0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ONET8501TY

ONET8501TY

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    -

  • 描述:

    IC OPAMP TRANSIMP 10GHZ DIESALE

  • 数据手册
  • 价格&库存
ONET8501TY 数据手册
ONET8501T SLLS884B – FEBRUARY 2008 – REVISED AUGUST 2011 www.ti.com 11.3 Gbps Limiting Transimpedance Amplifier With RSSI Check for Samples: ONET8501T FEATURES APPLICATIONS • • • • • • • • • • • • 1 • • • 10 GHz Bandwidth 7 kΩ Differential Small Signal Transimpedance 2.5 mAPP Input Overload Current Received Signal Strength Indication (RSSI) 100mW Typical Power Dissipation CML Data Outputs With On-Chip 50Ω Back-Termination On Chip Supply Filter Capacitor Single 3.3V Supply Die Size: 940 × 1195 μm SONET OC-192 SFP+ Optical Receivers 10x Fibre Channel Optical Receivers 10G Ethernet Receivers PIN Preamplifier-Receivers APD Preamplifier Receivers DESCRIPTION The ONET8501T is a high-speed, high gain, limiting transimpedance amplifier used in optical receivers with data rates up to 12.5Gbps. It features low input referred noise, 10GHz bandwidth, 7kΩ small signal transimpedance, and a received signal strength indicator (RSSI). The ONET8501T is available in die form, includes an on-chip VCC bypass capacitor and is optimized for packaging in a TO can. The ONET8501T requires a single 3.3V ±10% supply and its power efficient design typically dissipates less than 105mW. The device is characterized for operation from –40°C to 100°C case (IC back side) temperature. 1 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2008–2011, Texas Instruments Incorporated ONET8501T SLLS884B – FEBRUARY 2008 – REVISED AUGUST 2011 www.ti.com These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. BLOCK DIAGRAM A simplified block diagram of the ONET8501T is shown in Figure 1. The ONET8501T consists of the signal path, supply filters, a control block for dc input bias, automatic gain control (AGC) and received signal strength indication (RSSI). The RSSI provides the bias for the TIA stage and the control for the AGC. The signal path consists of a transimpedance amplifier stage, a voltage amplifier, and a CML output buffer. The on-chip filter circuit provides a filtered VCC for the PIN photodiode and for the transimpedance amplifier. The DC input bias circuit and automatic gain control use internal low pass filters to cancel the dc current on the input and to adjust the transimpedance amplifier gain. Furthermore, circuitry to monitor the received signal strength is provided. VCC_OUT To Voltage Amplifier and Output Buffer To TIA VCC_IN GND 220 W FILTER1/2 RSSI_IB AGC and DC Offset Cancellation RF OUT+ IN OUTTIA Voltage Amplifier CML Output Buffer RSSI_EB Figure 1. Simplified Block Diagram of the ONET8501T 2 Copyright © 2008–2011, Texas Instruments Incorporated ONET8501T SLLS884B – FEBRUARY 2008 – REVISED AUGUST 2011 www.ti.com BOND PAD ASSIGNMENT GND GND GND GND GND GND The ONET8501T is available in die form. The locations of the bondpads are shown in Figure 2. T8501 19 18 17 16 15 14 13 GND OUT+ 1 12 OUT- VCC_OUT 2 11 NC 10 RSSI_EB 9 RSSI_IB 4 5 6 7 8 FILTER1 IN FILTER2 GND 3 GND VCC_IN Figure 2. Bond Pad Assignment of ONET8501T PIN FUNCTIONS PIN NAME TYPE DESCRIPTION NO. GND 4, 8, 13–19 Supply Circuit ground. All GND pads are connected on die. Bonding all pads is optional; however, for optimum performance a good ground connection is mandatory. OUT+ 1 Analog output Non-inverted CML data output. On-chip 50Ω back-terminated to VCC. VCC_OUT 2 Supply 2.97V–3.63V supply voltage for the voltage and CML amplifiers. VCC_IN 3 Supply 2.97V–3.63V supply voltage for input TIA stage. FILTER 5, 7 Analog Bias voltage for photodiode cathode. These pads are internally connected to an 220Ω resistor to VCC and a filter capacitor to ground (GND). 6 Analog input 10 Analog output Optional use when operated with external PD bias (e.g. APD). Analog output current proportional to the input data amplitude. Indicates the strength of the received signal (RSSI).Connected to an external resistor to ground (GND). For proper operation, ensure that the voltage at the RSSI pad does not exceed VCC – 0.65V. If the RSSI feature is not used this pad should be left open. RSSI_IB 9 Analog output Analog output current proportional to the input data amplitude. Indicates the strength of the received signal (RSSI) if the photo diode is biased from the TIA. Connected to an external resistor to ground (GND). For proper operation, ensure that the voltage at the RSSI pad does not exceed VCC – 0.65V. If the RSSI feature is not used this pad should be left open. OUT– 12 Analog output Inverted CML data output. On-chip 50Ω back-terminated to VCC. IN RSSI_EB Data input to TIA (photodiode anode). Copyright © 2008–2011, Texas Instruments Incorporated 3 ONET8501T SLLS884B – FEBRUARY 2008 – REVISED AUGUST 2011 www.ti.com ABSOLUTE MAXIMUM RATINGS over operating free-air temperature range (unless otherwise noted) (1) Supply voltage VI II IO ESD TJ (1) (2) (2) at VCC_IN, VCC_OUT VALUE UNIT –0.3 to 4.0 V Voltage at FILTER1, FILTER2, OUT+, OUT–, RSSI_IB, RSSI_EB (2) –0.3 to 4.0 V Current into IN –0.7 to 3.5 mA Current into FILTER1, FILTER2 –8 to 8 mA Continuous current at outputs at OUT+, OUT- –8 to 8 mA ESD rating at all pins except input IN, RSSI_IB, and RSSI_EB 2 kV (HBM) ESD rating at RSSI_IB and RSSI_EB 1 kV(HBM) ESD rating at input IN 0.5 kV(HBM) Maximum junction temperature 125 °C Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to network ground terminal. RECOMMENDED OPERATING CONDITIONS MIN TYP MAX VCC Supply voltage PARAMETER 2.97 3.3 3.63 V TA Operating backside die temperature –40 100 (1) °C L Wire-bond inductor at pins FILTER and IN 0.3 0.5 nH CPD Photodiode Capacitance 0.2 (1) CONDITIONS UNIT pF 105°C maximum junction temperature DC ELECTRICAL CHARACTERISTICS over recommended operating conditions (unless otherwise noted). Typical values are at VCC = 3.3 V and TA = 25°C PARAMETER VCC ICC Supply current VIN Input bias voltage R(OUT) Output resistance R(FILTER) Photodiode filter resistance (1) 4 CONDITIONS Supply voltage Input current IIN < 1500 μAPP MIN TYP MAX UNIT 2.97 3.3 3.63 V 28 (1) 21 Single-ended to VCC 41 44 (1) Input current IIN < 2500 μAPP mA 0.75 0.85 0.98 V 40 50 60 Ω 220 Ω Including RSSI current Copyright © 2008–2011, Texas Instruments Incorporated ONET8501T SLLS884B – FEBRUARY 2008 – REVISED AUGUST 2011 www.ti.com AC ELECTRICAL CHARACTERISTICS over recommended operating conditions (unless otherwise noted). Typical values are at VCC = +3.3 V and TA = 25°C PARAMETER CONDITIONS MIN TYP MAX 5,000 7,000 10,000 7 10 UNIT Z Small signal transimpedance Differential output; Input current IIN = 20 μAPP f(HSS,3dB) Small signal bandwidth iIN = 16 μAPP f(L,3dB) Low frequency –3 dB bandwidth 16 μA < IIN < 2000 μAPP 30 100 kHz i(N,IN) Input referred RMS noise 10 GHz bandwidth (2) 0.9 1.6 μA Unstressed sensitivity 10.3125 Gbps, PRBS31 pattern, 850 nm, BER 10–12 –14 S(US) DJ Deterministic jitter (1) Ω GHz dBm 16 μAPP < IIN < 500 μAPP (10.3125 Gbps, PRBS31 pattern) 6 11 500 μAPP < IIN < 2000 μAPP (10.3125 Gbps, PRBS31 pattern) 6 13 6 15 psPP psPP DJ(OL) Overload deterministic jitter 2000 μAPP < IIN < 2500 μAPP (K28.5 pattern) VOUT,D,MAX Maximum differential output voltage Input current IIN = 200 μAPP 240 280 350 mVPP ARSSI_IB RSSI gain internal bias Resistive load to GND (3) 0.48 0.5 0.52 A/A 3.5 10 16 μA 0.6 A/A RSSI internal bias output offset current (no light) (4) ARSSI_EB RSSI gain external bias Resistive load to GND (3) RSSI external bias output offset current (no light) PSNR (1) (2) (3) (4) (5) Power supply noise rejection (5) F < 10 MHz , supply filtering according to SFF8431 0.43 25 μA –15 dB The small signal bandwidth is specified over process corners, temperature, and supply voltage variation. The assumed photodiode capacitance is 0.2 pF and the bond-wire inductance is 0.3 nH. The small signal bandwidth strongly depends on environmental parasitics. Careful attention to layout parasitics and external components is necessary to achieve optimal performance. Input referred RMS noise is (RMS output noise)/ (gain at 100 MHz). The RSSI output is a current output, which requires a resistive load to ground (GND). The voltage gain can be adjusted for the intended application by choosing the external resistor; however, for proper operation, ensure that the voltage at RSSI does not exceed VCC – 0.65V. Offset is added to improve accuracy below 5μA. When measured without input current (no light) the offset can be subtracted as a constant offset from RSSI measurements. PSNR is the differential output amplitude divided by the voltage ripple on supply; no input current at IN. Copyright © 2008–2011, Texas Instruments Incorporated 5 ONET8501T SLLS884B – FEBRUARY 2008 – REVISED AUGUST 2011 www.ti.com DETAILED DESCRIPTION SIGNAL PATH The first stage of the signal path is a transimpedance amplifier which converts the photodiode current into a voltage. If the input signal current exceeds a certain value, the transimpedance gain is reduced by means of a nonlinear AGC circuit to limit the signal amplitude. The second stage is a limiting voltage amplifier that provides additional limiting gain and converts the single ended input voltage into a differential data signal. The output stage provides CML outputs with an on-chip 50Ω back-termination to VCC. FILTER CIRCUITRY The FILTER pins provide a filtered VCC for a PIN photodiode bias. The on-chip low pass filter for the photodiode is implemented using a filter resistor of 220Ω and a capacitor. The corresponding corner frequency is below 5MHz. The supply voltages for the transimpedance amplifier are filtered by means of on-chip capacitors, thus avoiding the necessity to use an external supply filter capacitor. The input stage has a separate VCC supply (VCC_IN) which is not connected on chip to the supply of the limiting and CML stages (VCC_OUT). AGC AND RSSI The voltage drop across the internal photodiode supply-filter resistor is monitored by the bias and RSSI control circuit block in the case where a PIN diode is biased using the FILTER pins. If the dc input current exceeds a certain level then it is partially cancelled by means of a controlled current source. This keeps the transimpedance amplifier stage within sufficient operating limits for optimum performance. The automatic gain control circuitry adjusts the voltage gain of the AGC amplifier to ensure limiting behavior of the complete amplifier. Finally this circuit block senses the current through the filter resistor and generates a mirrored current that is proportional to the input signal strength. The mirrored current is available at the RSSI_IB output and can be sunk to ground (GND) using an external resistor. For proper operation, ensure that the voltage at the RSSI_IB pad does not exceed VCC – 0.65V. If an APD or PIN photodiode is used with an external bias then the RSSI_EB pin should be used. However, for greater accuracy under external photo diode biasing conditions, it is recommended to derive the RSSI from the external bias circuitry. 6 Copyright © 2008–2011, Texas Instruments Incorporated ONET8501T SLLS884B – FEBRUARY 2008 – REVISED AUGUST 2011 www.ti.com TYPICAL OPERATION CHARACTERISTICS Typical Operating condition is at VCC = 3.3 V and TA = 25°C (unless otherwise noted) TRANSIMPEDANCE vs INPUT CURRENT SMALL SIGNAL TRANSIMPENDANCE vs AMBIENT TEMPERATURE 8 9000 7 8000 7000 Transimpedance - W Transimpedance - kW 6 5 4 3 2 6000 5000 4000 3000 2000 1 1000 0 0 200 400 600 800 IIN - Input Current - mAPP 0 -40 1000 -20 0 20 40 60 80 TA - Ambient Temperature - °C Figure 3. Figure 4. SMALL SIGNAL TRANSFER CHARACTERISTICS SMALL SIGNAL BANDWIDTH vs AMBIENT TEMPERATURE 36 20 33 18 30 100 16 27 14 Bandwidth - GHz Gain - dB 24 21 18 15 12 12 10 8 6 9 4 6 2 3 0 0.1 1 10 f - Frequency - GHz Figure 5. Copyright © 2008–2011, Texas Instruments Incorporated 100 0 -40 -20 0 20 40 60 80 TA - Ambient Temperature - °C 100 Figure 6. 7 ONET8501T SLLS884B – FEBRUARY 2008 – REVISED AUGUST 2011 www.ti.com TYPICAL OPERATION CHARACTERISTICS (continued) Typical Operating condition is at VCC = 3.3 V and TA = 25°C (unless otherwise noted) OUTPUT VOLTAGE vs INPUT CURRENT DETERMINISTIC JITTER vs INPUT CURRENT 10 250 8 Deterministic Jitter - ps Differential Output Voltage - mVPP 300 200 150 100 0 0 200 400 600 800 IIN - Input Current - mAPP 1000 0 Figure 8. RSSI_IB OUTPUT CURRENT vs AVERAGE INPUT CURRENT POWER SUPPLY NOISE REJECTION vs FREQUENCY 0 PSNR - Power Supply Noise Rejection - dB 900 800 700 600 500 400 300 200 100 0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 IIN - Input Current - mAPP Figure 7. 1000 RSSI_IB Output Current - mA 4 2 50 0 200 400 600 800 Average Input Current - mA Figure 9. 8 6 1000 1200 -5 -10 -15 -20 -25 -30 0 1 2 3 4 5 6 7 f - Frequency - MHz 8 9 10 Figure 10. Copyright © 2008–2011, Texas Instruments Incorporated ONET8501T SLLS884B – FEBRUARY 2008 – REVISED AUGUST 2011 www.ti.com TYPICAL OPERATION CHARACTERISTICS (continued) Typical Operating condition is at VCC = 3.3 V and TA = 25°C (unless otherwise noted) OUTPUT EYE-DIAGRAM AT 10.3 GBPS AND 20 μAPP INPUT CURRENT 60 mVdiv 15.6 ps/div OUTPUT EYE-DIAGRAM AT 10.3 GBPS AND 100 μAPP INPUT CURRENT 15.6 ps/div 100 mV/div Figure 11. Figure 12. OUTPUT EYE-DIAGRAM AT 10.3 GBPS AND 500 μAPP INPUT CURRENT OUTPUT EYE-DIAGRAM AT 10.3 GBPS AND 2 mAPP INPUT CURRENT 100 mV/div 15.6 ps/div Figure 13. Copyright © 2008–2011, Texas Instruments Incorporated 100 mV/div 15.6 ps/div Figure 14. 9 ONET8501T SLLS884B – FEBRUARY 2008 – REVISED AUGUST 2011 www.ti.com APPLICATION INFORMATION Figure 15 shows the ONET8501T used in a typical fiber optic receiver using the internal photodiode bias. The ONET8501T converts the electrical current generated by the PIN photodiode into a differential output voltage. The FILTER inputs provide a dc bias voltage for the PIN that is low pass filtered by the combination of an internal 220Ω resistor and a capacitor. Because the voltage drop across the 220Ω resistor is sensed and used by the bias circuit, the photodiode must be connected to the FILTER pads for the bias to function correctly. The RSSI output is used to mirror the photodiode output current and can be connected via a resistor to GND. The voltage gain can be adjusted for the intended application by choosing the external resistor; however, for proper operation of the ONET8501T, ensure that the voltage at RSSI never exceeds VCC – 0.65V. If the RSSI output is not used while operating with internal PD bias, it should be left open. The OUT+ and OUT– pins are internally terminated by 50Ω pull-up resisters to VCC. The outputs must be ac coupled, for example by using 0.1μF capacitors, to the succeeding device. VCC_OUT OUT+ 0.1 mF VCC_IN 3 2 1 4 5 19 220 W 18 17 6 16 7 15 14 8 9 10 11 12 13 0.1 mF OUTRSSI RRSSI GND Figure 15. Basic Application Circuit for PIN Receivers 10 Copyright © 2008–2011, Texas Instruments Incorporated ONET8501T SLLS884B – FEBRUARY 2008 – REVISED AUGUST 2011 www.ti.com Figure 16 shows the ONET8501T being used in a typical fiber optic receiver using an external photodiode bias for an APD photodiode. This configuration can also be used for a PIN diode if desired. The external bias RSSI signal is based on a dc offset value and is not as accurate as the internal bias RSSI signal which is based upon the photodiode current. OUT+ VCC_OUT 0.1 mF VCC_IN 3 2 1 4 5 19 220 W 18 17 6 APD_BIAS 16 7 15 14 8 9 10 11 12 13 0.1 mF OUT- GND Figure 16. Basic Application Circuit for APD Receivers ASSEMBLY RECOMMENDATIONS Careful attention to assembly parasitics and external components is necessary to achieve optimal performance. Recommendations that optimize performance include: 1. Minimize the total capacitance on the IN pad by using a low capacitance photodiode and paying attention to stray capacitances. Place the photodiode close to the ONET8501T die in order to minimize the bond wire length and thus the parasitic inductance. 2. Use identical termination and symmetrical transmission lines at the ac coupled differential output pins OUT+ and OUT–. 3. Use short bond wire connections for the supply terminals VCC_IN, VCC_OUT and GND. Supply voltage filtering is provided on chip but filtering may be improved by using an additional external capacitor. Copyright © 2008–2011, Texas Instruments Incorporated 11 ONET8501T SLLS884B – FEBRUARY 2008 – REVISED AUGUST 2011 www.ti.com T8501 CHIP DIMENSIONS AND PAD LOCATIONS 19 17 18 15 16 14 1195 mm 13 1 12 2 11 10 9 y 3 5 4 6 7 8 940 mm Origin 0.0 x Die Thickness: 203 ± 13 μm Pad Dimensions: 105 × 65 μm Die Size: 940 ± 40 μm × 1195 ± 40 μm PAD 12 COORDINATES (based on typical die size) SYMBOL TYPE DESCRIPTION x (μm) y (μm) 1 116 739 OUT+ Analog output Non-inverted data output 2 116 575 VCC_OUT Supply 3.3V supply voltage 3 116 289 VCC_IN Supply 3.3V supply voltage 4 243 136 GND Supply Circuit ground 5 358 136 FILTER1 Analog Bias voltage for photodiode 6 473 136 IN Analog input Data input to TIA 7 588 136 FILTER2 Analog Bias voltage for photodiode 8 703 136 GND Supply Circuit ground 9 828 289 RSSI_IB Analog output RSSI output signal for internally biased receivers 10 828 404 RSSI_EB Analog output RSSI output signal for externally biased receivers 11 828 575 NC 12 828 739 OUT– Analog output Inverted data output 13 828 910 GND Supply Circuit ground 14 760 1063 GND Supply Circuit ground 15 645 1063 GND Supply Circuit ground 16 530 1063 GND Supply Circuit ground 17 415 1063 GND Supply Circuit ground 18 300 1063 GND Supply Circuit ground 19 185 1063 GND Supply Circuit ground Not connected Copyright © 2008–2011, Texas Instruments Incorporated ONET8501T SLLS884B – FEBRUARY 2008 – REVISED AUGUST 2011 www.ti.com TO46 LAYOUT EXAMPLE An example for a layout (top view) in a 5 pin TO46 can is shown in Figure 17. OUT+ OUT- VCC RSSI Figure 17. TO46 5 Pin Layout Using the ONET8501T With Dual Cathode PIN Diode Copyright © 2008–2011, Texas Instruments Incorporated 13 ONET8501T SLLS884B – FEBRUARY 2008 – REVISED AUGUST 2011 www.ti.com REVISION HISTORY Changes from Original (February 2008) to Revision A Page • Changed Features bullet From: Die Size 945 x 1200 μm To: Die Size: 940 × 1195 μm ..................................................... 1 • Changed the CHIP DIMENSIONS AND PAD LOCATIONS image. Y = 1200 µm To: 1195 µm and X = 945 µm To: 940 µm ................................................................................................................................................................................ 12 • Added Die Thickness, Pad Dimensions, and Die Size ....................................................................................................... 12 Changes from Revision A (January 2010) to Revision B Page • Changed From: Die Size: 940 ± 20 μm × 1195 ± 20 μm To: Die Size: 940 ± 40 μm × 1195 ± 40 μm .............................. 12 • Changed the Coordinates column to include " (based on typical die size)" ....................................................................... 12 14 Copyright © 2008–2011, Texas Instruments Incorporated PACKAGE OPTION ADDENDUM www.ti.com 2-Apr-2022 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) (3) Device Marking (4/5) (6) ONET8501TY ACTIVE DIESALE Y 0 1800 TBD Call TI Call TI -40 to 100 ONET8501TYS ACTIVE DIESALE Y 0 1 TBD Call TI Call TI -40 to 100 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
ONET8501TY 价格&库存

很抱歉,暂时无法提供与“ONET8501TY”相匹配的价格&库存,您可以联系我们找货

免费人工找货