0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
E3M0120090J

E3M0120090J

  • 厂商:

    WOLFSPEED

  • 封装:

    TO263-8

  • 描述:

    900V 120M AUTOMOTIVE SIC MOSFET

  • 数据手册
  • 价格&库存
E3M0120090J 数据手册
E3M0120090J Silicon Carbide Power MOSFET E-Series Automotive N-Channel Enhancement Mode Features • • • • • • • Package 3rd generation of SiC MOSFET technology High blocking voltage with low On-resistance High speed switching with low capacitances Fast intrinsic diode with low reverse recovery (Qrr) Halogen free, RoHS compliant Wide creepage (~7mm) between drain and source Automotive qualified (AEC-Q101) and PPAP capable Benefits • • • • Drain (TAB) Reduce switching losses and minimize gate ringing High system efficiency Increased power density Increased system switching frequency Gate (Pin 1) Applications • • • • • Driver Source (Pin 2) EV charging DC/DC converters SMPS UPS Solar PV inverters Power Source (Pin 3,4,5,6,7) Part Number Package Marking E3M0120090J TO-263-7 E3M0120090J Maximum Ratings (TC = 25 ˚C unless otherwise specified) Symbol Parameter Unit Test Conditions Note VDSmax Drain - Source Voltage 900 V VGS = 0 V, ID = 100 μA VGSmax Gate - Source Voltage -8/+19 V Absolute maximum values VGSop Gate - Source Voltage -4/+15 V Recommended operational values Note (1) VGS = 15 V, TC = 25˚C Fig. 19 ID Continuous Drain Current ID(pulse) PD TJ , Tstg TL 22 14 A VGS = 15 V, TC = 100˚C Pulsed Drain Current 50 A Pulse width tP limited by Tjmax Fig. 22 Power Dissipation 83 W TC=25˚C, TJ = 150 ˚C Fig. 20 -55 to +150 ˚C 260 ˚C Operating Junction and Storage Temperature Solder Temperature Note (1): MOSFET can also safely operate at 0/+15 V 1 Value E3M0120090J Rev. 1, 11-2020 1.6mm (0.063”) from case for 10s Electrical Characteristics (TC = 25˚C unless otherwise specified) Symbol Parameter V(BR)DSS Drain-Source Breakdown Voltage VGS(th) Gate Threshold Voltage Min. Typ. Max. 900 1.8 2.1 3.5 1.6 Unit Test Conditions V VGS = 0 V, ID = 100 μA V VDS = VGS, ID = 3 mA V VDS = VGS, ID = 3 mA, TJ = 150ºC IDSS Zero Gate Voltage Drain Current 1 100 μA VDS = 900 V, VGS = 0 V IGSS Gate-Source Leakage Current 10 250 nA VGS = 15 V, VDS = 0 V 120 155 RDS(on) Drain-Source On-State Resistance 170 8.9 gfs Transconductance Ciss Input Capacitance 414 Coss Output Capacitance 48 Crss Reverse Transfer Capacitance 3 Eoss Coss Stored Energy EON Turn-On Switching Energy 32 EOFF Turn Off Switching Energy 8 td(on) Turn-On Delay Time 5 Rise Time 8 Turn-Off Delay Time 13 Fall Time 4 Internal Gate Resistance 13 tr td(off) tf RG(int) Qgs Gate to Source Charge 6 Gate to Drain Charge 5 Qg Total Gate Charge 18 VGS = 15 V, ID = 15 A, TJ = 150ºC VDS= 15 V, IDS= 15 A VDS= 15 V, IDS= 15 A, TJ = 150ºC f = 1 MHz VAC = 25 mV μJ Fig. 11 Fig. 4, 5, 6 Fig. 7 Fig. 17, 18 VGS = 0 V, VDS = 600 V pF 10.6 Qgd VGS = 15 V, ID = 15 A mΩ S 7.1 Note Fig. 16 μJ VDS = 400 V, VGS = -4 V/15 V, ID = 15 A, RG(ext) = 2.5Ω, L= 99 μH, TJ = 150ºC Fig. 26, 29 ns VDD = 400 V, VGS = -4 V/15 V ID = 15 A, RG(ext) = 2.5 Ω, Timing relative to VDS Inductive load Fig. 27, 29 Ω f = 1 MHz, VAC = 25 mV nC VDS = 400 V, VGS = -4 V/15 V ID = 15 A Per IEC60747-8-4 pg 21 Fig. 12 Reverse Diode Characteristics (TC = 25˚C unless otherwise specified) Symbol VSD IS IS, pulse Parameter Typ. Diode Forward Voltage Max. Test Conditions Unit 4.8 V VGS = -4 V, ISD = 7.5 A 4.4 V VGS = -4 V, ISD = 7.5 A, TJ = 150 °C Note Fig. 8, 9, 10 Continuous Diode Forward Current 15 A VGS = -4 V Note (2) Diode pulse Current 50 A VGS = -4 V, pulse width tP limited by Tjmax Note (2) VGS = -4 V, ISD = 15 A, VR = 400 V dif/dt = 900 A/µs, TJ = 150 °C Note (2) trr Reverse Recover time 10 ns Qrr Reverse Recovery Charge 72 nC Irrm Peak Reverse Recovery Current 12 A Note (2): When using SiC Body Diode the maximum recommended VGS = -4V Thermal Characteristics Symbol 2 Parameter Max. RθJC Thermal Resistance from Junction to Case 1.5 RθJA Thermal Resistance From Junction to Ambient 40 E3M0120090J Rev. 1, 11-2020 Unit °C/W Test Conditions Note Fig. 21 Typical Performance 45 35 VGS = 11V 30 25 20 15 VGS = 9V 10 5 0.0 2.0 4.0 6.0 8.0 10.0 VGS = 11V 35 30 25 20 VGS = 9V 15 10 VGS = 7V 0 12.0 0.0 2.0 4.0 Drain-Source Voltage, VDS (V) VGS = 15V VGS = 13V 35 10.0 12.0 Conditions: IDS = 15 A VGS = 15 V tp < 200 µs VGS = 11V 2.0 30 On Resistance, RDS On (P.U.) Drain-Source Current, IDS (A) 40 8.0 Figure 2. Output Characteristics TJ = 25 ºC 2.5 Conditions: Tj = 150 °C tp = < 200 µs 6.0 Drain-Source Voltage, VDS (V) Figure 1. Output Characteristics TJ = -55 ºC 45 VGS = 13V 5 VGS = 7V 0 VGS = 15V Conditions: Tj = 25 °C tp = < 200 µs 40 Drain-Source Current, IDS (A) Drain-Source Current, IDS (A) 40 45 VGS = 13V VGS = 15V Conditions: Tj = -55 °C tp = < 200 µs VGS = 9V 25 20 15 VGS = 7V 10 1.5 1.0 0.5 5 0 0.0 2.0 4.0 6.0 8.0 10.0 0.0 12.0 -50 -25 0 Drain-Source Voltage, VDS (V) Figure 3. Output Characteristics TJ = 150 ºC 250 300 250 175 Tj = 150 °C 150 Tj = -55 °C 125 Tj = 25 °C 100 75 50 25 0 100 125 150 225 VGS = 11 V 200 175 VGS = 13 V 150 125 VGS = 15 V 100 75 50 25 0 5 10 15 20 25 30 35 Drain-Source Current, IDS (A) 40 Figure 5. On-Resistance vs. Drain Current For Various Temperatures 3 75 Conditions: IDS = 15 A tp < 200 µs 275 On Resistance, RDS On (mOhms) On Resistance, RDS On (mOhms) 200 50 Figure 4. Normalized On-Resistance vs. Temperature Conditions: VGS = 15 V tp < 200 µs 225 25 Junction Temperature, Tj (°C) E3M0120090J Rev. 1, 11-2020 45 50 0 -50 -25 0 25 50 75 Junction Temperature, Tj (°C) 100 Figure 6. On-Resistance vs. Temperature For Various Gate Voltage 125 150 Typical Performance 35 -7 -6 -5 -4 -3 -2 -1 VGS = -4 V 25 TJ = 150 °C 20 TJ = 25 °C TJ = -55 °C 15 10 -15 -20 -25 -30 -35 0 2 4 6 8 10 12 Conditions: Tj = -55°C tp < 200 µs 14 Drain-Source Voltage VDS (V) Gate-Source Voltage, VGS (V) Figure 7. Transfer Characteristic for Various Junction Temperatures -7 -6 -5 -4 -3 -2 -1 0 Drain-Source Current, IDS (A) VGS = -4 V 0 -8 -7 -6 -5 VGS = 0 V -10 -15 VGS = -2 V -20 -25 -30 -5 -4 -3 -2 -1 Drain-Source Voltage VDS (V) VGS = 0 V 4.0 -20 -25 -30 -35 -40 -45 Drain-Source Voltage VDS (V) 16 Gate-Source Voltage, VGS (V) Threshold Voltage, Vth (V) 2.0 1.5 1.0 0.5 50 75 Junction Temperature TJ (°C) 100 125 Figure 11. Threshold Voltage vs. Temperature 4 E3M0120090J Rev. 1, 11-2020 -45 Conditions: IDS = 15 A IGS = 10 mA VDS = 400 V TJ = 25 °C 12 2.5 25 -40 Figure 10. Body Diode Characteristic at 150 ºC 3.0 0 0 -15 Conditions: Tj = 150°C tp < 200 µs Conditons VGS = VDS IDS = 3 mA 3.5 0 -10 VGS = -2 V Figure 9. Body Diode Characteristic at 25 ºC -25 -45 -5 VGS = -4 V -35 Conditions: Tj = 25°C tp < 200 µs -50 -40 Figure 8. Body Diode Characteristic at -55 ºC Drain-Source Current, IDS (A) -8 0.0 0 -10 VGS = -2 V 5 0 0 -5 VGS = 0 V Drain-Source Current, IDS (A) 30 Drain-Source Current, IDS (A) -8 Conditions: VDS = 20 V tp < 200 µs 150 8 4 0 -4 0 4 8 12 16 Gate Charge, QG (nC) Figure 12. Gate Charge Characteristics 20 Typical Performance -5 -4 -3 -2 -1 0 VGS = 0 V -5 VGS = 5 V Drain-Source Current, IDS (A) 0 -10 VGS = 10 V -15 -20 VGS = 15 V -25 -6 -4 -5 -3 -2 -1 0 VGS = 5 V -10 VGS = 10 V -20 VGS = 15 V -30 Conditions: Tj = -55 °C tp < 200 µs -30 Conditions: Tj = 25 °C tp < 200 µs -35 -40 Drain-Source Voltage VDS (V) Drain-Source Voltage VDS (V) Figure 13. 3rd Quadrant Characteristic at -55 ºC -6 -5 -4 -3 -2 -1 0 VGS = 0 V Drain-Source Current, IDS (A) -6 -40 Figure 14. 3rd Quadrant Characteristic at 25 ºC 0 25 0 VGS = 0 V Drain-Source Current, IDS (A) -10 VGS = 5 V VGS = 10 V VGS = 15 V -20 Stored Energy, EOSS (µJ) 20 10 5 -30 Conditions: Tj = 150 °C tp < 200 µs 15 0 -40 Drain-Source Voltage VDS (V) 0 100 Figure 15. 3rd Quadrant Characteristic at 150 ºC 1000 10 0 50 100 Drain-Source Voltage, VDS (V) E3M0120090J Rev. 1, 11-2020 700 800 900 1000 Conditions: TJ = 25 °C VAC = 25 mV f = 1 MHz 100 Coss 10 Crss 150 Figure 17. Capacitances vs. Drain-Source Voltage (0 - 200V) 5 600 Ciss Crss 1 500 1000 Capacitance (pF) Capacitance (pF) Coss 100 400 Drain to Source Voltage, VDS (V) Figure 16. Output Capacitor Stored Energy Conditions: TJ = 25 °C VAC = 25 mV f = 1 MHz Ciss 300 200 200 1 0 100 200 300 400 500 600 Drain-Source Voltage, VDS (V) 700 Figure 18. Capacitances vs. Drain-Source Voltage (0 - 900V) 800 900 Typical Performance 90 Conditions: TJ ≤ 150 °C Maximum Dissipated Power, Ptot (W) Drain-Source Continous Current, IDS (DC) (A) 25 20 15 10 5 0 -50 -25 0 25 50 75 100 Case Temperature, TC (°C) 125 70 60 50 40 30 20 10 0 150 Conditions: TJ ≤ 150 °C 80 -50 1 0.5 0.3 0.1 0.05 100E-3 0.02 0.01 SinglePulse 10E-3 1E-6 100E-6 1E-3 Time, tp (s) 10E-3 100E-3 150 10 µs 1.00 0.10 Conditions: TC = 25 °C D = 0, Parameter: tp 0.1 1 10 Drain-Source Voltage, VDS (V) 100 1000 Conditions: TJ = 25 °C VDD = 400 V RG(ext) = 2.5 Ω VGS = -4/+15 V FWD = C3M0120090J L = 99 μH 70 60 EOn 40 EOff 20 50 ETotal EOn 40 30 EOff 20 10 0 5 10 15 20 25 Drain to Source Current, IDS (A) 30 Figure 23. Clamped Inductive Switching Energy vs. Drain Current (VDD = 600V) 6 125 1 ms 80 ETotal 60 0 100 100 ms 1 Switching Loss (uJ) Switching Loss (uJ) 80 75 Figure 22. Safe Operating Area Conditions: TJ = 25 °C VDD = 600 V RG(ext) = 2.5 Ω VGS = -4/+15 V FWD = C3M0120090J L = 99 μH 100 50 100 µs Figure 21. Transient Thermal Impedance (Junction - Case) 120 25 Case Temperature, TC (°C) Limited by RDS On 10.00 0.01 10E-6 0 Figure 20. Maximum Power Dissipation Derating vs. Case Temperature Drain-Source Current, IDS (A) Junction To Case Impedance, ZthJC (oC/W) Figure 19. Continuous Drain Current Derating vs. Case Temperature -25 E3M0120090J Rev. 1, 11-2020 35 0 0 5 10 15 20 25 Drain to Source Current, IDS (A) 30 Figure 24. Clamped Inductive Switching Energy vs. Drain Current (VDD = 400V) 35 Typical Performance 80 Switching Loss (uJ) 60 Conditions: TJ = 25 °C VDD = 400 V IDS = 15 A VGS = -4/+15 V FWD = C3M0120090J L = 99 μH 60 EOn 40 EOff 20 Conditions: IDS = 15 A VDD = 400 V RG(ext) = 2.5 Ω VGS = -4/+15 V L = 99 μH FWD = C3M0120090J 50 ETotal Switching Loss (uJ) 100 40 ETotal EOn 30 20 10 EOff 0 0 5 10 15 External Gate Resistor RG(ext) (Ohms) 20 25 Conditions: TJ = 25 °C VDD = 400 V IDS = 15 A VGS = -4/+15 V FWD = C3M0120090J Switching Times (ns) 25 20 50 75 100 125 Junction Temperature, TJ (°C) 150 tr 10 td(on) tf 5 0 5 10 15 External Gate Resistor RG(ext) (Ohms) Figure 27. Switching Times vs. RG(ext) 7 25 td(off) 15 0 0 E3M0120090J Rev. 1, 11-2020 20 175 Figure 26. Clamped Inductive Switching Energy vs. Temperature Figure 25. Clamped Inductive Switching Energy vs. RG(ext) 30 0 25 Figure 28. Switching Times Definition 200 Test Circuit Schematic Q1 RG VGS= - 4V VDC Q2 RG D.U.T Figure 29. Clamped Inductive Switching Test Circuit Note (3): Turn-off and Turn-on switching energy and timing values measured using SiC MOSFET Body Diode as shown above. 8 E3M0120090J Rev. 1, 11-2020 Package Dimensions TO-263-7 Package 7L D2PAK Dim All Dimensions in Millimeters Min E3M0120090J Rev. 1, 11-2020 Max 4.570 A 4.300 4.435 A1 0.00 0.125 0.25 b 0.500 0.600 0.700 b2 0.600 0.800 1.000 c 0.330 0.490 0.650 C2 1.170 1.285 1.400 9.125 D 9.025 9.075 D1 4.700 4.800 4.900 E 10.130 10.180 10.230 E1 6.500 7.550 8.600 E2 6.778 7.223 7.665 e 9 typ 1.27 H 15.043 16.178 17.313 L 2.324 2.512 2.700 L1 0.968 1.418 1.868 Ø 0˚ 4˚ 8˚ Ø1 4.5˚ 5˚ 5.5˚ Notes • RoHS Compliance The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/ EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Documentation sections of www.cree.com. • REACh Compliance REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future,please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request. • This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, air traffic control systems. Related Links • • • C2M PSPICE Models: http://wolfspeed.com/power/tools-and-support SiC MOSFET Isolated Gate Driver reference design: http://wolfspeed.com/power/tools-and-support SiC MOSFET Evaluation Board: http://wolfspeed.com/power/tools-and-support Copyright © 2020 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc. 10 E3M0120090J Rev. 1, 11-2020 Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.313.5451 www.cree.com/power
E3M0120090J 价格&库存

很抱歉,暂时无法提供与“E3M0120090J”相匹配的价格&库存,您可以联系我们找货

免费人工找货