0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
VN5E160ASOTR-E

VN5E160ASOTR-E

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    SO-16L_10.3X7.5MM

  • 描述:

    IC PWR DRIVER N-CHANNEL 1:1 16SO

  • 数据手册
  • 价格&库存
VN5E160ASOTR-E 数据手册
VN5E160ASO-E Single channel high-side driver with analog for automotive applications Datasheet − production data Features Max supply voltage VCC Operating voltage range VCC 4.5 V to 28 V Max on-state resistance (per ch.) RON 41 V SO-16L ("1($'5 160 mΩ Current limitation (typ) ILIMH 10 A Off-state supply current IS 2 µA(1) – Overtemperature shutdown with autorestart (thermal shutdown) – Reverse battery protected – Electrostatic discharge protection 1. Typical value with all loads connected. ■ ■ ■ General – Inrush current active management by power limitation – Very low standby current – 3.0 V CMOS compatible inputs – Optimized electromagnetic emission – Very low electromagnetic susceptibility – Compliant with European directive 2002/95/EC – Very low current sense leakage – AEC-Q100 qualified Diagnostic functions – Proportional load current sense – High-precision current sense for wide-range currents – Current sense disable – OFF-state open-load detection – Output short to VCC detection – Overload and short to ground (power limitation) indication Protections – Undervoltage shutdown – Overvoltage clamp – Load current limitation – Self-limiting of fast thermal transients – Protection against loss of ground and loss of VCC September 2013 This is information on a product in full production. Application ■ All types of resistive, inductive and capacitive loads ■ Suitable as LED driver Description The VN5E160ASO-E is a single channel highside driver manufactured using ST proprietary VIPower® M0-5 technology and housed in SO-16L package. The device is designed to drive 12 V automotive grounded loads, and to provide protection and diagnostics. It also implements a 3 V and 5 V CMOS-compatible interface for the use with any microcontroller. The device integrates advanced protective functions such as load current limitation, inrush and overload active management by power limitation, overtemperature shut-off with auto-restart and overvoltage active clamp. A dedicated analog current sense pin is associated with every output channel providing ehnanced diagnostic functions including fast detection of overload and short-circuit to ground through power limitation indication, overtemperature indication, short-circuit to VCC diagnosis and ONstate and off-state open-load detection. The current sensing and diagnostic feedback of the whole device can be disabled by pulling the CS_DIS pin high to share the external sense resistor with similar devices. Doc ID 022475 Rev. 5 1/37 www.st.com 1 Contents VN5E160ASO-E Contents 1 Block diagram and pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.1 GND protection network against reverse battery . . . . . . . . . . . . . . . . . . . 24 3.1.1 Solution 1: resistor in the ground line (RGND only) . . . . . . . . . . . . . . . . 24 3.1.2 Solution 2: a diode (DGND) in the ground line . . . . . . . . . . . . . . . . . . . 25 3.2 Load dump protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3 MCU I/Os protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4 Current sense and diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.4.1 3.5 4 Maximum demagnetization energy (VCC = 13.5 V) . . . . . . . . . . . . . . . . . 28 Package and PC board thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.1 5 Short to VCC and OFF-state open-load detection . . . . . . . . . . . . . . . . . 27 SO-16L thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Package and packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.1 ECOPACK® packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.2 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.3 Packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2/37 Doc ID 022475 Rev. 5 VN5E160ASO-E List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Pin function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Suggested connections for unused and not connected pins . . . . . . . . . . . . . . . . . . . . . . . . 6 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Switching (VCC = 13 V; Tj = 25 °C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Logic inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Protection and diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Current sense (8 V < VCC < 18 V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Open-load detection (8 V < VCC < 18 V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Truth table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Electrical transient requirements (part 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Electrical transient requirements (part 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Electrical transient requirements (part 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Thermal parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 SO-16L mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Doc ID 022475 Rev. 5 3/37 List of figures VN5E160ASO-E List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. 4/37 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Current sense delay characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 OFF-state open-load delay timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Delay response time between rising edge of output current and rising edge of current sense (CS enabled) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Output voltage drop limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 IOUT/ISENSE vs IOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Maximum current sense ratio drift vs load current(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Normal operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Overload or short to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Intermittent overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 OFF-state open-load with external circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Short to VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Tj evolution in overload or short to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 OFF-state output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 High-level input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Input voltage clamp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Low-level input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 High-level input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Hysteresis input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 ON-state resistance vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 ON-state resistance vs VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Undervoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Turn-on voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 ILIMH vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Turn-off voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 High-level CS_DIS voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 CS_DIS voltage clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Low-level CS_DIS voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Current sense and diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Maximum turn-off current versus inductance (for each channel)(1) . . . . . . . . . . . . . . . . . . 28 SO-16L PC board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Rthj-amb vs PCB copper area in open box free air condition . . . . . . . . . . . . . . . . . . . . . . . 29 SO-16L thermal impedance junction ambient single pulse. . . . . . . . . . . . . . . . . . . . . . . . . 30 Thermal fitting model of a single channel HSD in SO-16L . . . . . . . . . . . . . . . . . . . . . . . . . 30 SO-16L package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 SO-16L tube shipment (no suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 SO-16L tape and reel shipment (suffix “TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Doc ID 022475 Rev. 5 VN5E160ASO-E 1 Block diagram and pin configuration Block diagram and pin configuration Figure 1. Block diagram 6 && 6LJQDO&ODPS 8QGHUYROWDJH ,1 &RQWURO 'LDJQRVWLF 3RZHU &ODPS '5,9(5 921 /LPLWDWLRQ 2YHU WHPSHUDWXUH &XUUHQW /LPLWDWLRQ 2))6WDWH 2SHQORDG &6B ',6 96(16(+ &6 &XUUHQW 6HQVH 287 29(5/2$'3527(&7,21 $&7,9(32:(5/,0,7$7 ,21 /2*,& *1' *$3*&)7 Table 1. Pin function Name Function VCC Battery connection. OUT Power output. GND Ground connection. Must be reverse battery protected by an external diode/resistor network. IN Voltage-controlled input pin with hysteresis, CMOS compatible; it controls output switch state. CS Analog current sense pin; it delivers a current proportional to the load current. CS_DIS Active high CMOS compatible pin, to disable the current sense pin. Doc ID 022475 Rev. 5 5/37 Block diagram and pin configuration Figure 2. VN5E160ASO-E Configuration diagram (top view) 9FF   9FF *1' 1& 1& 1& ,1387 1& &6(16( 287387 1& 287387 287387 &6',6 9FF   9FF ("1($'5 Table 2. Suggested connections for unused and not connected pins Connection / pin Current sense N.C. Output Input CS_DIS Floating Not allowed X(1) X X X To ground Through 1 kΩ resistor X Not allowed 1. X: do not care. 6/37 Doc ID 022475 Rev. 5 Through 10 kΩ Through 10 kΩ resistor resistor VN5E160ASO-E 2 Electrical specifications Electrical specifications Figure 3. Current and voltage conventions )6 9&& ,&6' 9) ,287 287 &6B',6 9287 9&6' ,,1 9&& ,1 ,6(16( &6 9,1 *1' 96(16( ,*1' *$3*&)7 1. VF = VOUT - VCC during reverse battery condition. 2.1 Absolute maximum ratings Stressing the device above the ratings listed in Table 3 may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to the conditions in the “absolute maximum ratings” table for extended periods may affect device reliability. Table 3. Absolute maximum ratings Symbol Parameter Value Unit VCC DC supply voltage 41 V -VCC Reverse DC supply voltage 0.3 V -IGND DC reverse ground pin current 200 mA IOUT DC output current Internally limited A -IOUT Reverse DC output current 6 A DC input current -1 to 10 mA DC current sense disable input current -1 to 10 mA 200 mA VCC - 41 +VCC V V 36 mJ IIN ICSD -ICSENSE DC reverse CS pin current VCSENSE Current sense maximum voltage EMAX Maximum switching energy (single pulse) (L = 8 mH; RL = 0 Ω; Vbat = 13.5 V; Tjstart = 150°C; IOUT = IlimL(Typ.) ) Doc ID 022475 Rev. 5 7/37 Electrical specifications Table 3. VN5E160ASO-E Absolute maximum ratings (continued) Symbol Value Unit VESD Electrostatic discharge (human body model: R = 1.5 KΩ; C = 100 pF) – IN – CS – CS_DIS – OUT – VCC 4000 2000 4000 5000 5000 V V V V V VESD Charge device model (CDM-AEC-Q100-011) 750 V Junction operating temperature -40 to 150 °C Storage temperature -55 to 150 °C Tj Tstg 2.2 Parameter Thermal data Table 4. Thermal data Symbol Parameter Rthj-pcb junction-pcb(1) Thermal resistance Rthj-amb Thermal resistance junction - ambient on two layers pcb Rthj-amb Thermal resistance junction - ambient on two layers Typical value Unit 18.5 °C/W See Figure 36 °C/W 38 °C/W pcb(2) 1. The measure is done in accordance with the JESD 51-8. 2. Four Layers PCB characteristics: - Cu thickness: 70 um outer layers, 35 um inner layers - Board finish thickness 1.6 mm +/- 10% - Thermal vias separation 1.2 mm - Thermal via diameter 0.3 mm +/- 0.08 mm - Cu thickness on vias 0.025 mm - Device soldered at about 2cm from the PCB edge with two sqcm of exposed copper. 8/37 Doc ID 022475 Rev. 5 VN5E160ASO-E 2.3 Electrical specifications Electrical characteristics Values specified in this section are for 8 V < VCC < 28 V; -40°C < Tj < 150°C, unless otherwise stated. Table 5. Power section Symbol Parameter Test conditions VCC Operating supply voltage VUSD VUSDhyst Min. Typ. Max. Unit 4.5 13 28 V Undervoltage shut-down 3.5 4.5 V Undervoltage shut-down hysteresis 0.5 IOUT = 1 A; Tj = 25°C RON Vclamp IS IL(off1) VF ON-state resistance Voltage clamp 160 IOUT = 1 A; Tj = 150°C 320 IOUT = 1 A; VCC = 5 V; Tj = 25°C 210 IS = 20 mA Supply current OFF-state output current Output - VCC diode voltage V 41 mΩ 46 52 V OFF-state: VCC = 13 V; VIN = VOUT = 0 V; Tj = 25°C 2(1) 5(1) µA ON-state: VIN = 5 V; VCC = 13 V; IOUT = 0 A 1.9 3.5 mA 0.01 3 VIN = VOUT = 0 V; VCC = 13 V; Tj = 25°C 0 VIN = VOUT = 0 V; VCC = 13 V; Tj = 125°C 0 µA -IOUT = 1 A; Tj = 150°C 5 0.7 V 1. PowerMOS leakage included. Table 6. Symbol Switching (VCC = 13 V; Tj = 25 °C) Parameter Test conditions Min. Typ. Max. Unit td(on) Turn-on delay time RL = 13 Ω (see Figure 6) — 10 — µs td(off) Turn-off delay time RL = 13 Ω (see Figure 6) — 10 — µs dVOUT/dt(on) Turn-on voltage slope RL = 13 Ω — See Figure 26 — V/µs dVOUT/dt(off) Turn-off voltage slope RL = 13 Ω — See Figure 28 — V/µs WON Switching energy losses during twon RL = 13 Ω (see Figure 6) — 0.05 — mJ WOFF Switching energy losses during twoff RL = 13 Ω (see Figure 6) — 0.03 — mJ Doc ID 022475 Rev. 5 9/37 Electrical specifications Table 7. Symbol VN5E160ASO-E Logic inputs Parameter Test conditions VIL Low-level input voltage IIL Low-level input current VIH High-level input voltage IIH High-level input current VI(hyst) Hysteresis input voltage VICL ICSDL Low-level CS_DIS current VCSDH High-level CS_DIS voltage ICSDH High-level CS_DIS current VCSD(hyst) Hysteresis CS_DIS voltage Symbol CS_DIS voltage clamp 0.9 V 2.1 V 10 5.5 7 V -0.7 VCSD = 0.9 V µA 2.1 V VCSD = 2.1 V 10 0.25 ICSD = 1 mA V 1 µA V 5.5 7 V ICSD = -1 mA -0.7 Protection and diagnostics(1) Parameter Test conditions VCC = 13 V Short-circuit current V = 13 V; TR < Tj < TTSD during thermal cycling CC TTSD Shutdown temperature TR Reset temperature TRS Thermal reset of STATUS Min. Typ. Max. Unit 7 10 14 A 14 A 5 V < VCC < 28 V 2.5 150 175 TRS + 1 TRS + 5 A 200 135 Thermal hysteresis (TTSD - TR) Turn-off output voltage clamp IOUT = 1 A; VIN = 0, L = 20 mH Output voltage drop limitation IOUT = 0.03 A (see Figure 8) Tj = -40 °C to +150 °C Doc ID 022475 Rev. 5 °C °C °C 7 °C VCC - 41 VCC - 46 VCC - 52 V 25 mV 1. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles. 10/37 µA V 0.9 IlimL VON Unit 0.25 DC short-circuit current VDEMAG Max. µA VIN = 2.1 V IlimH THYST Typ. 1 IIN = -1 mA Low-level CS_DIS voltage Table 8. VIN = 0.9 V IIN = 1 mA Input voltage clamp VCSDL VCSCL Min. VN5E160ASO-E Electrical specifications Table 9. Symbol Current sense (8 V < VCC < 18 V) Parameter Test conditions Min. Typ. Max. 265 490 715 355 385 465 465 575 545 Unit K0 IOUT/ISENSE IOUT = 0.025 A; VSENSE = 0.5 V Tj = -40°C to 150°C K1 IOUT/ISENSE IOUT = 0.35 A; VSENSE = 0.5 V Tj = -40°C to 150°C Tj = 25°C to 150°C Current sense ratio drift IOUT =0.35 A; VSENSE = 0.5 V Tj = -40°C to 150°C IOUT/ISENSE IOUT = 0.5 A; VSENSE = 4 V Tj = -40°C to 150°C Tj = 25°C to 150°C Current sense ratio drift IOUT = 0.5 A; Tj = -40°C to 150°C IOUT/ISENSE IOUT = 1.5 A; VSENSE = 4 V Tj = -40°C to 150°C Tj = 25°C to 150°C Current sense ratio drift IOUT = 1.5 A; Tj = -40°C to 150°C -4 +4 IOUT = 0 A; VSENSE = 0 V; VCSD = 5 V; VIN = 0 V; Tj = -40°C to 150°C 0 1 IOUT = 0 A; VSENSE = 0 V; VCSD = 0 V; VIN = 5 V; Tj = -40°C to 150°C 0 2 IOUT = 1 A; VSENSE = 0 V; VCSD = 5 V; VIN = 5 V; Tj = -40°C to 150°C 0 1 Max analog sense output voltage RSENSE = 10 KΩ IOUT = 1 A; 5 VSENSEH(2) Analog sense output voltage in fault condition VCC = 13 V; RSENSE = 3.9 KΩ 8 V ISENSEH(2) Analog sense output current in fault condition VCC = 13 V; VSENSE = 5 V 9 mA Delay response time tDSENSE1H from falling edge of CS_DIS pin VSENSE < 4 V; 0.025 A < IOUT < 1.5 A ISENSE = 90% of ISENSE max (see Figure 4) 40 100 µs Delay response time tDSENSE1L from rising edge of CS_DIS pin VSENSE < 4 V; 0.025 A < IOUT < 1.5 A ISENSE = 10% of ISENSE max (see Figure 4) 5 20 µs dK1/K1(1) K2 dK2/K2(1) K3 dK3/K3(1) ISENSE0 VSENSE Analog sense leakage current Doc ID 022475 Rev. 5 -11 380 400 +11 455 455 -8 420 420 530 510 +8 455 455 % % 490 480 % µA V 11/37 Electrical specifications Table 9. Symbol VN5E160ASO-E Current sense (8 V < VCC < 18 V) (continued) Parameter Test conditions Min. VSENSE < 4 V; Delay response time 0.025 A < IOUT < 1.5 A tDSENSE2H from rising edge of IN pin ISENSE=90% of ISENSE max (see Figure 4) Delay response time between rising edge of ΔtDSENSE2H output current and rising edge of current sense VSENSE < 4 V; ISENSE = 90% of ISENSEMAX, IOUT = 90% of IOUTMAX IOUTMAX=1.5A (see Figure 7) Delay response time tDSENSE2L from falling edge of IN pin VSENSE < 4 V; 0.025 A < IOUT < 1.5 A ISENSE=10% of ISENSE max (see Figure 4) Typ. Max. Unit 30 160 µs 110 µs 250 µs Max. Unit 80 1. Parameter guaranteed by design; it is not tested. 2. Fault condition includes: power limitation, overtemperature and open load OFF-state detection. Table 10. Symbol Parameter Test conditions Min. Typ. VOL OFF-state open-load V = 0 V; 8 V < VCC < 18 V voltage detection threshold IN 2 4 V IOL ON-state open-load VIN = 5V; 8 V < VCC < 18 V current detection threshold ISENSE = 5 µA 0.5 5 mA Output short-circuit to VCC detection delay at turn-off 180 1200 µs tDSTKON 12/37 Open-load detection (8 V < VCC < 18 V) See Figure 5 IL(off2)r OFF-state output current at VIN = 0 V; VSENSE = 0 V VOUT = 4 V VOUT rising from 0 V to 4 V -120 0 IL(off2)f VIN = 0 V; OFF-state output current at VSENSE = VSENSEH VOUT = 2 V VOUT falling from VCC to 2 V -50 90 td_vol Delay response from output rising edge to VSENSE rising edge in open-load VOUT = 4 V; VIN = 0 V VSENSE= 90% of VSENSEH Doc ID 022475 Rev. 5 µA 20 µs VN5E160ASO-E Electrical specifications Figure 4. Current sense delay characteristics ,1387 &6B',6 /2$'&855(17 6(16(&855(17 W'6(16(+ W'6(16(/ W'6(16(+ W'6(16(/ $*9 Figure 5. OFF-state open-load delay timing 2XWSXWVWXFNDW9&& 9287!92/ 9,1 96(16(+ 9&6 W'67.21 *$3*&)7 Figure 6. Switching characteristics 9287 W:RQ W:RII   G9287GW RII G9287GW RQ WU  WI W ,1387 WG RQ WG RII W *$3*&)7 Doc ID 022475 Rev. 5 13/37 Electrical specifications Figure 7. VN5E160ASO-E Delay response time between rising edge of output current and rising edge of current sense (CS enabled) 9,1 ǻW'6(16(+ W ,287 ,2870$; ,2870$; W ,6(16( ,6(16(0$; ,6(16(0$; W $*9 Figure 8. Output voltage drop limitation 9&&9287 7M ƒ& 7M ƒ& 7M ƒ& 921 ,287 921521 7 $*9 14/37 Doc ID 022475 Rev. 5 VN5E160ASO-E Electrical specifications Figure 9. IOUT/ISENSE vs IOUT IOUT/ISENSE 620 590 560 A 530 B 500 470 C 440 410 D 380 E 350 320 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 1.6 1.8 IOUT (A) D: Min, Tj = 25°C to 150°C E: Min, Tj = -40°C to 150°C A: Max, Tj = -40°C to 150°C B: Max, Tj = 25°C to 150°C C: Typical, Tj = -40°C to 150°C Figure 10. Maximum current sense ratio drift vs load current(1) dK/K (%) 15 12 9 A 6 3 0 -3 -6 B -9 -12 -15 0 0.2 0.4 0.6 0.8 1 1.2 1.4 IOUT (A) A: Max, Tj = -40°C to 150°C B: Min, Tj = 25°C to 150°C 1. Parameter guaranteed by design; it is not tested. Doc ID 022475 Rev. 5 15/37 Electrical specifications Table 11. VN5E160ASO-E Truth table Conditions IN OUT SENSE (VCSD = 0 V)(1) Normal operation L H L H 0 Nominal Overtemperature L H L L 0 VSENSEH Undervoltage L H L L 0 0 H X (no power limitation) Cycling (power limitation) Nominal Overload H VSENSEH Short circuit to GND (Power limitation) L H L L 0 VSENSEH OFF-state open-load (with external pull-up) L H VSENSEH 1. If the VCSD is high, the SENSE output is at high impedance, its potential depends on leakage currents and external circuit. 16/37 Doc ID 022475 Rev. 5 VN5E160ASO-E Electrical specifications Table 12. ISO 7637-2: 2004(E) Electrical transient requirements (part 1) Test levels(1) Number of pulses or test times Burst cycle/pulse repetition time Delays and Impedance Test pulse III IV 1 -75 V -100 V 5000 pulses 0.5 s 5s 2 ms, 10 Ω 2a +37 V +50 V 5000 pulses 0.2 s 5s 50 µs, 2 Ω 3a -100 V -150 V 1h 90 ms 100 ms 0.1 µs, 50 Ω 3b +75 V +100 V 1h 90 ms 100 ms 0.1 µs, 50 Ω 4 -6 V -7 V 1 pulse 100 ms, 0.01 Ω 5b(2) +65 V +87 V 1 pulse 400 ms, 2 Ω Table 13. Electrical transient requirements (part 2) Test level results(1) ISO 7637-2: 2004(E) Test pulse III IV 1 C C 2a C C 3a C C 3b C C 4 C C 5b(2) C C 1. The above test levels must be considered referred to VCC = 13.5 V except for pulse 5b 2. Valid in case of external load dump clamp: 40 V maximum referred to ground. Table 14. Electrical transient requirements (part 3) Class Contents C All functions of the device are performed as designed after exposure to disturbance. E One or more functions of the device are not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device. Doc ID 022475 Rev. 5 17/37 Electrical specifications 2.4 VN5E160ASO-E Waveforms Figure 11. Normal operation 1RUPDORSHUDWLRQ ,1387 1RPLQDOORDG 1RPLQDOORDG ,287 96(16( 9&6B',6 $*9 Figure 12. Overload or short to GND 2YHUORDGRU6KRUWWR*1' ,1387 3RZHU/LPLWDWLRQ , /LP+! 7KHUPDOF\FOLQJ , /LP/! ,287 96(16( 9&6B',6 $*9 18/37 Doc ID 022475 Rev. 5 VN5E160ASO-E Electrical specifications Figure 13. Intermittent overload ,QWHUPLWWHQW2YHUORDG ,1387 2YHUORDG ,/LP+ ! ,/LP/ ! 1RPLQDOORDG ,287 96(16(+ ! 96(16( 9&6B',6 $*9 Figure 14. OFF-state open-load with external circuitry 2)) 6WDWH2SHQ/RDG ZLWKH[WHUQDOFLUFXWU\ ,1387 9287!92/ 9287 92/ ,287 96(16(+ ! W'67. RQ 96(16( 9&6B',6 $*9 Doc ID 022475 Rev. 5 19/37 Electrical specifications VN5E160ASO-E Figure 15. Short to VCC 6KRUWWR9&& 9287 5HVLVWLYH 6KRUWWR9&& +DUG 6KRUWWR9&& 92/ 9287!92/ ,287 W'67. RQ W'67. RQ 9&6B',6 $*9 Figure 16. Tj evolution in overload or short to GND 7- HYROXWLRQLQ 2YHUORDGRU6KRUWWR*1' ,1387 6HOIOLPLWDWLRQRIIDVWWKHUPDOWUDQVLHQWV 776' 7+Q$@ ,LK>X$@       7JO7                         7F> ƒ&@    Figure 19. Input voltage clamp     *$3*&)7 9LO>9@      *JON"   Figure 20. Low-level input voltage 9LFO>9@   7F> ƒ&@ *$3*&)7                              7F> ƒ&@       7F> ƒ&@ *$3*&)7 Figure 21. High-level input voltage *$3*&)7 Figure 22. Hysteresis input voltage 9LK\VW>9@ 9LK>9@                               7F> ƒ&@           7F> ƒ&@ *$3*&)7 *$3*&)7 Doc ID 022475 Rev. 5 21/37 Electrical specifications VN5E160ASO-E Figure 23. ON-state resistance vs Tcase Figure 24. ON-state resistance vs VCC 5RQ>P2KP@ 5RQ>P2KP@         ,RXW $ 9FF 9  5D¡$             5D¡$ 5D¡$ 5D¡$                7F> ƒ&@     *$3*&)7 *$3*&)7 Figure 25. Undervoltage shutdown Figure 26. Turn-on voltage slope 9XVG>9@ G9RXWGW 2Q>9PV@       9FF 9 5O ȍ                             7F> ƒ&@     Figure 27. ILIMH vs Tcase  *$3*&)7 Figure 28. Turn-off voltage slope ,OLPK>$@ G9RXWGW 2II>9PV@                9FF 9          7F> ƒ&@ *$3*&)7          7F> ƒ&@ 9FF 9 5O ȍ           7F> ƒ&@ *$3*&)7 22/37  9FF>9@ Doc ID 022475 Rev. 5 *$3*&)7 VN5E160ASO-E Electrical specifications Figure 29. High-level CS_DIS voltage Figure 30. CS_DIS voltage clamp 9FVGFO>9@ 9FVGK>9@       *JON"                          7F> ƒ&@          7F> ƒ&@ *$3*&)7 *$3*&)7 Figure 31. Low-level CS_DIS voltage 9FVGO>9@                    7F> ƒ&@ *$3*&)7 Doc ID 022475 Rev. 5 23/37 Application information 3 VN5E160ASO-E Application information Figure 32. Application schematic 9 6 && 5SURW &6B',6 'OG P& 5SURW ,1 287 5SURW &6 *1' 56(16( 9*1' &H[W 5*1' '*1' *$3*&)7 3.1 GND protection network against reverse battery 3.1.1 Solution 1: resistor in the ground line (RGND only) This can be used with any type of load. The following is an indication on how to resize the RGND resistor. 1. RGND ≤ 600 mV / (IS(on)max). 2. RGND ≥ (−VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device datasheet. Power dissipation in RGND (when VCC < 0: during reverse battery situations) is: Equation 1 PD = (-VCC)2 / RGND This resistor can be shared amongst several different HSDs. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum ON-state currents of the different devices. Please note that if the microprocessor ground is not shared by the device ground then the RGND produces a shift (IS(on)max * RGND) in the input thresholds and the status output 24/37 Doc ID 022475 Rev. 5 VN5E160ASO-E Application information values. This shift varies depending on how many devices are ON in case of several highside drivers sharing the same RGND. If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then ST suggests to utilize Solution 2 (see Section 3.1.2: Solution 2: a diode (DGND) in the ground line). 3.1.2 Solution 2: a diode (DGND) in the ground line A resistor (RGND = 1 kΩ) should be inserted in parallel to DGND if the device drives an inductive load. This small signal diode can be safely shared amongst several different HSDs. Also in this case, the presence of the ground network produces a shift (≈600 mV) in the input threshold and in the status output values if the microprocessor ground is not common to the device ground. This shift does not vary if more than one HSD shares the same diode/resistor network. 3.2 Load dump protection Dld is necessary (voltage transient suppressor) if the load dump peak voltage exceeds the VCC maximux DC rating. The same applies if the device is subject to transients on the VCC line that are greater than the ones shown in the ISO T/R 7637/1 table. 3.3 MCU I/Os protection If a ground protection network is used and negative transients are present on the VCC line, the control pins are pulled negative. ST suggests to insert a resistor (Rprot) in line to prevent the microcontroller I/O pins from latching-up. The value of these resistors is a compromise between the leakage current of microcontroller and the current required by the HSD I/Os (input levels compatibility) with the latch-up limit of microcontroller I/Os. Equation 2 -VCCpeak / Ilatchup ≤ Rprot ≤ (VOHμC - VIH - VGND) / IIHmax Calculation example: For VCCpeak = - 100 V, Ilatchup ≥ 20 mA, VOHμC ≥ 4.5 V 5 kΩ ≤ Rprot ≤ 180 kΩ. Recommended values: Rprot =10 kΩ, CEXT = 10 nF. Doc ID 022475 Rev. 5 25/37 Application information 3.4 VN5E160ASO-E Current sense and diagnostic The current sense pin performs a double function (see Figure 33: Current sense and diagnostic): ● Current mirror of the load current in normal operation, delivering a current proportional to the load current according to a known ratio KX. The current ISENSE can be easily converted to a voltage VSENSE by means of an external resistor RSENSE. Linearity between IOUT and VSENSE is ensured up to 5 V minimum (see parameter VSENSE in Table 9: Current sense (8 V < VCC < 18 V)). The current sense accuracy depends on the output current (refer to current sense electrical characteristics Table 9: Current sense (8 V < VCC < 18 V)). ● Diagnostic flag in fault conditions, delivering a fixed voltage VSENSEH up to a maximum current ISENSEH in case of the following fault conditions (refer to Table 11: Truth table): – Power limitation activation – Overtemperature – Short to VCC in OFF-state – Open-load in OFF-state with additional external components. A logic high-level on the CS_DIS pin simultaneously sets all the current sense pins of the device in a high impedance state, thus disabling the current monitoring and diagnostic detection. This feature allows multiplexing of the microcontroller analog inputs by sharing the sense resistance and ADC line among different devices. Figure 33. Current sense and diagnostic 938 9%$7 9&& -AIN-/3N 9 38B&0' 2YHUWHPSHUDWXUH ,287.; 538  2/2))  ,6(16(+ 92/ 3ZUB/LP &6B',6 287Q ,/RIIU ,/RIII ,1387Q 96(16(+ &855(17 6(16(Q 53527 7RX&$'& 56(16( *1' /RDG 53' 96(16( *$3*&)7 26/37 Doc ID 022475 Rev. 5 VN5E160ASO-E 3.4.1 Application information Short to VCC and OFF-state open-load detection Short to VCC A short-circuit between VCC and output is indicated by the relevant current sense pin set to VSENSEH during the device OFF-state. Little or no current is delivered by the current sense during the ON-state depending on the nature of the short-circuit. OFF-state open-load with external circuitry Detection of an open-load in off-mode requires an external pull-up resistor (RPU) connecting the output to a positive supply voltage (VPU). It is preferable that VPU is switched-off during the module standby mode to avoid an increase in overall standby current consumption in normal conditions, that is, when the load is connected. An external pull-down resistor (RPD) connected between output and GND is mandatory to avoid misdetection in case of floating outputs in OFF-state (see Figure 33: Current sense and diagnostic). RPD must be selected in order to ensure VOUT < VOLmin unless pulled up by the external circuitry: Equation 3 RPD ≤ 22 KΩ is recommended. For proper open load detection in OFF-state, the external pull-up resistor must be selected according to the following formula: Equation 4 For the values of VOLmin ,VOLmax, IL(off2)r and IL(off2)f (see Table 10: Open-load detection (8 V < VCC < 18 V). Doc ID 022475 Rev. 5 27/37 Application information 3.5 VN5E160ASO-E Maximum demagnetization energy (VCC = 13.5 V) Figure 34. Maximum turn-off current versus inductance (for each channel)(1)   A B C , $       / P+ *$3*&)7 A: Tjstart = 150°C single pulse B: Tjstart = 100°C repetitive pulse C: Tjstart = 125°C repetitive pulse 9,1,/ 'HPDJQHWL]DWLRQ 'HPDJQHWL]DWLRQ 'HPDJQHWL]DWLRQ W *$3*&)7 1. Values are generated with RL = 0 Ω. In case of repetitive pulses, Tjstart (at the beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves A and B. 28/37 Doc ID 022475 Rev. 5 VN5E160ASO-E Package and PC board thermal data 4 Package and PC board thermal data 4.1 SO-16L thermal data Figure 35. SO-16L PC board ("1($'5 Note: Layout condition of Rth and Zth measurements (PCB: Double Layers, Thermal Vias,FR4 area 77mm x 86 mm, PCB thickness=1.6mm, Cu thickness = 70µm (front and back side), Copper area from minimum pad lay- out to 24 cm2 ). Figure 36. Rthj-amb vs PCB copper area in open box free air condition 57+MDPE   57+MDPE              '!0'2) Doc ID 022475 Rev. 5 29/37 Package and PC board thermal data VN5E160ASO-E Figure 37. SO-16L thermal impedance junction ambient single pulse =7+ ƒ&:  &X FP &X FP &X IRRWSULQW         7LPH V '!0'2) Figure 38. Thermal fitting model of a single channel HSD in SO-16L '!0'2) Equation 5: pulse calculation formula: Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ ) where 30/37 δ = tp ⁄ T Doc ID 022475 Rev. 5  VN5E160ASO-E Package and PC board thermal data Table 15. Thermal parameter Area/island (cm2) Footprint R1 (°C/W) 1.2 R2 (°C/W) 4.2 R3 (°C/W) 5 R4 (°C/W) 2 8 8 6 6 R5 (°C/W) 14 13 13 R6 (°C/W) 28 20 14.5 C1 (W.s/°C) 0.0008 C2 (W.s/°C) 0.002 C3 (W.s/°C) 0.1 C4 (W.s/°C) 0.5 C5 (W.s/°C) 1 1.5 1.5 C6 (W.s/°C) 3 9 12 Doc ID 022475 Rev. 5 31/37 Package and packing information VN5E160ASO-E 5 Package and packing information 5.1 ECOPACK® packages In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 5.2 Package mechanical data Figure 39. SO-16L package dimensions ("1($'5 32/37 Doc ID 022475 Rev. 5 VN5E160ASO-E Package and packing information Table 16. SO-16L mechanical data Millimeters Symbol Min Typ Max A 2.35 2.65 A1 0.10 0.30 B 0.33 0.51 C 0.23 0.32 D 10.10 10.50 E 7.40 7.60 e 1.27 H 10.00 10.65 h 0.25 0.75 L 0.40 1.27 k 0° 8° ddd 0.10 Doc ID 022475 Rev. 5 33/37 Package and packing information 5.3 VN5E160ASO-E Packing information Figure 40. SO-16L tube shipment (no suffix) "ASE1TY "UL K 1 TY 4U BELE N G TH ›  ! " #›  # "       !LLDIMENSIO NSAREINMM  ! ("1($'5 Figure 41. SO-16L tape and reel shipment (suffix “TR”) 34/37 Doc ID 022475 Rev. 5 VN5E160ASO-E 6 Order codes Order codes Table 17. Device summary Order codes Package SO-16L Tube Tape and reel VN5E160ASO-E VN5E160ASOTR-E Doc ID 022475 Rev. 5 35/37 Revision history 7 VN5E160ASO-E Revision history Table 18. 36/37 Document revision history Date Revision Changes 14-Dec-2011 1 Initial release. 03-May-2012 2 Update Table 5: Power section Added Section 4: Package and PC board thermal data 25-Jun-2012 3 Table 4: Thermal data: – Rthj-pins: removed row – Rthj-pcb: added row 18-Sep-2012 4 Updated Table 4: Thermal data 18-Sep-2013 5 Updated disclaimer. Doc ID 022475 Rev. 5 VN5E160ASO-E Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2013 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com Doc ID 022475 Rev. 5 37/37
VN5E160ASOTR-E 价格&库存

很抱歉,暂时无法提供与“VN5E160ASOTR-E”相匹配的价格&库存,您可以联系我们找货

免费人工找货