °C 4 kV 1.5 kV 1. All voltage values, except differential voltage, are with respect to VCC- pin. 2. The differential voltage is the non-inverting input terminal with respect to the inverting input terminal. 3. Vcc - Vin must not exceed 6 V, Vin must not exceed 6 V. 4. Input current must be limited by a resistor in series with the inputs. 5. Rth are typical values. 6. Human body model: the test HBM is done in accordance with the standards ESDA-JS-001-2017 and Q100-002 7. Charged device model: the test CDM is done in accordance with the standards ESDA-JS-002-2018 and Q100-011 Table 5. Operating conditions Symbol DS13614 - Rev 5 Parameter VCC Supply voltage Vicm Common-mode input voltage range Toper Operating free air temperature range Min. Max. Value 1.8 5.5 V VCC- – 0.1 VCC+ – 1.1 V -40 125 °C page 5/39 TSV7721, TSV7722, TSV7723 Electrical characteristics 3 Electrical characteristics Table 6. Electrical characteristics at VCC+ = 5.0 V, with VCC- = 0 V, Vicm = VCC / 2, T = 25°C, and OUT pin connected to VCC / 2 through RL = 10 kΩ (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. ±50 ±250 Unit DC Performance Vio ∆Vio/∆T Input offset voltage (Vicm = 0 V) Input offset voltage drift (Vicm = 0 V) Iib Input bias current (VOUT = VCC/2) Iio Input offset current (VOUT = VCC/2) Common-mode rejection ratio CMR1 2 -40°C < T < 125°C 75 T = 25°C 1 -40°C < T < 125°C 20 60 T = 25°C 85 -40°C < T < 125°C 80 Large signal voltage gain VOUT = 0.3 V to (VCC- 0.3 V) T = 25°C 111 -40°C < T < 125°C 106 High level output voltage T = 25°C 15 (VOH = VCC - VOUT) -40°C < T < 125°C 25 T = 25°C 15 -40°C < T < 125°C 25 Low level output voltage IOUT Isource (VOUT = 0 V) Supply current (per channel, VOUT = VCC/2, RL > 1 MΩ) T = 25°C 50 -40°C < T < 125°C 45 T = 25°C 45 -40°C < T < 125°C 40 T = 25°C µV/°C pA -40°C < T < 125°C 20.log(∆VCC/∆Vio), VCC = 1.8 V to 5.5 V, µV pA 75 Isink (VOUT = VCC) ICC T = 25°C T = 25°C 20.log(∆Vicm/∆Vio), Vicm = 0 V, RL > 1 MΩ VOL ±4 74 Supply voltage rejection ratio VOH -40°C < T < 125°C -40°C < T < 125°C Vicm = -0.1 V to VCC- 1.1 V, RL > 1 MΩ AVD ±650 76 Common-mode rejection ratio SVR -40°C < T < 125°C T = 25°C 20.log(∆Vicm/∆Vio), Vicm = 0 V to VCC- 1.1 V, RL > 1 MΩ CMR2 T = 25°C 99 dB dB 108 dB 130 dB mV 70 mA 65 1.7 -40°C < T < 125°C 2.2 2.5 mA AC Performance GBW Gain bandwidth product CL = 47 pF 15 22 MHz Fu Unity gain frequency Φm Phase margin 44 degrees Gm Gain margin 8 dB SR (1) 11 V/µs DS13614 - Rev 5 Slew rate 19.5 8 page 6/39 TSV7721, TSV7722, TSV7723 Electrical characteristics Symbol Parameter trec Overload recovery time: trec is defined as delay between input voltage edge and VOUT reaching 100 mV from initial value ts Settling time en Equivalent input noise voltage CS Cin Channel separation (for TSV7722 and TSV7723) Conditions Min. Max. Unit 70 ns To 0.1%, Vin = 1 Vp-p 270 ns f = 1 kHz 13 f = 10 kHz 7 f = 1 kHz 120 Differential Input capacitance Typ. nV/√Hz dB 6 Common-mode pF 4.5 1. Slew rate value is calculated as the average between positive and negative slew rates. Table 7. Electrical characteristics in shutdown mode at VCC+ = 5.0 V, with VCC- = 0 V, Vicm = VCC / 2, T = 25°C, and OUT pin connected to VCC / 2 through RL = 10 kΩ (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. 2.5 60 Unit TSV7723 only, op-amp in shutdown mode when EN input is low T = 25°C ICC Shutdown mode VOUT = VCC/2, RL > 1 MΩ (all channels) -40°C < T < 85°C 450 -40°C < T < 125°C 4 nA µA ton Amplifier turn-on time (other channel already on) VOUT = VCC- to VCC- + 0.2 V 2 µs tinit Initialization time (both channels off) VOUT to 200 mV of final value 7 µs VIH EN logic high VIL EN logic low IIH EN current high EN = VCC+ 1 IIL EN current low EN = VCC- 1 Output leakage in shutdown mode, T = 25°C 50 pA EN = VCC- -40°C < T < 125°C 15 nA IOleak DS13614 - Rev 5 2 0.8 V pA page 7/39 TSV7721, TSV7722, TSV7723 Electrical characteristics Table 8. Electrical characteristics at VCC+ = 3.3 V, with VCC- = 0 V, Vicm = VCC / 2, T = 25°C, and OUT pin connected to VCC / 2 through RL = 10 kΩ (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. ±50 ±200 Unit DC Performance Vio ∆Vio/∆T Input offset voltage (Vicm = 0 V Input offset voltage drift (Vicm = 0 V) Iib Input bias current (VOUT = VCC/2) Iio Input offset current (VOUT = VCC/2) Common-mode rejection ratio CMR1 VOL ±4 T = 25°C 1.8 -40°C < T < 125°C 60 T = 25°C 1 -40°C < T < 125°C 20 73 -40°C < T < 125°C 57 Large signal voltage gain VOUT = 0.3 V to T = 25°C 107 (VCC- 0.3 V) -40°C < T < 125°C 103 High level output voltage T = 25°C 15 (VOH = VCC - VOUT) -40°C < T < 125°C 25 T = 25°C 15 -40°C < T < 125°C 25 Low level output voltage IOUT Isource (VOUT = 0 V) T = 25°C 50 -40°C < T < 125°C 45 T = 25°C 45 -40°C < T < 125°C 40 Supply current (per channel, VOUT = VCC/2, T = 25°C RL > 1 MΩ) -40°C < T < 125°C µV/°C pA T = 25°C 20.log(∆Vicm/∆Vio), Vicm = - 0.1 V to µV pA 71 Isink (VOUT = VCC) ICC -40°C < T < 125°C -40°C < T < 125°C 20.log(∆Vicm/∆Vio), Vicm = 0 V to VCC- 1.1 V, RL > 1 MΩ VOH ±600 75 Common-mode rejection ratio AVD -40°C < T < 125°C T = 25°C VCC- 1.1 V, RL > 1 MΩ CMR2 T = 25°C 96 dB dB 128 dB mV 70 mA 65 1.7 2.2 2.5 mA AC Performance GBW Gain bandwidth product Fu Unity gain frequency Φm Phase margin Gm Gain margin SR (1) Slew rate ts Settling time en Equivalent input noise voltage CS Channel separation (for TSV7722 and TSV7723) 14 21 18.5 CL = 47 pF MHz 42 degrees 8 dB 11 V/µs To 0.1%, Vin = 1 Vp-p 210 ns f = 1 kHz 13 f = 10 kHz 7 f = 1 kHz 120 7.7 nV/√Hz dB 1. Slew rate value is calculated as the average between positive and negative slew rates. DS13614 - Rev 5 page 8/39 TSV7721, TSV7722, TSV7723 Electrical characteristics Table 9. Electrical characteristics in Shutdown mode at VCC+ = 3.3 V, with VCC- = 0 V, Vicm = VCC / 2, T = 25°C, and OUT pin connected to VCC / 2 through RL = 10 kΩ (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. 2.5 60 Unit TSV7723 only, op-amp in shutdown mode when EN input is low T = 25°C ICC Shutdown mode VOUT = VCC/2, RL > 1 MΩ (all channels) -40°C < T < 85°C 450 -40°C < T < 125°C 4 nA µA ton Amplifier turn-on time (other channel already on) VOUT = VCC- to VCC- + 0.2 V 2 µs tinit Initialization time (both channels off) VOUT to 200 mV of final value 11 µs VIH EN logic high VIL EN logic low IIH EN current high EN = VCC+ 1 IIL EN current low EN = VCC- 1 Output leakage in shutdown mode, T = 25°C 50 pA EN = VCC- -40°C < T < 125°C 15 nA IOleak DS13614 - Rev 5 2 0.8 V pA page 9/39 TSV7721, TSV7722, TSV7723 Electrical characteristics Table 10. Electrical characteristics at VCC+ = 1.8 V, with VCC- = 0 V, Vicm = 0.7 V, T = 25°C, and OUT pin connected to VCC / 2 through RL = 10 kΩ (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. ±50 ±250 Unit DC Performance Vio ∆Vio/∆T Input offset voltage (Vicm = 0 V) Input offset voltage drift (Vicm = 0 V) Iib Input bias current (VOUT = VCC/2) Iio Input offset current (VOUT = VCC/2) Common-mode rejection ratio CMR1 VOL ±4 T = 25°C 1 -40°C < T < 125°C 40 T = 25°C 1 -40°C < T < 125°C 15 70 -40°C < T < 125°C 52 Large signal voltage gain VOUT = 0.3 V to (VCC- 0.3 V) T = 25°C 101 -40°C < T < 125°C 97 High level output voltage T = 25°C 15 (VOH = VCC - VOUT) -40°C < T < 125°C 25 T = 25°C 15 -40°C < T < 125°C 25 Low level output voltage IOUT Isource (VOUT = 0 V) T = 25°C 35 -40°C < T < 125°C 20 T = 25°C 20 -40°C < T < 125°C 10 Supply current (per channel, T = 25°C VOUT = VCC / 2, RL > 1 MΩ) -40°C < T < 125°C µV/°C pA T = 25°C 20.log(∆Vicm/∆Vio), µV pA 68 Isink (VOUT = VCC) ICC -40°C < T < 125°C -40°C < T < 125°C 20.log(∆Vicm/∆Vio), Vicm = 0 V to Vicm = - 0.1 V to VCC- 1.1 V, RL > 1 MΩ VOH ±650 72 Common-mode rejection ratio AVD -40°C < T < 125°C T = 25°C VCC- 1.1 V, RL > 1 MΩ CMR2 T = 25°C 93 dB dB 122 dB mV 42 mA 32 1.7 2.2 2.5 mA AC Performance GBW Gain bandwidth product Fu Unity gain frequency Φm Phase margin Gm Gain margin SR Slew rate (1) en Equivalent input noise voltage CS Channel separation (for TSV7722 and TSV7723) 14 21 18 CL = 47 pF 7.6 MHz 41 degrees 8 dB 11 V/µs f = 1 kHz 13 f = 10 kHz 7 f = 1 kHz 120 nV/√Hz dB 1. Slew rate value is calculated as the average between positive and negative slew rates. DS13614 - Rev 5 page 10/39 TSV7721, TSV7722, TSV7723 Electrical characteristics Table 11. Electrical characteristics in Shutdown mode at VCC+ = 1.8 V, with VCC- = 0 V, Vicm = 0.7 V, T = 25°C, and OUT pin connected to VCC / 2 through RL = 10 kΩ (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. 2.5 60 Unit TSV7723 only, op-amp in shutdown mode when EN input is low T = 25°C ICC Shutdown mode VOUT = VCC/2, RL > 1 MΩ (all channels) -40°C < T < 85°C 450 -40°C < T < 125°C 4 nA µA ton Amplifier turn-on time (other channel already on) VOUT = VCC - to VCC - + 0.2 V 1.5 µs tinit Initialization time (both channels off) VOUT to 200 mV of final value 38 µs VIH EN logic high VIL EN logic low IIH EN current high EN = VCC+ 1 IIL EN current low EN = VCC- 1 Output leakage in shutdown mode, T = 25°C 50 pA EN = VCC- -40°C < T < 125°C 15 nA IOleak DS13614 - Rev 5 1.2 0.6 V pA page 11/39 TSV7721, TSV7722, TSV7723 Typical performance characteristics 4 Typical performance characteristics RL = 10 kΩ connected to VCC / 2 and CL = 47 pF, unless otherwise specified. Figure 4. Supply current vs. supply voltage Figure 5. Input offset voltage distribution at VCC = 5 V Figure 6. Input offset voltage distribution at VCC = 1.8 V Figure 7. Input offset voltage vs. temperature at VCC = 5 V Figure 8. Input offset voltage vs. temperature at VCC=1.8 V Figure 9. Input offset voltage thermal coeff. at VCC=5 V DS13614 - Rev 5 page 12/39 TSV7721, TSV7722, TSV7723 Typical performance characteristics Figure 10. Input offset voltage thermal coefficient at VCC=1.8 V Figure 11. Input offset voltage vs. supply voltage Figure 12. Input offset voltage vs. common-mode voltage at VCC = 5 V Figure 13. Input offset voltage vs. common-mode voltage at VCC = 1.8 V Figure 14. Input bias current vs. temp. at VICM = VCC / 2 Figure 15. Input bias current vs. common-mode voltage at VCC = 5 V DS13614 - Rev 5 page 13/39 TSV7721, TSV7722, TSV7723 Typical performance characteristics Figure 16. Output current vs. output voltage at VCC = 5 V Figure 17. Output current versus output voltage at VCC=1.8 V Figure 18. Output saturation voltage (VOL) vs. supply voltage Figure 19. Output saturation voltage (VOH) vs. supply voltage Figure 20. Positive slew rate at VCC = 5 V Figure 21. Negative slew rate at VCC = 5 V DS13614 - Rev 5 page 14/39 TSV7721, TSV7722, TSV7723 Typical performance characteristics Figure 22. Slew rate vs. VCC Figure 23. Open loop bode diagram at VCC = 5 V Figure 24. Open loop bode diagram at VCC = 1.8 V Figure 25. Closed loop bode diagram at VCC = 5 V Figure 26. Closed loop bode diagram at VCC = 1.8 V Figure 27. Phase margin vs. common-mode voltage and load current at VCC = 5 V DS13614 - Rev 5 page 15/39 TSV7721, TSV7722, TSV7723 Typical performance characteristics Figure 28. Phase margin vs. capacitive load Figure 29. Small step response at VCC = 5 V Figure 30. Small step response at VCC = 1.8 V Figure 31. Desaturation from low rail at VCC = 5 V Figure 32. Desaturation from high rail at VCC = 5 V Figure 33. Settling time output high to low at VCC = 5 V DS13614 - Rev 5 page 16/39 TSV7721, TSV7722, TSV7723 Typical performance characteristics Figure 34. Settling time output low to high at VCC = 5 V Figure 35. Small step overshoot vs. load capacitance Figure 36. Linearity vs. load resistance at VCC = 5 V Figure 37. Noise vs. frequency Figure 38. Noise versus time at VCC = 5 V Figure 39. THD+N vs. frequency DS13614 - Rev 5 page 17/39 TSV7721, TSV7722, TSV7723 Typical performance characteristics Figure 40. THD+N vs. output voltage Figure 41. CMRR vs. frequency at VCC = 5 V Figure 42. PSRR vs. frequency at VCC = 5 V Figure 43. Supply current vs. supply voltage in shutdown mode Figure 44. Turn-on time at VCC = 5 V Figure 45. Turn-on time at VCC = 1.8 V DS13614 - Rev 5 page 18/39 TSV7721, TSV7722, TSV7723 Application information 5 Application information 5.1 Operating voltages The TSV7722 device can operate from 1.8 to 5.5 V. The parameters are fully specified at 1.8 V, 3.3 V and 5 V power supplies. However, the parameters are very stable over the full VCC range and several characterization curves show the TSV7722 device characteristics over the full operating range. Additionally, the main specifications are guaranteed in extended temperature range from - 40 to 125 °C. The TSV7722 device is low rail input, and rail-to-rail output. The common-mode operating range is from Vcc- 0.1 V, to Vcc+ - 1.1 V. The op amp Vio is trimmed at Vcc = 3.3 V, Vicm = 0 V, and thus the DC precision is optimized for operation with Vicm close to Vcc-. 5.2 Input offset voltage drift over the temperature The maximum input voltage drift variation overtemperature is defined as the offset variation related to the offset value measured at 25 °C. The operational amplifier is one of the main circuits of the signal conditioning chain, and the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated during production at application level. The maximum input voltage drift overtemperature enables the system designer to anticipate the effect of temperature variations. The maximum input voltage drift overtemperature is computed using the following equation: ∆ Vio Vio T − Vio 25°C ∆ T = max T − 25°C (1) Where T = - 40 °C and 125 °C. The TSV7721, TSV7722, TSV7723 datasheet maximum value is guaranteed by measurements on a representative sample size ensuring a Cpk (process capability index) greater than 1.3. 5.3 Unused channel When one of the two channels of the TSV7722 is not used, it must be properly connected in order to avoid internal oscillations that can negatively impact the signal integrity on the other channel, as well as the current consumption. Two different configurations can be used: Gain configuration: the channel can be set in gain, the input can be set to any voltage within the Vicm operating range. Comparator configuration: the channel can be set to a comparator configuration (without negative feedback). In this case, positive and negative inputs can be set to any value provided these values are significantly different (100 mV or more, to avoid oscillation between positive and negative state). 5.4 EMI rejection The electromagnetic interference (EMI) rejection ratio, or EMIRR, describes the EMI immunity of operational amplifiers. An adverse effect that is common to many op amps is a change in the offset voltage as a result of RF signal rectification. EMIRR is defined in Eq. (2): EMIRR = 20 . log Vin pp ∆ Vio (2) The TSV7722 has been specially designed to minimize susceptibility to EMIRR and shows a low sensitivity. As can be seen in Figure 46. EMIRR on In+, In- and Out pins, EMI rejection ratio has been measured on both inputs and output, from 400 MHz to 2.4 GHz. DS13614 - Rev 5 page 19/39 TSV7721, TSV7722, TSV7723 Maximum power dissipation Figure 46. EMIRR on In+, In- and Out pins EMIRR performances might be improved by adding small capacitances (in the pF range) on the inputs, power supply and output pins. These capacitances help to minimize the impedance of these nodes at high frequencies. 5.5 Maximum power dissipation The usable output load current drive is limited by the maximum power dissipation allowed by the device package. The absolute maximum junction temperature for the TSV7722 is 150 °C. The junction temperature can be estimated as follows: TJ is the die junction temperature T J = PD × θ JA + TA (3) PD is the power dissipated in the package θJA is the junction to ambient thermal resistance of the package. TA is the ambient temperature. The power dissipated in the package PD is the sum of the quiescent power dissipated and the power dissipated by the output stage transistor. It is calculated as follows: PD = VCC × ICC + VCC + − VOUT × ILoad when the op amp is sourcing the current. PD = VCC × ICC + VOUT − VCC − × ILoad when the op amp is sinking the current. Do not exceed the 150 °C maximum junction temperature for the device. Exceeding the junction temperature limit can cause degradation in the parametric performance or even destroy the device. 5.6 Capacitive load and stability Stability analysis must be performed for large capacitive loads over 47 pF; increasing the load capacitance to high values produces gain peaking in the frequency response, with overshoot and ringing in the step response. Generally, unity gain configuration is the worst situation for stability and the ability to drive large capacitive loads. For additional capacitive load drive capability in unity-gain configuration, stability can be improved by inserting a small resistor RISO (10 Ω to 22 Ω) in series with the output (see Figure 35. Small step overshoot vs. load capacitance). This resistor significantly reduces ringing while maintaining DC performance for purely capacitive loads. However, if there is a resistive load in parallel with the capacitive load, a voltage divider is created introducing a gain error at the output and slightly reducing the output swing. The error introduced is proportional to the ratio RISO / RL. RISO modifies the maximum capacitive load acceptable from a stability point of view, as described in Figure 47. Test configuration for RISO: DS13614 - Rev 5 page 20/39 TSV7721, TSV7722, TSV7723 Resistor values for high speed op amp design Figure 47. Test configuration for RISO Please note that RISO = 22 Ω is sufficient to make the TSV7722 stable whatever the capacitive load. 5.7 Resistor values for high speed op amp design Due to its high gain bandwidth product (GBP), this op amp is particularly sensitive to parasitic impedances. Board parasitics should be taken into account in any sensitive design. Indeed, excessive parasitic (both capacitive and inductive) in the op amp frequency range can alter performances and stability. These issues can often be mitigated by lowering the resistive impedances. More specifically, the RC network created by the schematic resistors (Rf and Rg) and the parasitic capacitances of both the op amp (as documented in Table 6 to Table 10 and illustrated in Figure 48) and the PCB can generate a pole below or in the same order of magnitude than the closed-loop bandwidth of the circuit. In this case, the feedback circuit is not able to fully play its role at high frequency, and the application can be unstable. This issue can happen when the schematic gain is low (typically < 5), or the device is used in follower mode with a resistor in the feedback. In these cases, it is advised to use a low value feedback resistor (Rf), typically 1 kΩ. Figure 48. Inverting amplifier configuration with parasitic input capacitances Also, some designs use an input resistor on the positive input, generally of the same value than the input resistance on the negative input. This resistor can be useful to balance the input currents on the positive and negative inputs, and reduce the impact of those input currents on precision. However, this is not useful on the TSV7722 as the input currents are very low. Furthermore, this resistor can also interact with the input capacitances to generate a pole. The frequency of this pole should be kept higher than the closed-loop bandwidth frequency. The macromodel provided takes into account the circuit parasitic capacitors. Thus, a transient SPICE simulation (100 mV step) is an easy way to evaluate the stability of the application. However, this cannot replace a hardware evaluation of the application circuit. DS13614 - Rev 5 page 21/39 TSV7721, TSV7722, TSV7723 Settling time 5.8 Settling time Settling time in an application can be defined as the amount of time between the input changes, and the output reaching its final value. It is usually defined with a given tolerance, so the output stability is reached when the output stays within the given range around the final value. In Figure 33. Settling time output high to low at VCC = 5 V and Figure 34. Settling time output low to high at VCC = 5 V, the settling time is measured in an inverting configuration, using the so-called “false summing node” circuit. Figure 49. Settling time measurement configuration This circuit is used with a step input voltage from a positive or negative value, to 0 V. The measurement point being (Vin + Vout) / 2, and Vout being in an ideal circuit equal to Vin; the measurement point gives half of the error on Vout, comparatively to Vin. This error is compared to the tolerance, 0.1% for this circuit, to deduce the settling time. This characteristic is particularly useful when driving an ADC. It is related to the slew rate, GBP and stability of the circuit. It also varies with the circuit gain, the circuit load, and the input voltage step value. However, computing the value of the settling time in a given configuration is not straightforward. The macromodel can give a good estimation, but prototyping can be needed for fine circuit optimization. DS13614 - Rev 5 page 22/39 TSV7721, TSV7722, TSV7723 Shutdown function (TSV7723) 5.9 Shutdown function (TSV7723) The operational amplifier is enabled when the EN pin is pulled high. To disable the amplifier, the EN must be pulled down to VCC-. When in shutdown mode, the amplifier output is in a high impedance state. The EN pin must never be left floating, but must be tied to VCC+ or VCC-. The turn-on time is calculated for an output variation of ± 200 mV (see Figure 47 & Figure 48. Figure 51 shows the test configurations). Figure 50. Test configuration Vcc-0.5 V + GND 2KO +Vcc DUT - GND 5.10 PCB layout recommendations Particular attention must be paid to the layout of the PCB tracks connected to the amplifier, load, and power supply. The power and ground traces are critical as they must provide adequate energy and grounding for all circuits. The best practice is to use short and wide PCB traces to minimize voltage drops and parasitic inductance. In addition, to minimizing parasitic impedance over the entire surface, a multi-via technique that connects the bottom and top layer ground planes together in many locations is often used. The copper traces that connect the output pins to the load and supply pins should be as wide as possible to minimize trace resistance. 5.11 Decoupling capacitor In order to ensure op amp full functionality, it is mandatory to place a decoupling capacitor of at least 22 nF as close as possible to the op amp supply pins. A good decoupling helps to reduce electromagnetic interference impact. 5.12 Macro model Accurate macro models of the TSV7722 device are available on the STMicroelectronics’ website at: www.st.com. These models are a trade-off between accuracy and complexity (that is, time simulation) of the TSV7722 operational amplifier. They emulate the nominal performance of a typical device at 25°C within the specified operating conditions mentioned in the datasheet. They also help to validate a design approach and to select the right operational amplifier, but they do not replace on-board measurements. DS13614 - Rev 5 page 23/39 TSV7721, TSV7722, TSV7723 Typical applications 6 Typical applications 6.1 Low-side current sensing Power management mechanisms are found in most electronic systems. Current sensing is useful for protecting applications. The low-side current sensing method consists of placing a sense resistor between the load and the circuit ground. The resulting voltage drop is amplified using the TSV772x (see Figure 51. Low-side current sensing schematic). Figure 51. Low-side current sensing schematic Vout can be expressed as follows: Rg2 Rf1 Rg2 . Rf2 Rf1 VOut = Rsℎunt . I 1 − . 1+ + Ip . 1+ − In . Rf1 Rg2 + Rf2 Rg1 Rg2 + Rf2 . Rg1 Rf1 − Vio . 1 + Rg1 (4) Assuming that Rf2 = Rf1 = Rf and Rg2 = Rg1 = Rg, this equation can be simplified as follows: Rf Rf VOut = Rsℎunt . I . 1+ + Rf . Iio Rg − Vio . Rg (5) The main advantage of using the TSV7722 for a low-side current sensing relies on its low Vio, compared to general purpose operational amplifiers. For the same current and targeted accuracy, the shunt resistor can be chosen with a lower value, resulting in lower power dissipation, lower drop in the ground path, and lower cost. Particular attention must be paid to the matching and precision of Rg1, Rg2, Rf1, and Rf2, to maximize the accuracy of the measurement. Furthermore, on the TSV7722, the Vio is trimmed, and thus reaches his minimum value, at Vicm = 0 V. This allows optimized precision for low-side current sensing application without precision degradation due to the CMRR. DS13614 - Rev 5 page 24/39 TSV7721, TSV7722, TSV7723 Photodiode transimpedance amplification 6.2 Photodiode transimpedance amplification The TSV7722, with high bandwidth and slew rate, is well suited for photodiode signal conditioning in a transimpedance amplifier circuit. This application is useful in high performance UV sensors, smoke detectors or particle sensors. Figure 52. Photodiode transimpedance amplifier circuit The transimpedance amplifier circuit converts the small photodiode output current in the nA range, into a voltage signal readable by an ADC following Eq. (6): VOut = Rf . Ipℎotodiode (6) The feedback resistance is usually in the MΩ range, in order to get a large enough voltage output range. However, together with the diode parasitic capacitance, the op amp input capacitances and the PCB stray capacitance, this feedback network creates a pole that makes the circuit oscillate. Using a small (few pF) capacitor in parallel with the feedback resistor is mandatory to stabilize the circuit. The value of this capacitor can be tuned to optimize the application settling time with a SPICE simulation using the op amp macromodel, or by prototyping. For more details on tuning this circuit, please read the application note AN4451. DS13614 - Rev 5 page 25/39 TSV7721, TSV7722, TSV7723 Package information 7 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. DS13614 - Rev 5 page 26/39 TSV7721, TSV7722, TSV7723 DFN8 2x2 mm package information 7.1 DFN8 2x2 mm package information Figure 53. SOT23-5 package outline Table 12. SOT23-5 package mechanical data Dimensions Millimeters Ref. A Min. Typ. Max. Min. Typ. Max. 0.90 1.20 1.45 0.035 0.047 0.057 A1 DS13614 - Rev 5 Inches 0.15 0.006 A2 0.90 1.05 1.30 0.035 0.041 0.051 B 0.35 0.40 0.50 0.014 0.016 0.020 C 0.09 0.15 0.20 0.004 0.006 0.020 D 2.80 2.90 3.00 0.110 0.114 0.118 D1 1.90 0.075 e 0.95 0.037 E 2.60 2.80 3.00 0.102 0.110 0.118 F 1.50 1.60 1.75 0.059 0.063 0.069 L 0.10 0.35 0.60 0.004 0.014 0.024 K 0° 10° 0° 10° page 27/39 TSV7721, TSV7722, TSV7723 DFN8 2x2 package information 7.2 DFN8 2x2 package information Figure 54. DFN8 2x2 package outline Table 13. DFN8 2x2 package mechanical data Dimensions Millimeters Ref. A Min. Typ. Max. Min. Typ. Max. 0.51 0.55 0.60 0.020 0.022 0.024 A1 0.05 A3 0.002 0.15 0.006 b 0.18 0.25 0.30 0.007 0.010 0.012 D 1.85 2.00 2.15 0.073 0.079 0.085 D2 1.45 1.60 1.70 0.057 0.063 0.067 E 1.85 2.00 2.15 0.073 0.079 0.085 E2 0.75 0.90 1.00 0.030 0.035 0.039 e L ddd DS13614 - Rev 5 Inches 0.50 0.225 0.325 0.020 0.425 0.08 0.009 0.013 0.017 0.003 page 28/39 TSV7721, TSV7722, TSV7723 DFN8 2x2 package information Figure 55. DFN8 2x2 recommended footprint Note: DS13614 - Rev 5 The exposed pad of the DFN8 2x2 can be connected to VCC- or left floating. page 29/39 TSV7721, TSV7722, TSV7723 MiniSO8 package information 7.3 MiniSO8 package information Figure 56. MiniSO8 package outline Table 14. MiniSO8 package mechanical data Dimensions Millimeters Ref. Min. Typ. A Max. Min. Typ. 1.1 A1 0 A2 0.75 b Max. 0.043 0.15 0 0.95 0.030 0.22 0.40 0.009 0.016 c 0.08 0.23 0.003 0.009 D 2.80 3.00 3.20 0.11 0.118 0.126 E 4.65 4.90 5.15 0.183 0.193 0.203 E1 2.80 3.00 3.10 0.11 0.118 0.122 e L 0.85 0.65 0.40 0.60 0.0006 0.033 0.80 0.016 0.024 0.95 0.037 L2 0.25 0.010 ccc 0° 0.037 0.026 L1 k DS13614 - Rev 5 Inches 8° 0.10 0° 0.031 8° 0.004 page 30/39 TSV7721, TSV7722, TSV7723 SO8 package information 7.4 SO8 package information Figure 57. SO8 package outline 0016023_So-807_fig2_Rev10 Table 15. SO8 mechanical data Dim. mm Min. Typ. A 1.75 A1 0.10 A2 1.25 b 0.31 0.51 b1 0.28 0.48 0.25 c 0.10 0.25 c1 0.10 0.23 D 4.80 4.90 5.00 E 5.80 6.00 6.20 E1 3.80 3.90 4.00 e 1.27 h 0.25 0.50 L 0.40 1.27 L1 1.04 L2 0.25 k ccc DS13614 - Rev 5 Max. 0° 8° 0.10 page 31/39 TSV7721, TSV7722, TSV7723 MiniSO10 package information 7.5 MiniSO10 package information aaa Figure 58. MiniSO10 package outline Table 16. MiniSO10 mechanical data Dimensions Millimeters Ref. Min. Typ. A Max. Min. Typ. 1.10 Max. 0.043 A1 0.05 0.10 0.15 0.002 0.004 0.006 A2 0.78 0.86 0.94 0.031 0.034 0.037 b 0.25 0.33 0.40 0.010 0.013 0.016 c 0.15 0.23 0.30 0.006 0.009 0.012 D 2.90 3.00 3.10 0.114 0.118 0.122 E 4.75 4.90 5.05 0.187 0.193 0.199 E1 2.90 3.00 3.10 0.114 0.118 0.122 e L 0.50 0.40 L1 k aaa DS13614 - Rev 5 Inches 0.55 0.020 0.70 0.016 0.95 0° 3° 0.022 0.028 0.037 6° 0.10 0° 3° 6° 0.004 page 32/39 TSV7721, TSV7722, TSV7723 Ordering information 8 Ordering information Table 17. Order code Order code Temperature range Package Channel TSV7721ILT -40 to +125 °C SOT23-5 1 TSV7721IYLT -40 to +125 °C Automotive grade(1) SOT23-5 1 DFN8 2x2 2 MiniSO8 2 K2A SO8 2 TSV7722I MiniSO10 2 K2A MiniSO8 2 • K217 SO8 2 • TSV7722Y TSV7722IQ2T TSV7722IST TSV7722IDT -40 to +125°C TSV7723IST TSV7722IYST TSV7722IYDT -40 to +125 °C Automotive grade(1) Automotive Marking K2A • K217 K2A 1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are ongoing. DS13614 - Rev 5 page 33/39 TSV7721, TSV7722, TSV7723 Revision history Table 18. Document revision history Date Revision 20-Jan-2021 1 Changes Initial release. Updated the "Related products" table in cover page. 16-Mar-2021 2 Added Section 1 Pin description, Section 1.1 TSV7721 single operational amplifier, Section 1.2 TSV7722 dual operational amplifier and Section 1.3 TSV7723 dual operational amplifier with shutdown option. Changed from 2.5 mA to 2.8 mA for "Maximum supply current -40 °C < T < 125 °C and Vcc=5 V, 3.3 V, 1.8 V". Minor text changes. Changed name and description pin 5, pin 6 in Figure 3 and Table 3. 3 Updated: VIH, VIL, IIH, IIL parameter in Table 6, Table 7 and Table 8, Figure 20 and Figure 21. 13-Oct-2021 4 Updated ICC parameter and max. value row T = 25°C in Table 6, Table 8 and Table 10. 15-Nov-2021 5 Updated Figure 41 and Figure 42. 25-May-2021 Added: Figure 43, Figure 44, Figure 45 and Section 5.9. DS13614 - Rev 5 page 34/39 TSV7721, TSV7722, TSV7723 Contents Contents 1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 1.1 TSV7721 single operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 TSV7722 dual operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 TSV7723 dual operational amplifier with shutdown option. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 5 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 6 7 8 5.1 Operating voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.2 Input offset voltage drift over the temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.3 Unused channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.4 EMI rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.5 Maximum power dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.6 Capacitive load and stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.7 Resistor values for high speed op amp design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.8 Settling time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.9 Shutdown function (TSV7723). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.10 PCB layout recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.11 Decoupling capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.12 Macro model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 6.1 Low-side current sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.2 Photodiode transimpedance amplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 7.1 SOT23-5 package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 7.2 DFN8 2x2 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 7.3 MiniSO8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.4 SO8 package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7.5 MiniSO10 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 DS13614 - Rev 5 page 35/39 TSV7721, TSV7722, TSV7723 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Electrical characteristics at VCC+ = 5.0 V, with VCC- = 0 V, Vicm = VCC / 2, T = 25°C, and OUT pin connected to VCC / 2 through RL = 10 kΩ (unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Electrical characteristics in shutdown mode at VCC+ = 5.0 V, with VCC- = 0 V, Vicm = VCC / 2, T = 25°C, and OUT pin connected to VCC / 2 through RL = 10 kΩ (unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Electrical characteristics at VCC+ = 3.3 V, with VCC- = 0 V, Vicm = VCC / 2, T = 25°C, and OUT pin connected to VCC / 2 through RL = 10 kΩ (unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Electrical characteristics in Shutdown mode at VCC+ = 3.3 V, with VCC- = 0 V, Vicm = VCC / 2, T = 25°C, and OUT pin connected to VCC / 2 through RL = 10 kΩ (unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Electrical characteristics at VCC+ = 1.8 V, with VCC- = 0 V, Vicm = 0.7 V, T = 25°C, and OUT pin connected to VCC / 2 through RL = 10 kΩ (unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Electrical characteristics in Shutdown mode at VCC+ = 1.8 V, with VCC- = 0 V, Vicm = 0.7 V, T = 25°C, and OUT pin connected to VCC / 2 through RL = 10 kΩ (unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 SOT23-5 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 DFN8 2x2 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 MiniSO8 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 SO8 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 MiniSO10 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Order code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 DS13614 - Rev 5 page 36/39 TSV7721, TSV7722, TSV7723 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. Figure 49. DS13614 - Rev 5 Pin connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supply current vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . Input offset voltage distribution at VCC = 5 V . . . . . . . . . . . . . . . . . . . . Input offset voltage distribution at VCC = 1.8 V . . . . . . . . . . . . . . . . . . Input offset voltage vs. temperature at VCC = 5 V . . . . . . . . . . . . . . . . Input offset voltage vs. temperature at VCC=1.8 V . . . . . . . . . . . . . . . . Input offset voltage thermal coeff. at VCC=5 V . . . . . . . . . . . . . . . . . . . Input offset voltage thermal coefficient at VCC=1.8 V . . . . . . . . . . . . . . Input offset voltage vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . Input offset voltage vs. common-mode voltage at VCC = 5 V . . . . . . . . . Input offset voltage vs. common-mode voltage at VCC = 1.8 V . . . . . . . Input bias current vs. temp. at VICM = VCC / 2 . . . . . . . . . . . . . . . . . . . Input bias current vs. common-mode voltage at VCC = 5 V . . . . . . . . . . Output current vs. output voltage at VCC = 5 V . . . . . . . . . . . . . . . . . . Output current versus output voltage at VCC=1.8 V . . . . . . . . . . . . . . . Output saturation voltage (VOL) vs. supply voltage . . . . . . . . . . . . . . . Output saturation voltage (VOH) vs. supply voltage . . . . . . . . . . . . . . . Positive slew rate at VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Negative slew rate at VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slew rate vs. VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Open loop bode diagram at VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . Open loop bode diagram at VCC = 1.8 V . . . . . . . . . . . . . . . . . . . . . . Closed loop bode diagram at VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . Closed loop bode diagram at VCC = 1.8 V . . . . . . . . . . . . . . . . . . . . . Phase margin vs. common-mode voltage and load current at VCC = 5 V Phase margin vs. capacitive load . . . . . . . . . . . . . . . . . . . . . . . . . . . Small step response at VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . Small step response at VCC = 1.8 V. . . . . . . . . . . . . . . . . . . . . . . . . . Desaturation from low rail at VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . Desaturation from high rail at VCC = 5 V. . . . . . . . . . . . . . . . . . . . . . . Settling time output high to low at VCC = 5 V. . . . . . . . . . . . . . . . . . . . Settling time output low to high at VCC = 5 V. . . . . . . . . . . . . . . . . . . . Small step overshoot vs. load capacitance . . . . . . . . . . . . . . . . . . . . . Linearity vs. load resistance at VCC = 5 V. . . . . . . . . . . . . . . . . . . . . . Noise vs. frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Noise versus time at VCC = 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD+N vs. output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CMRR vs. frequency at VCC = 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . PSRR vs. frequency at VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . Supply current vs. supply voltage in shutdown mode . . . . . . . . . . . . . . Turn-on time at VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Turn-on time at VCC = 1.8 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EMIRR on In+, In- and Out pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test configuration for RISO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inverting amplifier configuration with parasitic input capacitances . . . . . Settling time measurement configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . 3 . 4 12 12 12 12 12 12 13 13 13 13 13 13 14 14 14 14 14 14 15 15 15 15 15 15 16 16 16 16 16 16 17 17 17 17 17 17 18 18 18 18 18 18 20 21 21 22 page 37/39 TSV7721, TSV7722, TSV7723 List of figures Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. DS13614 - Rev 5 Test configuration . . . . . . . . . . . . . . . . . . . Low-side current sensing schematic . . . . . . Photodiode transimpedance amplifier circuit . SOT23-5 package outline . . . . . . . . . . . . . DFN8 2x2 package outline . . . . . . . . . . . . . DFN8 2x2 recommended footprint. . . . . . . . MiniSO8 package outline . . . . . . . . . . . . . . SO8 package outline . . . . . . . . . . . . . . . . . MiniSO10 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 24 25 27 28 29 30 31 32 page 38/39 TSV7721, TSV7722, TSV7723 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2021 STMicroelectronics – All rights reserved DS13614 - Rev 5 page 39/39
TSV7722IST 价格&库存

很抱歉,暂时无法提供与“TSV7722IST”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TSV7722IST
  •  国内价格
  • 1+7.58160
  • 10+7.43040
  • 30+7.32240

库存:47