0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADAQ7980BCCZ

ADAQ7980BCCZ

  • 厂商:

    AD(亚德诺)

  • 封装:

    FLGA24

  • 描述:

    IC ADC 16BIT SAR 24LGA

  • 数据手册
  • 价格&库存
ADAQ7980BCCZ 数据手册
16-Bit, 1 MSPS μModule Data Acquisition System ADAQ7980/ADAQ7988 Data Sheet FUNCTIONAL BLOCK DIAGRAM Easy to use μModule data acquisition system All active components designed by Analog Devices, Inc. 50% PCB area savings Includes critical passive components SPI-/QSPI-/MICROWIRE™-/DSP-compatible serial interface Daisy-chain multiple ADAQ7980/ADAQ7988 devices Versatile supply configuration with 1.8 V/2.5 V/3 V/5 V logic interface High performance 16-bit resolution with no missing codes Throughput: 1 MSPS (ADAQ7980) and 500 kSPS (ADAQ7988) INL: ±8 ppm typical and 20 ppm maximum SNR: 91.5 dB typical at 10 kHz (unity gain) THD: −105 dB at 10 kHz Zero error: ±0.06 mV typical (unity gain) Zero error temperature drift: 1.3 μV/°C maximum Low power dissipation 21 mW typical at 1 MSPS (ADAQ7980) 16.5 mW typical at 500 kSPS (ADAQ7988) Flexible power-down modes Small, 24-lead, 5 mm × 4 mm LGA package Excellent ESD ratings 3500 V human body model (HBM) 1250 V field-induced charged device model (FICDM) Wide operating temperature range: −55°C to +125°C APPLICATIONS LDO_OUT VDD PD_REF LDO 10µF IN+ VIO SDI SCK 20Ω IN– PD_LDO 2.2µF ADC SDO AMP_OUT CNV 1.8nF V– PD_AMP ADAQ7980/ ADAQ7988 ADCN GND Figure 1. The ADAQ7980/ADAQ7988 contain a high accuracy, low power, 16-bit SAR ADC, a low power, high bandwidth, high input impedance ADC driver, a low power, stable reference buffer, and an efficient power management block. Housed within a tiny, 5 mm × 4 mm LGA package, these products simplify the design process for data acquisition systems. The level of system integration of the ADAQ7980/ADAQ7988 solves many design challenges, while the devices still provide the flexibility of a configurable ADC driver feedback loop to allow gain and/or common-mode adjustments. A set of four device supplies provides optimal system performance; however, single-supply operation is possible with minimal impact on device operating specifications. The ADAQ7980/ADAQ7988 integrate within a compact, integrated circuit (IC)-like form factor key components commonly used in data acquisition signal chain designs. The μModule family transfers the design burden of component selection, optimization, and layout from designer to device, shortening overall design time, system troubleshooting, and ultimately improving time to market. Automated test equipment (ATE) Battery powered instrumentation Communications Data acquisition Process control Medical instruments GENERAL DESCRIPTION The ADAQ7980/ADAQ7988 are 16-bit analog-to-digital converter (ADC) μModule® data acquisition systems that integrate four common signal processing and conditioning blocks into a system in package (SiP) design that supports a variety of applications. These devices contain the most critical passive components, eliminating many of the design challenges associated with traditional signal chains that use successive approximation register (SAR) ADCs. These passive components are crucial to achieving the specified device performance. Rev. A V+ REF REF_OUT 15060-001 FEATURES The serial peripheral interface (SPI)-compatible serial interface features the ability to daisy-chain multiple devices on a single, 3wire bus and provides an optional busy indicator. The user interface is compatible with 1.8 V, 2.5 V, 3 V, or 5 V logic. Specified operation of these devices is from −55°C to +125°C. Table 1. Integrated SAR ADC μModules Type 16-Bit 500 kSPS ADAQ7988 1000 kSPS ADAQ7980 Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2017 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com ADAQ7980/ADAQ7988 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Slew Enhancement ..................................................................... 33 Applications ....................................................................................... 1 Effect of Feedback Resistor on Frequency Response ............ 33 General Description ......................................................................... 1 Voltage Reference Input ............................................................ 33 Functional Block Diagram .............................................................. 1 Power Supply............................................................................... 35 Revision History ............................................................................... 2 Specifications..................................................................................... 3 LDO Regulator Current-Limit and Thermal Overload Protection .................................................................................... 36 Dual-Supply Configuration ........................................................ 3 LDO Regulator Thermal Considerations ............................... 36 Single-Supply Configuration ...................................................... 7 Digital Interface .......................................................................... 37 Timing Specifications ................................................................ 11 3-Wire CS Mode Without the Busy Indicator ........................ 38 Absolute Maximum Ratings .......................................................... 13 3-Wire CS Mode with the Busy Indicator ............................... 39 Thermal Data .............................................................................. 13 4-Wire CS Mode Without the Busy Indicator ........................ 40 Thermal Resistance .................................................................... 13 4-Wire CS Mode with the Busy Indicator ............................... 41 ESD Caution ................................................................................ 13 Chain Mode Without the Busy Indicator................................ 42 Pin Configuration and Function Descriptions ........................... 15 Chain Mode with the Busy Indicator ...................................... 43 Typical Performance Characteristics ........................................... 17 Application Circuits ....................................................................... 44 Terminology .................................................................................... 25 Nonunity Gain Configurations ................................................ 45 Theory of Operation ...................................................................... 26 Inverting Configuration with Level Shift ................................ 46 Circuit Information .................................................................... 26 Using the ADAQ7980/ADAQ7988 With Active Filters ........ 47 Converter Operation .................................................................. 26 Applications Information .............................................................. 48 Typical Connection Diagram.................................................... 27 Layout .......................................................................................... 48 ADC Driver Input ...................................................................... 28 Evaluating the Performance of the ADAQ7980/ADAQ7988 ... 48 Input Protection .......................................................................... 28 Outline Dimensions ....................................................................... 49 Noise Considerations And Signal Settling .............................. 28 Ordering Guide .......................................................................... 49 PD_AMP Operation .................................................................. 31 Dynamic Power Scaling (DPS) ................................................. 31 REVISION HISTORY 8/2017—Rev. 0 to Rev. A Changed Integrated Data Acquisition System to μModule, Subsystem to μModule Data Acquisition System, Subsystems to μModule Data Acquisition Systems, and DAQ Subsystem to μModule Data Acquisition System .............................. Throughout Changes to Features Section and Table 1 Title ............................. 1 Moved General Description Section .............................................. 3 Changes to General Description Section ...................................... 3 Change to 0.1 Hz to 10 Hz Voltage Noise Parameter Heading, Table 2 ................................................................................................ 4 Change to 0.1 Hz to 10 Hz Voltage Noise Parameter Heading, Table 4 .................................................................................................8 Changes to Human Body Model (HBM) Parameter and Endnote 4, Table 7 .......................................................................... 14 Change to Figure 27 Caption ........................................................ 21 Changes to Circuit Information Section ..................................... 27 Change to Table 15 Title ................................................................ 45 3/2017—Revision 0: Initial Version Rev. A | Page 2 of 49 ADAQ7980/ADAQ7988 Data Sheet SPECIFICATIONS DUAL-SUPPLY CONFIGURATION VDD = 3.5 V to 10 V, V+ = 6.3 V to 7.7 V, V− = −2.5 V to −0.2 V, VIO = 1.7 V to 5.5 V, VREF = 5 V, TA = −55°C to +125°C, ADC driver in a unity-gain buffer configuration, fSAMPLE = 1 MSPS (ADAQ7980), and fSAMPLE = 500 kSPS (ADAQ7988), unless otherwise noted. Table 2. Parameter RESOLUTION SYSTEM ACCURACY No Missing Codes Differential Nonlinearity Error (DNL) Integral Nonlinearity Error (INL) Transition Noise Gain Error Gain Error Temperature Drift Zero Error Zero Error Temperature Drift Common-Mode Rejection Ratio Power Supply Rejection Ratio Positive Negative SYSTEM AC PERFORMANCE Dynamic Range Test Conditions/Comments Min 16 16 −14 −20 Spurious-Free Dynamic Range Total Harmonic Distortion (THD) Signal-to-Noise-and-Distortion Ratio Effective Number of Bits Noise Free Code Resolution SYSTEM SAMPLING DYNAMICS Conversion Rate ADAQ7980 ADAQ7988 Transient Response −3 dB Input Bandwidth −1 dB Frequency −0.1 dB Frequency 0.1 Hz to 10 Hz Voltage Noise Aperture Delay Aperture Jitter 1 2 Max +14 +20 Unit Bits Bits ppm 1 ppm1 LSB1 rms %FS ppm/°C mV µV/°C dB TA = 25°C −0.01 TA = 25°C −0.5 ADC driver configured as difference amplifier 103 ±7 ±8 0.6 ±0.002 0.1 ±0.06 0.3 130 V+ = +6.3 V to +8 V, V− = −2 V V+ = +7 V, V− = −1.0 V to −2.5 V 75 80 105 110 dB dB 92 87 44.4 111 91.5 86.5 106 −105 91 86 14.8 14.1 dB 2 dB2 µV rms dB2 dB2 dB2 dB2 dB2 dB2 dB2 Bits Bits VREF = 2.5 V Total RMS Noise Oversampled Dynamic Range Signal-to-Noise Ratio (SNR) Typ Oversample dynamic range frequency (fODR) = 10 kSPS Input frequency (fIN) = 10 kHz fIN = 10 kHz, VREF = 2.5 V fIN = 10 kHz fIN = 10 kHz fIN = 10 kHz fIN = 10 kHz, VREF = 2.5 V fIN = 10 kHz VIO ≥ 3.0 V VIO ≥ 1.7 V VIO ≥ 1.7 V Full-scale step ADC driver RC filter ADC driver RC filter ADC driver RC filter 90.5 84.5 90 84 14.65 0 0 0 430 4.42 2.2 0.67 17 2.0 2.0 LSB means least significant bit. With the 5 V input range, 1 LSB is 76.3 µV and 1 LSB = 15.26 ppm. All specifications in dB are referred to a full-scale input, FSR. Tested with an input signal at 0.5 dB below full scale, unless otherwise specified. Rev. A | Page 3 of 49 +0.01 0.4 +0.5 1.3 −100 1 833 500 500 MSPS kSPS kSPS ns MHz MHz MHz µV p-p ns ns ADAQ7980/ADAQ7988 Data Sheet VDD = 3.5 V to 10 V, V+ = 6.3 V to 7.7 V, V− = −2.5 V to −0.2 V, VIO = 1.7 V to 5.5 V, VREF = 5 V, TA = −55°C to +125°C, ADC driver in a unity-gain buffer configuration, and fSAMPLE = 1 MSPS (ADAQ7980) and fSAMPLE = 500 kSPS (ADAQ7988), unless otherwise noted. Table 3. Parameter REFERENCE Input Voltage Range Load Current Buffer Input Resistance Capacitance Bias Current Offset Voltage Offset Voltage Drift Voltage Noise Voltage Noise 1/f Corner Frequency Current Noise 0.1 Hz to 10 Hz Voltage Noise Linear Output Current Short-Circuit Current ADC DRIVER CHARACTERISTICS Voltage Range Absolute Input Voltage −3 dB Bandwidth Bandwidth for 0.1 dB Flatness Slew Rate Input Voltage Noise 1/f Corner Frequency 0.1 Hz to 10 Hz Voltage Noise Input Current Noise Bias Offset Input Offset Voltage Drift Open-Loop Gain Input Resistance Common Mode Differential Mode Input Capacitance Input Common-Mode Voltage Range Output Overdrive Recovery Time Linear Output Current Short-Circuit Current DIGITAL INPUTS Logic Levels Input Voltage Low (VIL) High (VIH) Test Conditions/Comments Min Voltage at REF pin REFOUT 2.4 REF REF TA = 25°C fIN = 100 kHz fIN = 100 kHz REFOUT REFOUT sinking/sourcing IN+, IN−, AMP_OUT IN+, IN−, AMP_OUT ADCN G = +1, VAMP_OUT = 0.02 V p-p G = +1, VAMP_OUT = 2 V p-p G = +1, VAMP_OUT = 0.1 V p-p G = +1, VAMP_OUT = 2 V step G = +1, VAMP_OUT = 5 V step f = 100 kHz Typ Max Unit 5.1 330 V µA 50 1 550 13 0.2 5.2 8 0.7 44 ±40 85/73 MΩ pF nA µV µV/°C nV/√Hz Hz pA/√Hz nV rms mA mA 0 −0.1 −0.1 800 125 1.3 VREF +5.1 +0.1 37 35 4 110 40 5.2 8 44 f = 100 kHz IN+, IN− 0.7 550 2.1 13 0.2 111 TA = 25°C 800 125 1.3 V V V MHz MHz MHz V/µs V/µs nV/√Hz Hz nV rms pA/√Hz nA nA µV µV/°C dB IN+, IN− IN+, IN− Specified performance VIN+ = 10% overdrive, fIN = 10 kHz 50 260 1 −0.1 −0.3 −0.3 0.7 × VIO 0.9 × VIO Rev. A | Page 4 of 49 +0.3 × VIO +0.1 × VIO VIO + 0.3 VIO + 0.3 V V V V 500 ±40 85/73 Sinking/sourcing VIO > 3.0 V VIO ≤ 3.0 V VIO > 3.0 V VIO ≤ 3.0 V V+ − 1.3V MΩ kΩ pF V ns mA mA Data Sheet ADAQ7980/ADAQ7988 Parameter Input Current Low (IIL) High (IIH) DIGITAL OUTPUTS Data Format Pipeline Delay Test Conditions/Comments VOL VOH POWER-DOWN SIGNALING ADC Driver/REF Buffer PD_AMP, PD_REF Voltage Low High Turn-Off Time ISINK = 500 µA ISOURCE = −500 µA Turn-On Time Dynamic Power Scaling Period Low Dropout (LDO) Regulator PD_LDO Voltage Low High PD_LDO Logic Hysteresis Turn-Off Time Turn-On Time POWER REQUIREMENTS VDD LDO Voltage Accuracy LDO Line Regulation LDO Load Regulation LDO Start-Up Time LDO Current-Limit Threshold LDO Thermal Shutdown Threshold Hysteresis LDO Dropout Voltage V+ V− VIO Total Standby Current 1, 2 ADAQ7980 Current Draw VIO V+/V− VDD Min Typ −1 −1 10 Powered down Enabled 1.06 1.15 2.2 µF capacitive load 3.5 −0.8 −1.8 TJ rising ILDO_OUT = 10 mA ILDO_OUT = 100 mA 3.7 V+ − 10 1.7 Rev. A | Page 5 of 49 +1 +1 µA µA V V 2.6 1.25 2.75 2 7.25 µs µs 1.12 1.22 100 460 370 1.18 1.30 650 425 V V mV µs µs 5 10 +0.8 +1.8 V % % +0.015 0.004 460 %/V %/mA µs mA 1.2 56 14 60 420 V− + 10 +0.1 5.5 1.7 103 23 °C °C mV mV V V V mA µA µA 0.3 1.5 1.45 0.34 2.0 1.6 mA mA mA −0.015 250 Static, all devices enabled ADC driver, REF buffer disable ADC driver, REF buffer, LDO disable 1 MSPS Unit Serial 16 bits, straight binary Conversion results available immediately after completed conversion 0.4 VIO − 0.3 Powered down Enabled 50% of PD_AMP, PD_REF to 3.0 V VIO ≤ 3.0 V VIO > 3.0 V VIO ≤ 3.0 V V+ − 1.3 MΩ kΩ pF V ns mA mA Data Sheet ADAQ7980/ADAQ7988 Parameter Input Current Low (IIL) High (IIH) DIGITAL OUTPUTS Data Format Pipeline Delay Test Conditions/Comments VOL VOH POWER-DOWN SIGNALING ADC Driver/Reference Buffer PD_AMP, PD_REF Voltage Low High Turn-Off Time ISINK = 500 µA ISOURCE = −500 µA Turn-On Time Dynamic Power Scaling Period LDO PD_LDO Voltage Low High PD_LDO Logic Hysteresis Turn-Off Time Turn-On Time POWER REQUIREMENTS VDD LDO Voltage Accuracy LDO Line Regulation LDO Load Regulation LDO Start-Up Time LDO Current-Limit Threshold LDO Thermal Shutdown Threshold Hysteresis LDO Dropout Voltage V+ V− VIO Total Standby Current 1, 2 ADAQ7980 Current Draw VIO V+/V− VDD Min Typ −1 −1 Max Unit +1 +1 µA µA Serial 16 bits straight binary Conversion results available immediately after completed conversion 0.4 VIO − 0.3 Powered down Enabled 50% of PD_AMP, PD_REF to 3.0V, X = 70, AND Y = 30. 2 MINIMUM V AND MAXIMUM V USED. SEE DIGITAL INPUTS IH IL SPECIFICATIONS IN TABLE 3 OR TABLE 5. Figure 3. Voltage Levels for Timing Rev. A | Page 12 of 49 15060-003 1 Symbol tHSDO tDSDO Data Sheet ADAQ7980/ADAQ7988 ABSOLUTE MAXIMUM RATINGS TA = 25°C, unless otherwise noted. THERMAL RESISTANCE Table 7. Thermal resistance values specified in Table 8 were calculated based on JEDEC specifications and must be used in compliance with JESD51-12. Because the product contains more than one silicon device, only the worst case junction temperature is reported. Parameter V+ to V− V+ to GND V− to GND VDD to GND REF_OUT/VIO to GND IN+/IN−/REF to GND AMP_OUT/ADCN to GND Differential Analog Input Voltage (IN+ − IN−) Digital Input1 Voltage to GND Digital Output2 Voltage to GND Input Current to Any Pin Except Supplies3, 4 Operating Temperature Range Storage Temperature Range Junction Temperature ESD Human Body Model (HBM) Field Induced Charged Device Model (FICDM) Rating 11 V −0.3 V to +11 V −11 V to +0.3 V −0.3 V to +24 V −0.3 V to +6 V V− − 0.7 V to V+ + 0.7 V −0.3 V to VREF + 0.3 V or ±130 mA ±1 V −0.3 V to VIO + 0.3 V −0.3 V to VIO + 0.3 V ±10 mA −55°C to +125°C −65°C to +150°C 150°C 3500 V 1250 V The digital input pins include the following: CNV, SDI, and SCK. The digital output pin is SDO. 3 Transient currents of up to 100 mA do not cause SCR latch-up. 4 Condition applies when power is provided to the device. 1 2 Table 8. Thermal Resistance Package Type1, 2 CC-24-2 θJA 65 θJC TOP2 103 ΨJT 12.6 Unit ˚C/W These values represent the worst case die junction in the package. Table 8 values were calculated based on the standard JEDEC test conditions defined in Table 9, unless otherwise specified. 3 For θJC test, 100 µm thermal interface material (TIM) was used. TIM is assumed to be 3.6 W/mK. 1 2 Only use θJA and θJC TOP to compare thermal performance of the package of the device with other semiconductor packages when all test conditions listed are similar. One common mistake is to use θJA and θJC to estimate the junction temperature in the system environment. Instead, using ΨJT is a more appropriate way to estimate the worst case junction temperature of the device in the system environment. First, take an accurate thermal measurement of the top center of the device (on the mold compound in this case) while the device operates in the system environment. This measurement is known in the following equation as TTOP. This equation can then be used to solve for the worst case TJ in that given environment as follows: TJ = ΨJT × P + TTOP Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. THERMAL DATA where: ΨJT is the junction to top thermal characterization number as specified in data sheet. P refers to total power dissipation in the chip (W). TTOP refers to the package top temperature (°C) and is measured at the top center of the package in the environment of the user. ESD CAUTION Absolute maximum ratings apply individually only, not in combination. The ADAQ7980/ADAQ7988 can be damaged when the junction temperature (TJ) limits are exceeded. Monitoring ambient temperature does not guarantee that TJ is within the specified temperature limits. In applications with high power dissipation and poor thermal resistance, the maximum ambient temperature (TA) may have to be derated. In applications with moderate power dissipation and low printed circuit board (PCB) thermal resistance, the maximum TA can exceed the maximum limit as long as the junction temperature is within specification limits. The θJA of the package is based on modeling and calculation using a 4-layer board. The θJA is highly dependent on the application and board layout. In applications where high maximum power dissipation exists, close attention to thermal board design is required. The θJA value may vary depending on PCB material, layout, and environmental conditions. Rev. A | Page 13 of 49 ADAQ7980/ADAQ7988 Data Sheet Table 9. Standard JEDEC Test Conditions Test Conditions Main Heat Transfer Mode Board Type Board Thickness Board Dimension Signal Traces Thickness PWR/GND Traces Thickness Thermal Vias Cold Plate θJA Convection 2S2P 1.6 mm If package length is
ADAQ7980BCCZ 价格&库存

很抱歉,暂时无法提供与“ADAQ7980BCCZ”相匹配的价格&库存,您可以联系我们找货

免费人工找货
ADAQ7980BCCZ
    •  国内价格
    • 298+206.61760

    库存:8098