0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SI9105DJ02

SI9105DJ02

  • 厂商:

    VISHAY

  • 封装:

  • 描述:

    SI9105DJ02 - 1-W High-Voltage Switchmode Regulator - Vishay Siliconix

  • 数据手册
  • 价格&库存
SI9105DJ02 数据手册
Si9105 Vishay Siliconix 1-W High-Voltage Switchmode Regulator FEATURES D CCITT Compatible D Current-Mode Control D Low Power Consumption (less than 5 mW) D 10- to 120-V Input Range D 200-V, 250-mA MOSFET D Internal Start-Up Circuit D Current-Mode Control D SHUTDOWN and RESET DESCRIPTION The Si9105 high-voltage switchmode regulator is a monolithic BiC/DMOS integrated circuit which contains most of the components necessary to implement a high-efficiency dc/dc converter in ISDN terminals up to 3 watts. A 0.5-mA max supply current makes possible the design of a dc/dc converter with 60% efficiency at 25 mW, therefore meeting the recommended performance under the CCITT I.430 specifications. This device may be used with an appropriate transformer to implement isolated flyback power converter topologies to provide single or multiple regulated dc outputs (i.e., "5 V). The Si9105 is available in both standard and lead (Pb)-free 16-pin wide-body SOIC, 14-pin plastic DIP and 20-pin PLCC packages which are specified to operate over the industrial temperature range of −40 _C to 85 _C. FUNCTIONAL BLOCK DIAGRAM FB COMP DISCHARGE OSC IN OSC OUT Error Amplifier − VREF + 4 V (1%) Ref Gen 2V − + + − 1.2 V BIAS VCC +VIN 8.7 V − + 9.3 V − + Undervoltage Comparator Current Sources To Internal Circuits C/L Comparator Current-Mode Comparator OSC Clock (½ fOSC) R Q S DRAIN −VIN (BODY) VCC SOURCE S Q R SHUTDOWN RESET Document Number: 70003 S-42030—Rev. H, 15-Nov-04 www.vishay.com 1 Si9105 Vishay Siliconix ABSOLUTE MAXIMUM RATINGS Voltages Referenced to −VIN (VCC < +VIN + 0.3 V) VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 V +VIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 V VDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 V ID (Peak) (300 ms pulse, 2% duty cycle) . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 A ID (rms) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 mA Logic Inputs (RESET, SHUTDOWN, OSC IN) . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to VCC + 0.3 V Linear Inputs (FEEDBACK, SOURCE) . . . . . . . . . . . . . . . . . . . −0.3 V to 7 V HV Pre-Regulator Input Current (continuous) . . . . . . . . . . . . . . . . . . . . . 5 mA Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65 to 125_C Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40 to 85_C Junction Temperature (TJ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150_C Notes a. Device mounted with all leads soldered or welded to PC board. b. Derate 6 mW/_C above 25_C c. Derate 7.2 mW/_C above 25_C d. Derate 11.2 mW/_C above 25_C Power Dissipation (Package)a 14-Pin Plastic DIP (J Suffix)b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 750 mW 16-Pin Plastic Wide-Body SOIC (W Suffix)c . . . . . . . . . . . . . . . . . . . 900 mW 20-Pin PLCC (N Suffix)d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1400 mW Thermal Impedance (QJA) 14-Pin Plastic DIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167_C/W 16-Pin Plastic Wide-Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140_C/W 20-Pin PLCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90_C/W Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. RECOMMENDED OPERATING RANGE Voltages Referenced to −VIN VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 V to 13.5 V +VIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 V to 120 V fOSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 kHz to 1 MHz ROSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 kW to 1 MW Linear Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 to VCC − 3 V Digital Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 to VCC SPECIFICATIONSa Test Conditions Unless Otherwise Specified Parameter Reference Output Voltage Output Impedancee Short Circuit Current Temperature Stabilitye Long Term Stabilitye VR ZOUT ISREF TREF OSC IN = VIN (OSC Disabled) RL = 10 MW OSC IN = −VIN OSC IN = − VIN, VREF = −VIN OSC IN = −VIN t = 1000 hrs, TA = 125_C Room Room Room Full Room 3.92 15 70 4.00 300 100 0.25 5.00 4.08 45 130 1.0 25.00 V kW mA mV/_C mV Limits Tempb Minc Typd Maxc Unit Symbol DISCHARGE = −VIN = 0 V VCC = 10 V, +VIN = 48 V RBIAS = 820 kW , ROSC = 910 kW Oscillator Maximum Frequencye Initial Accuracy Voltage Stability Temperature Coefficiente fMAX fOSC Df/f TOSC ROSC = 0 See Note e Df/f = f (13.5 V) − f (9.5 V)/f (9.5 V) Room Room Room Full 1 32 3 40 10 200 48 15 500 MHz kHz % ppm/_C Error Amplifier Feedback Input Voltage Input BIAS Current Open Loop Voltage Gaine Input Offset Voltage Unity Gain Bandwidthe Dynamic Output Impedance Output Current Power Supply Rejection www.vishay.com VFB IFB AVOL VOS BW ZOUT IOUT PSRR Source (VFB = 3.4 V) Sink (VFB = 4.5 V) 10 V v VCC v 13.5 V OSC IN = −VIN FB Tied to COMP OSC IN = −VIN (OSC Disabled) OSC IN = −VIN, VFB = 4 V OSC IN = −VIN (OSC Disabled) Room Room Room Room Room Room Room Room Room 0.05 0.5 60 3.96 4 25 80 "15 0.8 1 −1.2 0.08 70 −0.32 "40 4.04 500 V nA dB mV MHz kW mA dB 2 Document Number: 70003 S-42030—Rev. H, 15-Nov-04 Si9105 Vishay Siliconix SPECIFICATIONSa Test Conditions Unless Otherwise Specified Parameter Current Limit Threshold Voltage Delay to Outpute Input Voltage Input Leakage Current Pre-Regulator Start-Up Current VCC Pre-Regulator Turn-Off Threshold Voltage Undervoltage Lockout VREG − VUVLO VSOURCE td +VIN +IIN ISTART VREG VUVLO VDELTA RL = 100 W from DRAIN to VCC VFB = 0 V RL = 100 W from DRAIN to VCC VSOURCE = 1.5 V, See Figure 1 IIN = 10 mA VCC w 10 V Pulse Width v 300 ms, VCC = 7 V IPRE-REGULATOR = 10 mA RL = 100 W from DRAIN to VCC See Detailed Description Room Room Room Room Room Room Room Room 8 7.5 7.0 0.25 15 9.3 8.7 0.5 9.7 9.2 V 120 10 0.8 1.0 200 1.2 300 V ns V mA mA Limits Tempb Minc Typd Maxc Unit Symbol DISCHARGE = −VIN = 0 V VCC = 10 V, +VIN = 48 V RBIAS = 820 kW , ROSC = 910 kW Supply Supply Current Bias Current SHUTDOWN Delay SHUTDOWN Pulse Width RESET Pulse Width Latching Pulse Width SHUTDOWN and RESET Low Input Low Voltage Input High Voltage Input Current, Input Voltage High Input Current. Input Voltage Low ICC IBIAS tSD tSW tRW tLW VIL VIH IIH IIL VIN = 10 V VIN = 0 V See Figure 3 Figure VSOURCE = −VIN, See Figure 2 Room Room Room Room Room Room Room Room Room Room −35 8.0 1 −25 5 50 50 25 2.0 V mA ns 0.35 7.5 50 100 0.5 mA mA MOSFET Switch Breakdown Voltage Drain-Source On Resistanceg Drain Off Leakage Current Drain Capacitance V(BR)DSS rDS(on) IDSS CDS IDRAIN = 100 mA IDRAIN = 100 mA VDRAIN = 100 V Full Room Room Room 35 200 220 5 7 10 V W mA pF Notes a. Refer to PROCESS OPTION FLOWCHART for additional information. b. Room = 25_C, Cold and Hot = as determined by the operating temperature suffix. c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. Guaranteed by design, not subject to production test. f. CSTRAY Pin 8 = v 5 pF g. Temperature coefficient of rDS(on) is 0.75% per _C, typical. Document Number: 70003 S-42030—Rev. H, 15-Nov-04 www.vishay.com 3 Si9105 Vishay Siliconix TIMING WAVEFORMS 1.5 V − SOURCE 0 VCC − DRAIN 0 50% td tr v 10 ns VCC SHUTDOWN 0 VCC DRAIN 0 50% − − tSD tf v 10 ns 10% 10% FIGURE 1. FIGURE 2. VCC SHUTDOWN 0 VCC RESET 0 50% − 50% − tSW 50% tLW 50% tRW 50% tf, tf v 10 ns FIGURE 3. TYPICAL CHARACTERISTICS Output Switching Frequency vs. Oscillator Resistance 1M f OUT (Hz) 100 k 10 k 10 k 100 k rOSC − Oscillator Resistance (W) 1M FIGURE 4. www.vishay.com 4 Document Number: 70003 S-42030—Rev. H, 15-Nov-04 Si9105 Vishay Siliconix PIN CONFIGURATIONS PLCC-20 3 1 2 3 4 5 6 7 14 13 12 11 10 9 8 1 2 3 4 5 6 7 8 Top View Top View 16 15 14 13 12 11 10 9 9 10 11 12 13 Top View 4 5 6 7 8 18 17 16 15 14 2 1 20 19 PDIP-14 SO-16 (Wide-Body) PIN DESCRIPTION Pin Number Function SOURCE −VIN VCC OSCOUT OSCIN DISCHARGE VREF SHUTDOWN RESET COMP FB BIAS +VIN DRAIN NC 14-Pin Plastic DIP 4 5 6 7 8 9 10 11 12 13 14 1 2 3 16-Pin SOIC 1 2 4 5 6 7 8 9 10 11 12 13 14 16 3, 15 20-Pin PLCC 7 8 9 10 11 12 14 16 17 18 20 2 3 5 1, 4, 6, 13, 15, 19 ORDERING INFORMATION Standard Part Number Si9105DJ02 Si9105DW Si9105DW-T1 (With Tape and Reel) Si9105DN02 Document Number: 70003 S-42030—Rev. H, 15-Nov-04 Si9105DW-T1—E3 (With Tape and Reel) Si9105DN02—E3 SOIC-16 (WB) PLCC-20 www.vishay.com −40 to 85 _C Lead (Pb)-Free Part Number Si9105DJ02—E3 Package PDIP-14 Temperature Range 5 Si9105 Vishay Siliconix DETAILED DESCRIPTION Pre-Regulator/Start-Up Section Due to the low quiescent current requirement of the Si9105 control circuitry, bias power can be supplied from the unregulated input power source, from an external regulated low-voltage supply, or from an auxiliary “bootstrap” winding on the output inductor or transformer. When power is first applied during start-up, +VIN will draw a constant current. The magnitude of this current is determined by a high-voltage depletion MOSFET device which is connected between +VIN and VCC. This start-up circuitry provides initial power to the IC by charging an external bypass capacitance connected to the VCC pin. The constant current is disabled when VCC exceeds 9.3 V. If VCC is not forced to exceed the 9.3-V threshold, then VCC will be regulated to a nominal value of 9.3 V by the pre-regulator circuit. As the supply voltage rises toward the normal operating conditions, an internal undervoltage (UV) lockout circuit keeps the output MOSFET disabled until VCC exceeds the undervoltage lockout threshold (typically 8.7 V). This guarantees that the control logic will be functioning properly and that sufficient gate drive voltage is available before the MOSFET turns on. The design of the IC is such that the undervoltage lockout threshold will not exceed the pre-regulator turn-off voltage. Power dissipation can be minimized by providing an external power source to VCC such that the constant current source is always disabled. The output of the reference section is connected internally to the non-inverting input of the error amplifier. Nominal reference output voltage is 4 V. The trimming procedure that is used on the Si9105 brings the output of the error amplifier (which is configured for unity gain during trimming) to within "1% of 4 V. This automatically compensates for the input offset voltage in the error amplifier. The output impedance of the reference section has been purposely made high so that a low impedance external voltage source can be used to override the internal voltage source, if desired, without otherwise altering the performance of the device. Error Amplifier Closed-loop regulation is provided by the error amplifier, whose 1-kW dynamic output impedance enables it to be used with feedback compensation (unlike transconductance amplifiers). A MOS differential input stage provides for low input current. The noninverting input to the error amplifier (VREF) is internally connected to the output of the reference supply and should be bypassed with a small capacitor to ground. Oscillator Section The oscillator consists of a ring of CMOS inverters, capacitors, and a capacitor discharge switch. Frequency is set by an external resistor between the OSC IN and OSC OUT pins. (See Typical Characteristics graph of resistor value vs. frequency.) The DISCHARGE pin should be tied to −VIN for normal internal oscillator operation. A frequency divider in the logic section limits switch duty cycle to a maximum of 50% by locking the switching frequency to one half of the oscillator frequency. Remote synchronization can be accomplished by capacitive coupling of a synchronization pulse into the OSC IN terminal. For a 5-V pulse amplitude and 0.5-ms pulse width, typical values would be 100 pF in series with 3 kW to OSC IN. BIAS To properly set the bias for the Si9105, a 820-kW resistor should be tied from BIAS to −VIN. This determines the magnitude of bias current in all of the analog sections and the pull-up current for the SHUTDOWN and RESET pins. The current flowing in the bias resistor is nominally 7.5 mA. Reference Section The reference section of the Si9105 consists of a temperature compensated buried zener and trimmable divider network. www.vishay.com 6 Document Number: 70003 S-42030—Rev. H, 15-Nov-04 Si9105 Vishay Siliconix DETAILED DESCRIPTION (CONT’D) SHUTDOWN and RESET Output Switch The output switch is a 7-W , 200-V lateral DMOS transistor. Like discrete MOSFETs, the switch contains an intrinsic body-drain diode. However, the body contact in the Si9105 is connected internally to −VIN and is independent of the SOURCE. SHUTDOWN and RESET are intended for overriding the output MOSFET switch via external control logic. The two inputs are fed through a latch preceding the output switch. Depending on the logic state of RESET, SHUTDOWN can be either a latched or unlatched input. The output is off whenever SHUTDOWN is low. By simultaneously having SHUTDOWN and RESET low, the latch is set and SHUTDOWN has no effect until RESET goes high. The truth table for these inputs is given in Table 1. Table 1: Truth Table for the SHUTDOWN and RESET Pins SHUTDOWN H H L L H L L RESET H Output Normal Operation Normal Operation (No Change) Off (Not Latched) Off (Latched) Off (Latched, No Change) Both pins have internal current source pull-ups and can be left disconnected when not in use. An added feature of the current sources is the ability to connect a capacitor and an open-collector driver to the SHUTDOWN pin to provide variable shutdown time. APPLICATIONS +VIN 7 NC Lp = 3.8 m H 2 8 910 k 20 mF + − 0.1 mF NC 7 Si9105DJ 12 10 1 0.1 mF 0.1 mF 820 k 5 9 3.9 W 47.5 k 1% 14 13 4 15 k 0.22 mF 12 V 1 mF 71.5 k 1% 9 4 1N5819 6 11 8 3 1N4148 10 0.1 mF 150 k −5 V 47 mF 3 1N5819 2 +5 V 0.1 mF 5.6 V 220 mF OUTPUT INPUT GND (GND Plane) FIGURE 5. CCITT Compatible ISDN Terminal Power Supply Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?70003. Document Number: 70003 S-42030—Rev. H, 15-Nov-04 www.vishay.com 7
SI9105DJ02 价格&库存

很抱歉,暂时无法提供与“SI9105DJ02”相匹配的价格&库存,您可以联系我们找货

免费人工找货