0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
OP282ARMZ-R2

OP282ARMZ-R2

  • 厂商:

    AD(亚德诺)

  • 封装:

  • 描述:

    OP282ARMZ-R2 - Dual/Quad Low Power, High Speed JFET Operational Amplifiers - Analog Devices

  • 数据手册
  • 价格&库存
OP282ARMZ-R2 数据手册
Dual/Quad Low Power, High Speed JFET Operational Amplifiers OP282/OP482 FEATURES High slew rate: 9 V/µs Wide bandwidth: 4 MHz Low supply current: 250 µA/amplifier max Low offset voltage: 3 mV max Low bias current: 100 pA max Fast settling time Common-mode range includes V+ Unity-gain stable PIN CONNECTIONS OUT A –IN A +IN A V– 1 2 3 4 8 7 V+ OUT B –IN B +IN B 00301-001 OP282 6 OP-482 5 Figure 1. 8-Lead Narrow-Body SOIC (S-Suffix) [R-8] APPLICATIONS Active filters Fast amplifiers Integrators Supply current monitoring OUT A 1 –IN A 2 +IN A 3 V– 4 8 V+ OUT B 00301-002 00301-004 00301-003 OP282 TOP VIEW (Not to Scale) 7 6 5 –IN B +IN B Figure 2. 8-Lead MSOP [RM-8] GENERAL DESCRIPTION The OP282/OP482 dual and quad operational amplifiers feature excellent speed at exceptionally low supply currents. The slew rate is typically 9 V/µs with a supply current under 250 µA per amplifier. These unity-gain stable amplifiers have a typical gain bandwidth of 4 MHz. The JFET input stage of the OP282/OP482 ensures bias current is typically a few picoamps and below 500 pA over the full temperature range. Offset voltage is under 3 mV for the dual and under 4 mV for the quad. With a wide output swing, within 1.5 V of each supply, low power consumption, and high slew rate, the OP282/OP482 are ideal for batter y-powered systems or power restricted applications. An input common-mode range that includes the positive supply makes the OP282/OP482 an excellent choice for high-side signal conditioning. The OP282/OP482 are specified over the extended industrial temperature range. The OP282 is available in the standard 8-lead narrow SOIC and MSOP packages. The OP482 is available in PDIP and narrow SOIC packages. OUT A –IN A +IN A V+ +IN B –IN B OUT B 1 2 3 4 5 6 7 –+ +– –+ +– 14 OUT D 13 –IN D 12 +IN D OP482 11 V– 10 +IN C 9 8 –IN C OUT C Figure 3. 14-Lead PDIP (P-Suffix) [N-14] OUT A –IN A +IN A V+ +IN B –IN B OUT B 1 2 3 14 13 12 OUT D –IN D +IN D V– +IN C –IN C OUT C OP482 4 5 6 7 11 10 9 8 Figure 4. 14-Lead Narrow-Body SOIC (S-Suffix) [R-14] Rev. F Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 © 2004 Analog Devices, Inc. All rights reserved. OP282/OP482 TABLE OF CONTENTS Specifications..................................................................................... 3 Electrical Characteristics ............................................................. 3 Absolute Maximum Ratings............................................................ 4 ESD Caution .................................................................................. 4 Typical Performance Characteristics ............................................. 5 Applications Information .............................................................. 12 High-Side Signal Conditioning ................................................ 12 Phase Inversion ........................................................................... 12 Active Filters ............................................................................... 12 Programmable State-Variable Filter ......................................... 13 Outline Dimensions ....................................................................... 14 Ordering Guide .......................................................................... 16 REVISION HISTORY 10/04—Data Sheet Changed from Rev. E to Rev. F Deleted 8-Lead PDIP .........................................................Universal Added 8-Lead MSOP .........................................................Universal Changes to Format and Layout.........................................Universal Changes to Features.......................................................................... 1 Changes to Pin Configurations....................................................... 1 Changes to General Description .................................................... 1 Changes to Specifications ................................................................ 3 Changes to Absolute Maximum Ratings ....................................... 4 Changes to Table 3............................................................................ 4 Added Figure 5 through Figure 20; Renumbered Successive Figures............................................................................. 5 Updated Figure 21 and Figure 22 ................................................... 7 Updated Figure 23 and Figure 27 ................................................... 8 Updated Figure 29 ............................................................................ 9 Updated Figure 35 and Figure 36 ................................................. 10 Updated Figure 43 .......................................................................... 11 Changes to Applications Information.......................................... 12 Changes to Figure 44...................................................................... 12 Deleted OP282/OP482 Spice Macro Model Section.................... 9 Deleted Figure 4................................................................................ 9 Deleted OP282 Spice Marco Model ............................................. 10 Updated Outline Dimensions ....................................................... 14 Changes to Ordering Guide .......................................................... 14 10/02—Data Sheet Changed from Rev. D to Rev. E Edits to 8-Lead Epoxy DIP (P-Suffix) Pin......................................1 Edits to Ordering Guide ...................................................................3 Edits to Outline Dimensions......................................................... 11 9/02—Data Sheet Changed from Rev. C to Rev. D Edits to 14-Lead SOIC (S-Suffix) Pin .............................................1 Replaced 8-Lead SOIC (S-Suffix)................................................. 11 4/02—Data Sheet changed from Rev. B to Rev. C Wafer Test Limits Deleted ................................................................2 Edits to Absolute Maximum Ratings ..............................................3 Dice Characteristics Deleted............................................................3 Edits to Ordering Guide ...................................................................3 Edits to Figure 1.................................................................................7 Edits to Figure 3.................................................................................8 20-Position Chip Carrier (RC Suffix) Deleted ........................... 11 Rev. F | Page 2 of 16 OP282/OP482 SPECIFICATIONS ELECTRICAL CHARACTERISTICS At VS = ±15.0 V, TA = 25°C, unless otherwise noted; applies to both A and G grade. Table 1. Parameter INPUT CHARACTERISTICS Offset Voltage Symbol VOS VOS Input Bias Current Input Offset Current Input Voltage Range Common-Mode Rejection Ratio Large Signal Voltage Gain Offset Voltage Drift Bias Current Drift OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Limit Open-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current/Amplifier Supply Voltage Range DYNAMIC PERFORMANCE Slew Rate Full-Power Bandwidth Settling Time Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density IB IOS Conditions OP282 OP282, −40°C ≤ TA ≤ +85°C OP482 OP482, −40°C ≤ TA ≤ +85°C VCM = 0 V VCM = 0 V1 VCM = 0 V VCM = 0 V1 −11 V ≤ VCM ≤ +15 V, −40°C ≤ TA ≤ +85°C RL = 10 kΩ RL = 10 kΩ, −40°C ≤ TA ≤ +85°C −11 70 20 15 Min Typ 0.2 0.2 3 1 Max 3 4.5 4 6 100 500 50 250 +15 Unit mV mV mV mV pA pA pA pA V dB V/mV V/mV µV/°C pA/°C V V mA mA Ω µV/V µA V V/µs kHz µs MHz Degrees µV p-p nV/√Hz pA/√Hz CMRR AVO ∆VOS/∆T ∆IB/∆T VOH VOL ISC ZOUT PSRR ISY VS SR BWP tS GBP ØO en p-p en in 90 10 8 RL = 10 kΩ RL = 10 kΩ Source Sink f = 1 MHz VS = ±4.5 V to ±18 V, −40°C ≤ TA ≤ +85°C VO = 0 V, −40°C ≤ TA ≤ 85°C ±4.5 RL = 10 kΩ 1% distortion To 0.01% 7 9 125 1.6 4 55 1.3 36 0.01 +13.5 3 +13.9 −13.9 10 −12 200 25 210 −13.5 −8 316 250 ±18 0.1 Hz to 10 Hz f = 1 kHz 1 The input bias and offset currents are characterized at TA = TJ = 85°C. Bias and offset currents are guaranteed but not tested at −40°C. Rev. F | Page 3 of 16 OP282/OP482 ABSOLUTE MAXIMUM RATINGS Table 2. Parameters Supply Voltage Input Voltage Differential Input Voltage1 Output Short-Circuit Duration Storage Temperature Range P-Suffix (N), S-Suffix (R), RM Packages Operating Temperature Range OP282G, OP282A, OP482G Junction Temperature Range P-Suffix (N), S-Suffix (R), RM Packages Lead Temperature Range (Soldering 60 sec) Ratings ±18 V ±18 V 36 V Indefinite −65°C to +150°C −40°C to +85°C −65°C to +150°C 300°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only ; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Table 3. Package Type 8-Lead MSOP [RM] 8-Lead SOIC (S-Suffix) [R] 14-Lead PDIP (P-Suffix) [N] 14-Lead SOIC (S-Suffix) [R] θJA1 206 157 83 104 θJC 44 56 39 36 Unit °C/W °C/W °C/W °C/W 1 For supply voltages less than ±18 V, the absolute maximum input voltage is equal to the supply voltage. 1 θJA is specified for the worst-case conditions; i.e., θJA is specified for device in socket for CERDIP, PDIP; θJA is specified for device soldered in circuit board for SOIC or MSOP package. ESD CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. Rev. F | Page 4 of 16 OP282/OP482 TYPICAL PERFORMANCE CHARACTERISTICS 80 VS = ±15V TA = 25°C 60 135 180 70 60 50 VS = ±15V TA = 25°C CLOSED-LOOP GAIN (dB) OPEN-LOOP GAIN (dB) 40 90 40 30 AVCL = 100 PHASE (Degree) AVCL = 10 20 45 20 10 AVCL = 1 0 0 0 –10 –20 00301-008 –20 –45 00301-005 –40 1k 10k 100k FREQUENCY (Hz) 1M –90 10M –30 1k 10k 100k FREQUENCY (Hz) 1M 10M Figure 5. OP282 Open-Loop Gain and Phase vs. Frequency 45 40 35 VS = ±15V RL = 10kΩ Figure 8. OP282 Closed-Loop Gain vs. Frequency 30 VS = ±15V RL = 10kΩ CL = 50pF –SR 25 OPEN-LOOP GAIN (V/mV) 25 20 15 10 SLEW RATE (V/µs) 30 20 15 10 +SR 5 00301-006 0 –75 –50 –25 0 25 50 75 100 125 0 –75 –50 –25 0 25 50 75 100 125 TEMPERATURE (°C) TEMPERATURE (°C) Figure 6. OP282 Open-Loop Gain vs. Temperature 80 VS = ±15V RL = 2kΩ 70 V = 100mV p-p IN AVCL = 1 TA = 25°C 60 Figure 9. OP282 Slew Rate vs. Temperature 1000 VS = ±15V VCM = 0V OVERSHOOT (%) +OS 50 40 30 20 00301-007 –OS INPUT BIAS CURRENT (pA) 100 10 1 00301-010 10 0 0 100 200 300 400 500 0.1 –75 –50 –25 0 25 50 75 100 125 LOAD CAPACITANCE (pF) TEMPERATURE (°C) Figure 7. OP282 Small Signal Overshoot vs. Load Capacitance Figure 10. OP282 Input Bias Current vs. Temperature Rev. F | Page 5 of 16 00301-009 5 OP282/OP482 1000 VS = ±15V TA = 25°C VOLTAGE NOISE DENSITY (nV/ Hz) 20 15 TA = 25°C RL = 10kΩ VOH OUTPUT VOLTAGE SWING (V) 10 5 0 –5 –10 VOL 00301-014 100 10 00301-011 –15 –20 1 10 100 1k FREQUENCY (Hz) 10k 0 ±5 ±10 SUPPLY VOLTAGE (V) ±15 ±20 Figure 11. OP282 Voltage Noise Density vs. Frequency 1000 VS = ±15V TA = 25°C Figure 14. OP282 Output Voltage Swing vs. Supply Voltage 1000 VS = ±15V TA = 25°C INPUT BIAS CURRENT (pA) 100 100 OUTPUT IMPEDANCE (Ω) AVCL = 100 10 AVCL = 10 1 AVCL = 1 00301-015 10 1 00301-012 0.1 –15 –10 –5 0 5 10 15 0.1 100 1k COMMON-MODE VOLTAGE (V) 10k FREQUENCY (Hz) 100k 1M Figure 12. OP282 Input Bias Current vs. Common-Mode Voltage 480 TA = 25°C Figure 15. OP282 Closed-Loop Output Impedance vs. Frequency 480 475 475 SUPPLY CURRENT (µA) 470 SUPPLY CURRENT (µA) 00301-013 470 465 465 460 460 455 455 00301-016 450 0 ±5 ±10 SUPPLY VOLTAGE (V) ±15 ±20 450 –50 –25 0 25 50 75 100 125 TEMPERATURE (°C) Figure 13. OP282 Supply Current vs. Supply Voltage Figure 16. OP282 Supply Current vs. Temperature Rev. F | Page 6 of 16 OP282/OP482 16 14 VS = ±15V TA = 25°C MAXIMUM OUTPUT SWING (V p-p) 30 VS = ±15V TA = 25°C RL = 10kΩ AVCL = 1 ABSOLUTE OUTPUT VOLTAGE (V) VOL 12 10 VOH 8 6 4 00301-017 25 20 15 10 5 00301-020 2 0 100 1k LOAD RESISTANCE (Ω) 10k 0 100 1k 10k FREQUENCY (Hz) 100k 1M Figure 17. OP282 Absolute Output Voltage vs. Load Resistance VS = ±15V 120 TA = 25°C 100 80 140 Figure 20. OP282 Maximum Output Swing vs. Frequency 140 120 100 VS = ±15V TA = 25°C +PSRR 80 CMRR (dB) PSRR (dB) 60 40 20 0 –20 00301-018 60 40 20 0 –20 –40 –60 100 00301-021 –PSRR –40 –60 100 1k 100k 10k FREQUENCY (Hz) 1M 1k 10k 100k FREQUENCY (Hz) 1M Figure 18. OP282 PSRR vs. Frequency 14 VS = ±15V 12 Figure 21. OP282 CMRR vs. Frequency 200 SHORT-CIRCUIT CURRENT (mA) 160 10 8 SOURCE 6 4 SINK VS = ±15V TA = 25°C 300 × OP282 (600 OP AMPS) 120 UNITS 80 40 00301-019 0 –50 –25 0 25 50 75 100 125 0 –2000 –1200 –400 0 400 1200 2000 TEMPERATURE (°C) VOS (µV) Figure 19. OP282 Short-Circuit Current vs. Temperature Figure 22. OP282 VOS Distribution SOIC Package Rev. F | Page 7 of 16 00301-022 2 OP282/OP482 400 360 320 280 50 70 VS = ±15V 300 × OP282 (600 OP AMPS) 60 VS = ±15V RL = 2kΩ VIN = 100mV p-p AVCL = 1 NEGATIVE EDGE OVERSHOOT (%) 240 UNITS 40 30 20 10 0 0 100 AVCL = 1 POSITIVE EDGE 200 160 120 80 40 0 0 4 8 12 16 20 24 28 32 36 00301-023 TCVOS (µV/°C) 300 200 LOAD CAPACITANCE (pF) 400 500 Figure 23. OP282 TCVOS Distribution SOIC Package 80 0 Figure 26. OP482 Small Signal Overshoot vs. Load Capacitance VS = ±15V TA = 25°C 60 60 50 VS = ±15V TA = 25°C AVCL = 100 45 CLOSED-LOOP GAIN (dB) 40 30 AVCL = 10 20 10 AVCL = 1 0 00301-027 OPEN-LOOP GAIN (dB) 40 90 20 135 0 180 00301-024 PHASE (Degrees) –10 –20 1k 10k 100k 1M 10M FREQUENCY (Hz) 1k 10k 100k 1M FREQUENCY (Hz) 10M 100M 100M Figure 24. OP482 Open-Loop Gain, Phase vs. Frequency Figure 27. OP482 Closed-Loop Gain vs. Frequency 35 30 25 VS = ±15V RL = 10kΩ 20 –SR OPEN-LOOP GAIN (V/mV) 25 SLEW RATE (V/µs) VS = ±15V RL = 10kΩ CL = 50pF 15 20 15 10 5 10 +SR 5 00301-025 0 –75 –50 –25 0 25 50 75 100 125 0 –75 –50 –25 0 25 50 75 100 125 TEMPERATURE (°C) TEMPERATURE (°C) Figure 25. OP482 Open-Loop Gain ( V/mV ) Figure 28. OP482 Slew Rate vs. Temperature Rev. F | Page 8 of 16 00301-028 00301-026 OP282/OP482 1000 VS = ±15V VCM = 0V 1000 VS = ±15V TA = 25°C INPUT BIAS CURRENT (pA) INPUT BIAS CURRENT (pA) 00301-029 100 100 10 10 1.0 1 00301-032 0.1 0 –50 –25 0 25 50 75 100 TEMPERATURE (°C) 125 0.1 –15 –10 –5 0 5 10 15 COMMON-MODE VOLTAGE (V) Figure 29. OP482 Input Bias Current vs. Temperature 60 Figure 32. OP482 Input Bias Current vs. Common-Mode Voltage 5.0 VS = ±15V RL = 10kΩ 1.15 TA = 25°C GAIN BANDWIDTH PRODUCT (MHz) RELATIVE SUPPLY CURRENT (ISY) PHASE MARGIN (Degrees) 1.10 55 GBW 4.5 1.05 50 4.0 1.00 0.95 45 3.5 0.90 00301-033 –50 –25 0 25 50 TEMPERATURE (°C) 75 100 00301-030 40 –75 3.0 125 0.85 0 ±5 ±10 SUPPLY VOLTAGE (V) ±15 ±20 Figure 30. OP482 Phase Margin and Gain Bandwidth Product vs. Temperature 80 VOLTAGE NOISE DENSITY (nV/ Hz) Figure 33. OP482 Relative Supply Current vs. Supply Voltage 20 15 OUTPUT VOLTAGE SWING (V) 70 60 50 40 30 20 VS = ±15V TA = 25°C RL = 10kΩ TA = 25°C 10 5 0 –5 –10 00301-034 0 10 00301-031 10 –15 –20 100 FREQUENCY (Hz) 1k 10k 0 ±5 ± 10 SUPPLY VOLTAGE (V) ±15 ±20 Figure 31. OP482 Voltage Noise Density vs. Frequency Figure 34. OP482 Output Voltage Swing vs. Supply Voltage Rev. F | Page 9 of 16 OP282/OP482 600 VS = ±15V TA = 25°C 100 +PSRR 80 VS = ±15V ∆V = 100mV TA = 25°C 500 IMPEDANCE (Ω) 400 PSRR (dB) 60 –PSRR 300 40 200 AVCL = 100 AVCL = 10 00301-035 20 100 0 100 1k 10k FREQUENCY (Hz) 100k 1M 20 100 1k 10k FREQUENCY (Hz) 100k 1M Figure 35. OP482 Closed-Loop Output Impedance vs. Frequency Figure 38. OP482 Power Supply Rejection Ratio (PSRR) vs. Frequency 1.20 1.15 1.10 1.05 1.00 0.95 0.90 VS = ±15V 20 VS = ±15V SINK RELATIVE SUPPLY CURRENT (ISY) SHORT-CIRCUIT CURRENT (mA) 15 10 SOURCE 5 00301-039 00301-036 0.85 0.80 –75 0 –75 –50 –25 0 25 50 75 100 125 TEMPERATURE ( °C) –50 –25 0 25 50 75 100 125 TEMPERATURE (°C) Figure 36. OP482 Relative Supply Current vs. Temperature 16 14 ABSOLUTE OUTPUT VOLTAGE (V) Figure 39. OP482 Short-Circuit Current vs. Temperature 30 VS = ±15V TA = 25°C AVCL = 1 RL = 10kΩ VS = ±15V TA = 25°C 25 12 10 8 6 4 00301-037 POSITIVE SWING MAXIMUM OUTPUT SWING (V) 20 NEGATIVE SWING 15 10 0 100 0 1k LOAD RESISTANCE (Ω) 10k 1K 10K 100K FREQUENCY (Hz) 1M Figure 37. OP482 Maximum Output Voltage vs. Load Resistance Figure 40. OP482 Maximum Output Swing vs. Frequency Rev. F | Page 10 of 16 00301-040 2 5 00301-038 AVCL = 1 0 OP282/OP482 100 320 280 80 240 60 CMRR (dB) 200 UNITS 00301-041 40 160 120 20 80 0 00301-043 –20 100 VS = ±15V TA = 25°C VCM = 100mV 1k 10k FREQUENCY (Hz) 100k 1M 40 0 0 4 8 12 16 20 24 28 32 TCVOS (µV/°C) Figure 41. OP482 Common-Mode Rejection Ratio (CMRR) vs. Frequency 700 Figure 43. OP482 TCVOS Distribution P Package 600 VS = ±15V TA = 25°C 300 × OP482 (1200 OP AMPS) 500 UNITS 400 300 200 0 0 400 –2000 –1600 –1200 –800 –400 VOS (µV) 800 1200 1600 2000 Figure 42. OP482 VOS Distribution P Package 00301-045 100 Rev. F | Page 11 of 16 OP282/OP482 APPLICATIONS INFORMATION The OP282 and OP482 are dual and quad JFET op amps that are optimized for high speed at low power. This combination makes these amplifiers excellent choices for batter y-powered or low power applications that require above average performance. Applications benefiting from this performance combination include telecommunications, geophysical exploration, portable medical equipment, and navigational instrumentation. PHASE INVERSION Most JFET-input amplifiers invert the phase of the input signal if either input exceeds the input common-mode range. For the OP282/OP482, negative signals in excess of approximately 14 V cause phase inversion. The cause of this effect is saturation of the input stage leading to the for ward-biasing of a drain-gate diode. A simple fix for this in noninverting applications is to place a resistor in series with the noninverting input. This limits the amount of current through the for ward-biased diode and prevents the shutting down of the output stage. For the OP282/OP482, a value of 200 kΩ has been found to work; however, this adds a significant amount of noise. 15 HIGH-SIDE SIGNAL CONDITIONING There are many applications that require the sensing of signals near the positive rail. OP282s and OP482s were tested and are guaranteed over a common-mode range (−11 V ≤ VCM ≤ +15 V) that includes the positive supply. One application where this is commonly used is in the sensing of power supply currents. This enables it to be used in current sensing applications, such as the partial circuit shown in Figure 44. In this circuit, the voltage drop across a low value resistor, such as the 0.1 Ω shown here, is amplified and compared to 7.5 V. The output can then be used for current limiting. 15V 0.1Ω 500kΩ 100kΩ 100kΩ 1/2 RL 10 5 VOUT 0 –5 –10 OP282 500kΩ –10 –5 0 VIN 5 10 15 00301-046 Figure 45. OP282 Phase Reversal ACTIVE FILTERS The wide bandwidth and high slew rates of the OP282/OP482 make either an excellent choice for many filter applications. There are many active filter configurations, but the four most popular configurations are Butter worth, Elliptical, Bessel, and Chebyshev. Each type has a response that is optimized for a given characteristic as shown in Table 4. Figure 44. High-Side Signal Conditioning Table 4. Type Butterworth Chebyshev Elliptical Bessel (Thompson) Selectivity Moderate Good Best Poor Overshoot Good Moderate Poor Best Phase Nonlinear Linear Amplitude (Pass Band) Maximum Flat Equal Ripple Equal Ripple Amplitude (Stop Band) Equal Ripple Rev. F | Page 12 of 16 00301-047 –15 –15 OP282/OP482 PROGRAMMABLE STATE-VARIABLE FILTER The circuit shown in Figure 46 can be used to accurately program the Q, the cutoff frequency fC, and gain of a 2-pole state variable filter. OP482s have been used in this design because of their high bandwidths, low power, and low noise. This circuit takes only three packages to build because of the quad configuration of the op amps and DACs. The DACs shown are used in the voltage mode; therefore, many values are dependent on the accuracy of the DAC only and not on the absolute values of the DAC’s resistive ladders. This makes this circuit unusually accurate for a programmable filter. Adjusting DAC 1 changes the signal amplitude across R1; therefore, the DAC attenuation times R1 determines the amount of signal current that charges the integrating capacitor, C1. This cutoff frequency can now be expressed as fc = 1 ⎛ D1 ⎞ ⎜ ⎟ 2πR1C1 ⎝ 256 ⎠ where D1 is the digital code for the DAC. The gain of this circuit is set by adjusting D3. The gain equation is Gain = R4 ⎛ D3 ⎞ ⎜ ⎟ R5 ⎝ 256 ⎠ DAC 2 is used to set the Q of the circuit. Adjusting this DAC controls the amount of feedback from the band-pass node to the input summing node. Note that the digital value of the DAC is in the numerator; therefore, zero code is not a valid operating point. Q= R2 ⎛ 256 ⎞ ⎜ ⎟ R3 ⎝ D2 ⎠ R7 2kΩ R4 2kΩ VIN 1/4 1/4 R5 2kΩ 1/4 C1 1000pF R1 2kΩ 1/4 C1 1000pF R1 2kΩ 1/4 DAC8408 OP482 OP482 1/4 1/4 DAC8408 OP482 OP482 1/4 1/4 DAC8408 HIGH PASS OP482 OP482 LOW PASS R6 2kΩ R3 2kΩ R2 2kΩ 1/4 BAND PASS 1/4 OP482 1/4 DAC8408 00301-048 OP482 Figure 46. Rev. F | Page 13 of 16 OP282/OP482 OUTLINE DIMENSIONS 5.00 (0.1968) 4.80 (0.1890) 8 5 4 4.00 (0.1574) 3.80 (0.1497) 1 6.20 (0.2440) 5.80 (0.2284) 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040) 1.75 (0.0688) 1.35 (0.0532) 0.50 (0.0196) × 45° 0.25 (0.0099) 0.51 (0.0201) COPLANARITY SEATING 0.31 (0.0122) 0.10 PLANE 8° 0.25 (0.0098) 0° 1.27 (0.0500) 0.40 (0.0157) 0.17 (0.0067) COMPLIANT TO JEDEC STANDARDS MS-012AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN Figure 47. 8-Lead Standard Small Outline Package [SOIC] Narrow-Body S-Suffix (R-8) Dimensions shown in millimeters and (inches) 3.00 BSC 8 5 3.00 BSC 1 4.90 BSC 4 PIN 1 0.65 BSC 1.10 MAX 8° 0° 0.80 0.60 0.40 0.15 0.00 0.38 0.22 COPLANARITY 0.10 0.23 0.08 SEATING PLANE COMPLIANT TO JEDEC STANDARDS MO-187AA Figure 48. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters Rev. F | Page 14 of 16 OP282/OP482 8.75 (0.3445) 8.55 (0.3366) 14 1 8 7 4.00 (0.1575) 3.80 (0.1496) 6.20 (0.2441) 5.80 (0.2283) 0.25 (0.0098) 0.10 (0.0039) COPLANARITY 0.10 1.27 (0.0500) BSC 1.75 (0.0689) 1.35 (0.0531) 0.50 (0.0197) × 45° 0.25 (0.0098) 0.51 (0.0201) 0.31 (0.0122) SEATING PLANE 8° 0.25 (0.0098) 0° 1.27 (0.0500) 0.40 (0.0157) 0.17 (0.0067) COMPLIANT TO JEDEC STANDARDS MS-012AB CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN Figure 49. 14-Lead Standard Small Outline Package [SOIC] Narrow-Body S-Suffix (R-14) Dimensions shown in millimeters and (inches) 0.685 (17.40) 0.665 (16.89) 0.645 (16.38) 14 1 8 7 0.295 (7.49) 0.285 (7.24) 0.275 (6.99) 0.100 (2.54) BSC 0.015 (0.38) MIN 0.180 (4.57) MAX 0.150 (3.81) 0.130 (3.30) 0.110 (2.79) SEATING 0.022 (0.56) 0.060 (1.52) PLANE 0.018 (0.46) 0.050 (1.27) 0.014 (0.36) 0.045 (1.14) 0.325 (8.26) 0.310 (7.87) 0.300 (7.62) 0.150 (3.81) 0.135 (3.43) 0.120 (3.05) 0.015 (0.38) 0.010 (0.25) 0.008 (0.20) COMPLIANT TO JEDEC STANDARDS MO-095-AB CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN Figure 50. 14-Lead Plastic Dual-in-Line Package [PDIP] P-Suffix (N-14) Dimension shown in inches and (millimeters) Rev. F | Page 15 of 16 OP282/OP482 ORDERING GUIDE Model OP282ARMZ-R21 OP282ARMZ-REEL1 OP282GS OP282GS-REEL OP282GS-REEL7 OP282GSZ1 OP282GSZ-REEL1 OP282GSZ-REEL71 OP482GP OP482GS OP482GS-REEL OP482GS-REEL7 OP482GSZ1 OP482GSZ-REEL1 OP482GSZ-REEL71 Temperature Range −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C Package Description 8-Lead MSOP 8-Lead MSOP 8-Lead SOIC 8-Lead SOIC 8-Lead SOIC 8-Lead SOIC 8-Lead SOIC 8-Lead SOIC 14-Lead PDIP 14-Lead SOIC 14-Lead SOIC 14-Lead SOIC 14-Lead SOIC 14-Lead SOIC 14-Lead SOIC Package Option RM-8 RM-8 S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) P-Suffix (N-14) S-Suffix (R-14) S-Suffix (R-14) S-Suffix (R-14) S-Suffix (R-14) S-Suffix (R-14) S-Suffix (R-14) Branding A0B A0B 1 Z = Pb-free part. © 2004 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. C00301–0–10/04(F) Rev. F | Page 16 of 16
OP282ARMZ-R2 价格&库存

很抱歉,暂时无法提供与“OP282ARMZ-R2”相匹配的价格&库存,您可以联系我们找货

免费人工找货