0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TPS546C20AEVM2-746

TPS546C20AEVM2-746

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

  • 描述:

    TPS546C20A - DC/DC,步降 1,非隔离 输出评估板

  • 数据手册
  • 价格&库存
TPS546C20AEVM2-746 数据手册
www.ti.com Table of Contents User’s Guide TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module User's Guide ABSTRACT The TPS546C20AEVM2-746 evaluation module (EVM) is a two phase buck converter with two TPS546C20A devices. The TPS546C20A device is a stackable synchronous buck with PMBus interface that can operate from a nominal 4.5-V to 18-V supply. The device allows programming and monitoring through the PMBus interface. Two TPS546C20A devices are configured as a two-phase buck converter in factory default and output current is evenly distributed in the two devices. Both the negative and positive output terminals are connected together. Table of Contents 1 Description.............................................................................................................................................................................. 3 1.1 Before You Begin............................................................................................................................................................... 3 1.2 Typical Applications............................................................................................................................................................3 1.3 Features............................................................................................................................................................................. 4 2 Electrical Performance Specifications................................................................................................................................. 4 3 Schematic................................................................................................................................................................................5 4 Test Setup................................................................................................................................................................................6 4.1 Test and Configuration Software........................................................................................................................................ 6 4.2 Test Equipment.................................................................................................................................................................. 6 4.3 Recommended Test Setup.................................................................................................................................................7 4.4 List of Test Points, Jumpers and Connectors.....................................................................................................................8 5 EVM Configuration Using the Fusion GUI..........................................................................................................................10 5.1 Configuration Procedure...................................................................................................................................................11 6 Test Procedure...................................................................................................................................................................... 12 6.1 Line and Load Regulation and Efficiency Measurement Procedure................................................................................ 12 6.2 Control Loop Gain and Phase Measurement Procedure................................................................................................. 12 6.3 Efficiency Measurement................................................................................................................................................... 13 7 Performance Data and Typical Characteristic Curves...................................................................................................... 14 7.1 Efficiency..........................................................................................................................................................................14 7.2 Load Regulation............................................................................................................................................................... 14 7.3 Line Regulation................................................................................................................................................................ 15 7.4 Transient Response......................................................................................................................................................... 15 7.5 Output Ripple................................................................................................................................................................... 16 7.6 Control On........................................................................................................................................................................17 7.7 Control Off........................................................................................................................................................................ 18 7.8 Current Sharing Between Two Phases............................................................................................................................ 19 7.9 Control Loop Bode Plot.................................................................................................................................................... 19 7.10 Thermal Image............................................................................................................................................................... 21 8 EVM Assembly Drawing and PCB Layout.......................................................................................................................... 22 9 Bill of Materials..................................................................................................................................................................... 31 10 Screenshots........................................................................................................................................................................ 33 10.1 Fusion GUI Screenshots................................................................................................................................................ 33 11 Revision History..................................................................................................................................................................44 List of Figures Figure 3-1. TPS546C20AEVM2-746 Schematic..........................................................................................................................5 Figure 4-1. TPS546C20AEVM2-746 EVM Recommended Test Setup....................................................................................... 7 Figure 4-2. Tip and Barrel Measurement..................................................................................................................................... 7 Figure 7-1. Efficiency of 0.9-V Output vs Line and Load........................................................................................................... 14 SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module Submit Document Feedback User's Guide Copyright © 2022 Texas Instruments Incorporated 1 Trademarks www.ti.com Figure 7-2. Load Regulation of 0.9-V Output.............................................................................................................................14 Figure 7-3. Line Regulation of 0.9-V Output (Different Board)...................................................................................................15 Figure 7-4. Transient Response of 0.9-V Output at 12 VIN, Transient is 10 A to 60 A, 0.2 A/µs............................................... 15 Figure 7-5. Output Ripple and SW Node of 0.9-V Output at 12 VIN, 0-A Output....................................................................... 16 Figure 7-6. Output Ripple and SW Node of 0.9-V Output at 12 VIN, 70-A Output..................................................................... 16 Figure 7-7. Start-Up from Control, 0.9-V Output at 12 VIN, 0-A Output .................................................................................... 17 Figure 7-8. Start-Up from Control, 0.9-V Output at 12 VIN, 70-A Output .................................................................................. 17 Figure 7-9. Soft Stop from Control, 0.9-V Output at 12 VIN, 0-A Output ................................................................................... 18 Figure 7-10. Soft Stop from Control, 0.9-V Output at 12 VIN, 70-A Output ............................................................................... 18 Figure 7-11. Inductor Current and Switch Node Waveform, 0.9-V Output at 12 VIN, 70-A Output............................................ 19 Figure 7-12. Bode Plot at 0.9-V Output at 12 VIN, 0-A Output................................................................................................... 19 Figure 7-13. Bode Plot at 0.9-V Output at 12 VIN, 70-A Output................................................................................................. 20 Figure 7-14. Thermal Image...................................................................................................................................................... 21 Figure 8-1. TPS546C20AEVM2-746 EVM 3D (Top View)......................................................................................................... 22 Figure 8-2. TPS546C20AEVM2-746 EVM Top Layer Assembly Drawing (Top View)............................................................... 23 Figure 8-3. TPS546C20AEVM2-746 EVM Bottom Assembly Drawing (Bottom View).............................................................. 24 Figure 8-4. TPS546C20AEVM2-746 EVM Top Copper (Top View)........................................................................................... 25 Figure 8-5. TPS546C20AEVM2-746 EVM Internal Layer 1 (Top View).....................................................................................26 Figure 8-6. TPS546C20AEVM2-746 EVM Internal Layer 2 (Top View).....................................................................................27 Figure 8-7. TPS546C20AEVM2-746 EVM Internal Layer 3 (Top View).....................................................................................28 Figure 8-8. TPS546C20AEVM2-746 EVM Internal Layer 4 (Top View).....................................................................................29 Figure 8-9. TPS546C20AEVM2-746 EVM Bottom Copper (Top View)......................................................................................30 Figure 10-1. Select Device Scanning Mode.............................................................................................................................. 33 Figure 10-2. Configure – Limits and On/Off for U1 and U2 .......................................................................................................34 Figure 10-3. ON/OFF Control Pop-Up....................................................................................................................................... 36 Figure 10-4. Configure – Advanced...........................................................................................................................................37 Figure 10-5. Configure – SMBALERT # Mask........................................................................................................................... 38 Figure 10-6. Configure – Device Info.........................................................................................................................................39 Figure 10-7. Configure – All Config........................................................................................................................................... 40 Figure 10-8. Monitor Screen with 10-A Total Load.................................................................................................................... 41 Figure 10-9. Status Screen........................................................................................................................................................43 List of Tables Table 2-1. TPS546C20AEVM2-746 Electrical Performance Specifications.................................................................................4 Table 4-1. Test Point Functions....................................................................................................................................................8 Table 4-2. Jumpers...................................................................................................................................................................... 9 Table 4-3. Connector Functions...................................................................................................................................................9 Table 5-1. Key Factory Configuration Parameters.....................................................................................................................10 Table 6-1. List of Test Points for Loop Response Measurements..............................................................................................12 Table 6-2. Test Points for Better Efficiency Measurements........................................................................................................13 Table 9-1. TPS546C20AEVM2-746 Components List............................................................................................................... 31 Trademarks All trademarks are the property of their respective owners. 2 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Description 1 Description The TPS546C20AEVM2-746 is a two-phase buck converter with two stacked TPS546C20A devices. It uses a nominal 12-V bus to produce a regulated 0.9-V output at up to 70 A of load current. The TPS546C20AEVM2-746 is designed to demonstrate stacking operation of the TPS546C20A in a two-phase low output voltage application while providing a number of test points to evaluate the performance of the devices. The TPS546C20AEVM2-746 can be modified to two separated single phase buck converters by changing the components assembled. Refer to the TPS546C20A (TPS546C20A 4.5-V to 18-V, 35-A Stackable Synchronous Buck Converters with PMBus ) data sheet for more information on single-phase configuration. 1.1 Before You Begin The following warnings and cautions are noted for the safety of anyone using or working close to the TPS546C20AEVM2-746. Observe all safety precautions. Warning The TPS546C20AEVM2-746 circuit module can become hot during operation due to dissipation of heat. Avoid contact with the board. Follow all applicable safety procedures applicable to your laboratory. Caution Do not leave the EVM powered when unattended. ! WARNING The circuit module has signal traces, components, and component leads on the bottom of the board. This can result in exposed voltages, hot surfaces, or sharp edges. Do not reach under the board during operation. CAUTION The circuit module can be damaged by over temperature. To avoid damage, monitor the temperature during evaluation and provide cooling, as needed, for the system environment. CAUTION Some power supplies can be damaged by application of external voltages. If using more than one power supply, check the equipment requirements and use blocking diodes or other isolation techniques, as needed, to prevent damage to the equipment. CAUTION The communication interface is not isolated on the EVM. Be sure no ground potential exists between the computer and the EVM. Also be aware that the computer is referenced to the battery- potential of the EVM. 1.2 Typical Applications • • • • • • • High-density power solutions Wireless infrastructure Switcher Router network Server Storage Smart power systems SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module Submit Document Feedback User's Guide Copyright © 2022 Texas Instruments Incorporated 3 Description www.ti.com 1.3 Features • • • Regulated 0.9-V output up to 70-A DC steady-state output current The output voltage is marginable and trimmable with the PMBus interface. – Programmable UVLO, soft start, and enable with the PMBus interface – Programmable overcurrent warning and fault limits and programmable response to faults with the PMBus interface – Programmable overvoltage and undervoltage warning and fault limits and programmable response to faults with the PMBus interface – Programmable turn-on and turn-off delays Convenient test points for probing critical waveforms 2 Electrical Performance Specifications Table 2-1 lists the electrical performance specifications under room temperature 25°C. Table 2-1. TPS546C20AEVM2-746 Electrical Performance Specifications Parameter Test Conditions MIN TYP MAX Unit 12 18 V Input Characteristics Voltage range VIN Maximum input current VIN = 12 V, IO = 70 A 5 6.5 A No load input current VIN = 12 V, IO = 0 A 120 mA Output Characteristics Output voltage, VOUT 0.9 Output load current, IOUT (1) Output voltage regulation Output voltage ripple, VOUT Output overcurrent protection threshold 0 V 70 A Line regulation: input voltage = 5 V to 18 V 1% Load regulation: output current = 0 A to 70 A 1% VIN = 12 V, IOUT = 70 A 10 mVpp Load current IOUT1, default setting of U1 42 A Load current IOUT2, default setting of U2 42 A VIN = 12 V 500 kHz VIN = 12 V, IOUT = 70 A 83% Systems Characteristics Switching frequency Full load efficiency, VOUT (2) Operating temperature Tambient 25 U1 PMBUS address Fixed 36 U2 PMBus address Fixed 37 U1 voltage reference Programmed by VSEL resistor R35 900 U2 voltage reference Programmed by VSEL resistor R36 950 U1 soft-start time (TON_RISE) Programmed by SS resistor R33 5 U2 soft-start time (TON_RISE) Programmed by SS resistor R37 7 °C PMBUS Interface and Pin-Strapping (1) (2) 4 Decimal mV ms The output current IOUT can be up to 80 A, if the output overcurrent limit (IOUT_OC_FAULT_LIMIT) is set to 45 A. The efficiency is measured based on Figure 4-1 and test setups, which includes power loss caused by on board copper traces. TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Schematic 3 Schematic Figure 3-1 illustrates the TPS546C20AEVM2-746 EVM schematic. LED1 R1 1.00k CNTL CLK TP3 TP4 DNP DNP CNTL CLK DATA SMBA LRT Green TP1 1 3 5 7 9 2 4 6 8 10 TP2 DNP DNP SMBALRT DATA J1 CLK_M CLK_S R48 0 R49 0 DATA_M VIN = 4.5 - 18 VDC DATA_S J2 GND PMBus R50 0 R51 0 J3 TP5 1546 TP6 1546 GND VIN PVIN1 AVIN1 AVIN2 PVIN2 TP9 TP7 TP8 TP10 R2 R3 0 0 C1 1µF C6 6800pF C7 6800pF TP11 C8 6800pF C9 22µF C10 22µF C11 22µF C2 100µF C12 22µF C3 100µF C4 100µF C5 100µF C13 22µF C14 22µF C15 22µF MASTER PVin C16 22µF C17 6800pF C18 6800pF TP12 C19 6800pF C20 1µF SLAVE GND TPS546C20ARVF R6 1.10k 1200pF CHA1 CHB1 TP14 TP15 TP18 R10 R11 DNP 10.0k 49.9 R9 DNP 35 36 C28 R21 37 SYNC 39 5.60k C31 2200pF JP2 270pF TP25 RST/PG1 C33 2.2µF C38 2.2µF C39 4.7µF C40 0.1µF R33 34.8k CNTL 3 2 1 JP3 R34 DNP 10.0k AVIN R25 10.0k CLK_M R32 DNP DATA_M 10.0k R35 34.8k Fsw = 500kHz R38 40.2k 40 7 0.1µF SW SW SW SW SW 10.0k R17 10.0k 29 BOOT DIFFO RSP 33 RSN 34 R15 49.9 300nH Coupled Inductor SS VSEL 5 PMB_CLK 4 PMB_DATA ISHARE Avg2 DNP TP22 DNP SMB2 R19 10.0k GND GND 31 ISHARE1 32 VSHARE1 DIFFO 35 FB 36 SYNC CNTL RSP_S RSN_S 33 RSP 34 RSN ISHARE 5.11k R27 5.11k ISHARE2 31 VSHARE2 32 28 SS PGND PGND PGND PGND PGND PGND PGND PGND 26 DRGND 38 AGND PAD 13 14 15 16 17 18 19 20 13 14 15 16 17 18 19 20 41 41 PGND PGND PGND PGND PGND PGND PGND PGND 1.10k TP17 3 2 1 DNP R14 10.0k 10.0k R20 5.60k 2200pF CNTL TP13 1200pF R13 C32 JP4 270pF R24 RST/PG2 TP26 10.0k 3 VSEL 2 5 PMB_DATA 4 SMB_ALRT C24 R8 CHA2 TP16 R12 DNP 49.9 30 PMB_CLK VSHARE CHB2 39 27 RT SMB_ALRT JP1 10.0k 37 40 BP6 ISHARE 0 RT SMBALRT SYNC C27 BP3 RESET/PGD TP43 R30 VSHARE 0 29 ISHARE2 TP41 R26 R29 AVIN COMP TP24 ISHARE1 TP40 21 22 23 24 25 C26 1000pF GND VSHARE2 PVIN PVIN PVIN PVIN PVIN R7 SW SW SW SW SW C30 R23 1µF 1.0 GND TP42 VSHARE TP20 1 VSHARE1 2 R16 49.9 DNP SMB1 TP23 8 9 10 11 12 SW2 3 BOOT 0.1µF 300nH 1 DNP TP21 7 2 DNP 1µF RSP_M RSN_M RESET/PGD 3 6 Avg1 R18 10.0k C29 R22 1.0 CNTL BP6 L3 4 TP19 C22 L2 SW1 SYNC BP3 1 0 1 COMP 28 JP5 R5 0 300nH C25 1000pF FB R4 L1 8 9 10 11 12 27 30 TPS546C20ARVF U2 C21 2 C23 PVIN PVIN PVIN PVIN PVIN 2 U1 21 22 23 24 25 1 R28 DNP C34 4.7µF DATA_S R36 51.1k JP6 SMBALRT DRGND AGND 38 C35 0.1µF C36 2.2µF C37 2.2µF Fsw = 500kHz 6 26 R31 DNP 10.0k 10.0k CLK_S R37 51.1k R39 40.2k PAD TP27 GND VOUT1 VOUT2 TP28 DNP DNP TP29 J4 1 0 DNP SMB4 2 R42 1 2 0 J5 DNP SMB3 R40 Dual_RSN Dual_RSN GND Dual_RSP J6 J8 VOUT1 0.35-5.5V/35A max VOUT1 DNP TP30 R44 49.9 1546 TP36 RSP2 R45 TP32 C60 DNP C61 47uF 47uF C72 DNP C73 470µF 470µF C41DNP C42DNP C62DNP C63 47µF 47uF 47uF 47uF C64DNP C65 DNP C66 DNP C43 47µF 47uF 47uF 47uF C44 47µF C45 47µF TP34 TP35 DNP DNP C46 DNP C47 47uF 47uF C48 47µF C49 DNP C50DNP C51 47µF 47uF 47uF C52DNP C53 DNP C54 47µF 47uF 47uF C55 47µF C74 DNP C75 DNP C67 470µF 470µF 47uF 49.9 DNP C76 330pF R47 TP38 49.9 DNP RSN_S TP39 RSN2 GND J10 J11 GND 1546 RSP_S TP33 C68 DNP C69 DNP C70DNP C71 47uF 47uF 47uF 47uF DNP TP37 RSN1 0 VOUT2 VOUT_S R46 49.9 1546 J9 VOUT_M DNP C57DNP C58DNP C59 47uF 47uF 47uF DNP RSN_M Dual_RSP TP31 C56 330pF 0 R43 J7 VOUT2 0.35-5.5V/35A max RSP1 RSP_M R41 GND GND 1546 Figure 3-1. TPS546C20AEVM2-746 Schematic SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module Submit Document Feedback User's Guide Copyright © 2022 Texas Instruments Incorporated 5 Test Setup www.ti.com 4 Test Setup 4.1 Test and Configuration Software In order to change any of the default configuration parameters on the EVM, it is necessary to obtain the TI Fusion Digital Power Designer software. 4.1.1 Description The Fusion Digital Power Designer is the graphical user interface (GUI) used to configure and monitor the Texas Instruments TPS546C20A power converter installed on this evaluation module. The application uses the PMBus protocol to communicate with the controller over serial bus by way of a TI USB adapter. This adapter can be purchased at http://www.ti.com/tool/usb-to-gpio. 4.1.2 Features Some of the tasks that can be performed with the GUI include: • • • Turn on or off the power supply output, either through the hardware control line or the PMBus operation command. Monitor real-time data, such as output voltage, output current, die temperature, warnings, and faults, which are continuously monitored and displayed by the GUI. Configure common operating characteristics such as VOUT trim and margin, UVLO, soft-start time, warning and fault thresholds, fault response, and ON/OFF modes. This software is available for download at http://www.ti.com/tool/fusion_digital_power_designer. 4.2 Test Equipment 4.2.1 Voltage Source The input voltage source, VIN, should be a 0-V to 20-V variable DC source capable of supplying 25 ADC. Connect input VIN and GND to J2 and J3 as shown in Figure 4-1. 4.2.2 Multimeters It is recommended to use two separate multi-meters as shown in Figure 4-1: one meter to measure VIN, the other to measure VOUT. 4.2.3 Output Load A variable electronic load is recommended for the test setup as shown in Figure 4-1. The load should be capable of 80 A. 4.2.4 Oscilloscope An oscilloscope is recommended for measuring output noise and ripple. Output ripple should be measured using a Tip-and-Barrel method or better as shown in Figure 4-2. 4.2.5 Fan During prolonged operation at high loads, it can be necessary to provide forced air cooling with a small fan aimed at the EVM. The surface temperature of the devices on the EVM should be maintained below 105°C. 4.2.6 USB-to-GPIO Interface Adapter: A communications adapter is required between the EVM and the host computer. This EVM was designed to use the Texas Instruments USB-to-GPIO Adapter. This adapter can be purchased at http://www.ti.com/tool/ usb-to-gpio. 4.2.7 Recommended Wire Gauge • • 6 Input VIN and GND to J2 and J3 (GND) (12-V input) – The recommended wire size is AWG #12, with the total length of wire less than two feet (1-feet input, 1-feet return). Output J8/J7 and GND J10/J11 (0.9-V output) – The minimum recommended wire size is AWG #10, with the total length of wire less than two feet (1-feet output, 1-feet return). TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Test Setup 4.3 Recommended Test Setup Figure 4-1 shows the recommended test setup. Figure 4-1. TPS546C20AEVM2-746 EVM Recommended Test Setup Figure 4-2 illustrates the tip and barrel measurement for switching node waveform on TP19 with TP23 or TP20 with TP24. Metal Ground Barrel Probe Tip Tip and Barrel VOUT Ripple Measurement Figure 4-2. Tip and Barrel Measurement SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module Submit Document Feedback User's Guide Copyright © 2022 Texas Instruments Incorporated 7 Test Setup www.ti.com 4.4 List of Test Points, Jumpers and Connectors Table 4-1 lists the test point functions. Table 4-1. Test Point Functions 8 Test Point Type Name TP1 Not Assembled DATA TP2 Not Assembled SMB_ALERT TP3 Not Assembled CNTL TP4 Not Assembled CLK CLK signal on J1 socket TP5 T-H Loop VIN VIN+ measurement point TP6 T-H Loop GND VIN– measurement point TP7 T-H Loop PVIN1 PVIN pin voltage of U1 device measurement point TP8 T-H Loop PVIN2 PVIN pin voltage of U2 device measurement point TP9 T-H Loop AVIN1 AVIN pin voltage of U1 device measurement point TP10 T-H Loop AVIN2 AVIN pin voltage of U2 device measurement point TP11 T-H Loop GND GND reference TP12 T-H Loop GND GND reference TP13 Not Assembled ADJ Analog input to adjust rail 2 output voltage TP14 T-H Loop CHA1 Input for small signal loop gain measurements for output rail 1 (B/A setup) TP15 T-H Loop CHB1 OUTPUT for small signal loop gain measurements for output rail 1 (B/A setup) TP16 T-H Loop CHB2 OUTPUT for small signal loop gain measurements for output rail 2 (B/A setup) TP17 T-H Loop CHA2 Input for small signal loop gain measurements for output rail 2 (B/A setup) TP18 Not Assembled ADJ Analog input to adjust rail 1 output voltage TP19 T-H Loop SW1 Switching node of output rail 1 measurement point, reference to TP23 TP20 T-H Loop SW2 Switching node of output rail 2 measurement point, reference to TP24 TP21 Not Assembled AVG1 Rail 1 switching node average voltage measurement point, reference to TP23 TP22 Not Assembled AVG2 Rail 2 switching node average voltage measurement point, reference to TP24 TP23 T-H Loop PGND1 GND reference for switching node measurement TP24 T-H Loop PGND2 GND reference for switching node measurement TP25 T-H Loop RST/RG1 PGOOD signal of output 1 TP26 T-H Loop RST/PG2 PGOOD signal of output 2 Description DATA signal on J1 socket SMBALERT signal on J1 socket CNTL signal on J1 socket TP27 T-H Loop GND TP28 Not Assembled EFF_VO1 GND reference U1 output voltage measurement point for efficiency, reference to TP34 TP29 Not Assembled EFF_VO2 U2 output voltage measurement point for efficiency, reference to TP35 TP30 Not Assembled RSP1 TP31 T-H Loop +VOSENSE1 VOUT1+ measurement point TP32 T-H Loop +VOSENSE2 VOUT2+ measurement point TP33 Not Assembled RSP2 TP34 Not Assembled EFF_GND1 Rail 1 output voltage referencing GND for efficiency measurement TP35 Not Assembled EFF_GND2 Rail 1 output voltage referencing GND for efficiency measurement TP36 Not Assembled RSN1 TP37 T-H Loop –VOSENSE1 VOUT1– measurement point TP38 T-H Loop –VOSENSE2 VOUT2– measurement point TP39 Not Assembled RSN2 TP40 T-H Loop Vshare2 VSHARE of U2 measurement point. Sensitive signal TP41 T-H Loop Ishare1 ISHARE of U1 measurement point. Sensitive signal TP42 T-H Loop Vshare1 VSHARE of U1 measurement point. Sensitive signal TP43 T-H Loop Ishare2 ISHARE of U2 measurement point. Sensitive signal Output 1 remote sense + voltage point Output 2 remote sense + voltage point Output 1 remote sense - voltage point Output 2 remote sense - voltage point TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Test Setup Table 4-2 lists the EVM jumpers. Table 4-2. Jumpers Jumper Type Name Description JP1 Header, 100 mil, 2×1 SYNC2 Synchronization connection between U1 and U2. Jumper is plugged as default. JP2 Header, 100 mil, 2×1 SYNC1 Synchronization connection between U1 and U2. Jumper is plugged as default. JP3 Header, 100 mil, 3×1 CNTL1 PMBUS CNTL connection options for U1 to socket J1 or GND. Jumper connecting U1 to J1 is plugged as default. JP4 Header, 100 mil, 3×1 CNTL2 PMBUS CNTL connection options for U2 to socket J1 or GND. Jumper connecting U2 to J1 is plugged as default. JP5 Header, 100 mil, 2×1 ALERT1 PMBUS SMBALERT connection between U1 and socket J1. Jumper connecting U1 to J1 is plugged as default. JP6 Header, 100 mil, 2×1 ALERT2 PMBUS SMBALERT connection between U2 and socket J1. Jumper connecting U2 to J1 is plugged as default. Table 4-3 lists the EVM connector functions. Table 4-3. Connector Functions Connector Type Name J1 Header, 100mil, 5x2 PMBUS Description J2 Keystone 1546 VIN VIN+ connector J3 Keystone 1546 GND VIN– (GND) connector PMBUS socket for TI FUSION adaptor J8 Keystone 1546 VOUT1 VOUT1+ connector J10 Keystone 1546 GND VOUT1– connector J7 Keystone 1546 VOUT2 VOUT2+ connector J11 Keystone 1546 GND VOUT2– connector SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module Submit Document Feedback User's Guide Copyright © 2022 Texas Instruments Incorporated 9 EVM Configuration Using the Fusion GUI www.ti.com 5 EVM Configuration Using the Fusion GUI The TPS546C20A on this EVM leave the factory pre-configured. See Table 5-1 for a short list of key factory configuration parameters as obtained from the configuration file. Table 5-1. Key Factory Configuration Parameters ADDRESS DEC PART ID DESIGNATOR 0x44 36 TPS546C20A U1 0x44 37 TPS546C20A U2 ADDRESS HEX GENERAL CMD CODE HEX ENCODED HEX DECODED VIN_OFF 0x36 0xF010 4.0 V Turn OFF voltage VIN_ON 0x35 0xF012 4.5 V Turn ON voltage IOUT_CAL_OFFSET 0x39 0xE000 0.0000 A IOUT_OC_FAULT_LIMIT 0x46 0xF854 42 A IOUT_OC_FAULT_RESPONSE 0x47 0xFF Restart IOUT_OC_WARN_LIMIT 0x4A 0xF84A 37 A OC warning level VOUT_COMMAND 0x21 0x0133 0.6 V Reference voltage VOUT_MIN 0x2B 00B3h 0.35V Minimum reference voltage VOUT_MAX 0x24 0x034D 1.65 V maximum reference voltage VOUT_TRANSITION_RATE 0x27 0xD03C 1 mV/us VOUT_SCALE_LOOP 0x29 0xF004 1 CMD Code UV FAULT PCT_OV_UV_WRN_FLT_LIMITS 0xD6 0x00 VOUT_OV_FAULT_RESPONSE 0x41 0xBF VOUT_UV_FAULT_RESPONSE 0x45 ON_OFF_CONFIG 0x02 OPERATION COMMENTS Current offset for PMBUS readout OC fault level Response to OC fault Vout transition rate Output sense scaling ratio for main control loop 83% UV WARN 88% OV WARN 112% OV FAULT 117% Output OV/UV settings, reference to nominal reference voltage Restart Output overvoltage fault response 0xBF Restart Output undervoltage fault response 0x16 CNTL only, Active High. Control signal and operation command 0x01 0x00 Operation is not used to enable regulation Can be used to control device On/Off OT_FAULT_LIMIT 0x4F 0x0091 145°C OT fault level OT_WARN_LIMIT 0x51 0x0078 120°C OT warn level OT_FAULT_RESPONSE 0x50 0x3F Ignore Response to over temperature faults TON_DELAY 0x60 0x0000 0 ms Turn-on delay TON_RISE 0x61 0x0003 3 ms Soft-start time TON_MAX_FAULT_LIMIT 0x62 0x0000 Disabled TOFF_DELAY 0x64 0x0000 0 ms Turn-off delay TOFF_FALL 0x65 0x0000 0 ms Soft-stop fall time Upper limit for Vout reaching regulation If it is desired to configure the EVM to settings other than the factory settings shown above, the TI Fusion Digital Power Designer software can be used for reconfiguration. It is necessary to have input voltage applied to the EVM prior to launching the software so that the TPS546C20A can respond to the GUI and the GUI can recognize the device. The default configuration for the EVM is to start converting at an input voltage of 4.5 V, therefore, to avoid any converter activity during configuration, an input voltage less than 4.5 V should be applied. An input voltage of 4 V is recommended. 10 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com EVM Configuration Using the Fusion GUI 5.1 Configuration Procedure 1. 2. 3. 4. 5. Adjust the input supply to provide 4 VDC, current limited to 1 A. Apply the input voltage to the EVM. Refer to Figure 4-1 for connections and test setup. Launch the Fusion GUI software. Refer to the screenshots in Section 10 for more information. Configure the EVM operating parameters as desired. VSEL and SS pin resistors on the EVM would program VOUT_COMMAND and TON_RISE at power up. By default, the device would ignore the values stored in the internal non-volatile memory and write corresponding registers with the resistor programmed value. If the DIS_VSEL bit in OPTIONS (MFR_SPECIFIC_21) (E5h) is modified to 1 (default 0), the initial VOUT_COMMAND would be same as the value stored in the internal non-volatile memory. Please see the data sheet for more details. By default, U1 is configured as a loop controller, U2 is configured as loop follower, and the PMBUS address for U1 is 36 decimal and for U2 is 37 decimal. These two addresses are fixed. Both device can be configured or monitored through PMBUS interface at different address. SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module Submit Document Feedback User's Guide Copyright © 2022 Texas Instruments Incorporated 11 Test Procedure www.ti.com 6 Test Procedure 6.1 Line and Load Regulation and Efficiency Measurement Procedure 1. 2. 3. 4. 5. 6. 7. 8. Set up the EVM as described in Figure 4-1. Ensure the electronic loads is set to draw 0 ADC. Increase VIN from 0 V to 12 V using voltage meter to measure input voltage. Use the other voltage meter to measure output voltage VOUT. Vary the load from 0 to 70 ADC. VOUT should remain in regulation as defined in Table 2-1. Vary VIN from 5 V to 18 V. VOUT should remain in regulation as defined in Table 2-1. Decrease the load to 0 A. Decrease VIN to 0 V. 6.2 Control Loop Gain and Phase Measurement Procedure The TPS546C20AEVM2-746 EVM includes a 49.9-Ω series resistor in the feedback loop for VOUT . The resistor is accessible at the test points TP14 / TP15 for loop response analysis. These test points should be used during loop response measurements as the perturbation injecting points for the loop . See the description in Table 6-1. Table 6-1. List of Test Points for Loop Response Measurements Test Point Node Name Description Comment TP14 CHA1 Input to feedback divider of VOUT The amplitude of the perturbation at this node should be limited to less than 30 mV TP15 CHB1 Resulting output of VOUT Bode can be measured by a network analyzer with a CH-B/CH-A configuration Measure only one output at a time, with the following procedure: 1. Set up the EVM as described in Figure 4-1. 2. For VOUT, connect the isolation transformerof the network analyzer from TP14 to TP15. 3. Connect the input signal measurement probe to TP14. Connect the output signal measurement probe to TP15. 4. Connect the ground leads of both probe channels to TP11. 5. On the network analyzer, measure the Bode as TP15/TP14 (Out/In). 12 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Test Procedure 6.3 Efficiency Measurement In order to evaluate the efficiency of the power train (device and inductor), it is important to measure the voltages at the correct location. This is necessary because otherwise the measurements will include losses that are not related to the power train itself. Losses incurred by the voltage drop in the copper traces and in the input and output connectors are not related to the efficiency of the power train, which should not be included in efficiency measurements. Input current can be measured at any point in the input wires, and output current can be measured anywhere in the output wires of the output being measured. Table 6-2 shows the measurement points for input voltage and output voltage. VIN and VOUT are measured to calculate the efficiency. Using these measurement points will result in efficiency measurements that excluded losses due to the connectors and PCB traces. Table 6-2. Test Points for Better Efficiency Measurements Test Point Node Name Description Comment VOUT PVIN1 Input voltage measurement point for VIN1+ TP23 PGND1 Input voltage measurement point for VIN1– (GND) TP28 Eff_Vo1 Output voltage measurement point for VOUT1+ Eff_GND1 Output voltage measurement point for VOUT1– (GND) TP7 TP34 The pair of test points are connected to the PVIN/GND pins of U1. The voltage drop between input terminal to the device pins is excluded for efficiency measurement. The pair of test points are connected to the closest points of Vout /GND to the inductor. The voltage drop from the output point of inductor to the output terminals is excluded for efficiency measurement. SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module Submit Document Feedback User's Guide Copyright © 2022 Texas Instruments Incorporated 13 Performance Data and Typical Characteristic Curves www.ti.com 7 Performance Data and Typical Characteristic Curves Figure 7-1 through Figure 7-14 present typical performance curves for the TPS546C20AEVM2-746 . 7.1 Efficiency 100 Efficiency (%) 90 80 70 Output Voltage 5V 12 V 18 V 60 50 0 10 20 30 40 Load Current (A) 50 60 70 D001 Figure 7-1. Efficiency of 0.9-V Output vs Line and Load 7.2 Load Regulation 0.908 0.906 Output Voltage (V) 0.904 0.902 0.9 0.898 0.896 Input Voltage 5V 0.894 12 V 18 V 0.892 0 10 20 30 40 Output Current (A) 50 60 70 D001 Figure 7-2. Load Regulation of 0.9-V Output 14 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Performance Data and Typical Characteristic Curves 7.3 Line Regulation 0.91 0.908 Ouptut Voltage (V) 0.906 0.904 0.902 0.9 0.898 0.896 Output Current 0A 40 A 0.894 70 A 0.892 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Input Voltage (V) D001 Figure 7-3. Line Regulation of 0.9-V Output (Different Board) 7.4 Transient Response Ch1 = IOUT at 25 A/division, Ch3 = VOUT (AC coupled, measured at U1 side) at 50 mV/division, Ch4 = VOUT (AC coupled, measured at U2 side) at 50 mV/division Figure 7-4. Transient Response of 0.9-V Output at 12 VIN, Transient is 10 A to 60 A, 0.2 A/µs SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module Submit Document Feedback User's Guide Copyright © 2022 Texas Instruments Incorporated 15 Performance Data and Typical Characteristic Curves www.ti.com 7.5 Output Ripple Ch1 = VSW1 at 5 V/division, Ch2 = VSW2 at 5 V/division, Ch3 = VOUT (AC coupled, measured at U1 side) ripple at 10 mV/division, Ch4 = VOUT (AC coupled, measured at U2 side) ripple at 10 mV/division Figure 7-5. Output Ripple and SW Node of 0.9-V Output at 12 VIN, 0-A Output Ch1 = VSW1 at 5 V/division, Ch2 = VSW2 at 5 V/division, Ch3 = VOUT (AC coupled, measured at U1 side) ripple at 10 mV/division, Ch4 = VOUT (AC coupled, measured at U2 side) ripple at 10 mV/division Figure 7-6. Output Ripple and SW Node of 0.9-V Output at 12 VIN, 70-A Output 16 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Performance Data and Typical Characteristic Curves 7.6 Control On Ch1 = CNTL at 2 V/division, Ch2 = IOUT at 50 A/division, Ch3 = VOUT at 500 mV/division, Ch4 = PGOOD at 2 V/division Figure 7-7. Start-Up from Control, 0.9-V Output at 12 VIN, 0-A Output Ch1 = CNTL at 2 V/division, Ch2 = IOUT at 50 A/division, Ch3 = VOUT at 500 mV/division, Ch4 = PGOOD at 2 V/division Figure 7-8. Start-Up from Control, 0.9-V Output at 12 VIN, 70-A Output SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module Submit Document Feedback User's Guide Copyright © 2022 Texas Instruments Incorporated 17 Performance Data and Typical Characteristic Curves www.ti.com 7.7 Control Off Ch1 = CNTL at 2 V/division, Ch2 = IOUT at 50 A/division, Ch3 = VOUT at 500 mV/division, Ch4 = PGOOD at 2 V/division Figure 7-9. Soft Stop from Control, 0.9-V Output at 12 VIN, 0-A Output Ch1 = CNTL at 2 V/division, Ch2 = IOUT at 50 A/division, Ch3 = VOUT at 500 mV/division, Ch4 = PGOOD at 2 V/division Figure 7-10. Soft Stop from Control, 0.9-V Output at 12 VIN, 70-A Output 18 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Performance Data and Typical Characteristic Curves 7.8 Current Sharing Between Two Phases Ch1 = VSW1 at 5 V/division, Ch2 = VSW2 at 5 V/division, Ch3 = IL2 at 5 A/division, Ch4 = IL1 at 5 A/division Figure 7-11. Inductor Current and Switch Node Waveform, 0.9-V Output at 12 VIN, 70-A Output 7.9 Control Loop Bode Plot Figure 7-12. Bode Plot at 0.9-V Output at 12 VIN, 0-A Output SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module Submit Document Feedback User's Guide Copyright © 2022 Texas Instruments Incorporated 19 Performance Data and Typical Characteristic Curves www.ti.com Figure 7-13. Bode Plot at 0.9-V Output at 12 VIN, 70-A Output 20 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Performance Data and Typical Characteristic Curves 7.10 Thermal Image VIN = 12 V, IOUT = 70 A, VOUT = 0.9V, Fsw = 500 kHz Figure 7-14. Thermal Image SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module Submit Document Feedback User's Guide Copyright © 2022 Texas Instruments Incorporated 21 EVM Assembly Drawing and PCB Layout www.ti.com 8 EVM Assembly Drawing and PCB Layout Figure 8-1 through Figure 8-9 show the design of the TPS546C20AEVM2-746 EVM printed circuit board. Figure 8-1. TPS546C20AEVM2-746 EVM 3D (Top View) 22 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com EVM Assembly Drawing and PCB Layout Figure 8-2. TPS546C20AEVM2-746 EVM Top Layer Assembly Drawing (Top View) SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module Submit Document Feedback User's Guide Copyright © 2022 Texas Instruments Incorporated 23 EVM Assembly Drawing and PCB Layout www.ti.com Figure 8-3. TPS546C20AEVM2-746 EVM Bottom Assembly Drawing (Bottom View) 24 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com EVM Assembly Drawing and PCB Layout Figure 8-4. TPS546C20AEVM2-746 EVM Top Copper (Top View) SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module Submit Document Feedback User's Guide Copyright © 2022 Texas Instruments Incorporated 25 EVM Assembly Drawing and PCB Layout www.ti.com Figure 8-5. TPS546C20AEVM2-746 EVM Internal Layer 1 (Top View) 26 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com EVM Assembly Drawing and PCB Layout Figure 8-6. TPS546C20AEVM2-746 EVM Internal Layer 2 (Top View) SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module Submit Document Feedback User's Guide Copyright © 2022 Texas Instruments Incorporated 27 EVM Assembly Drawing and PCB Layout www.ti.com Figure 8-7. TPS546C20AEVM2-746 EVM Internal Layer 3 (Top View) 28 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com EVM Assembly Drawing and PCB Layout Figure 8-8. TPS546C20AEVM2-746 EVM Internal Layer 4 (Top View) SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module Submit Document Feedback User's Guide Copyright © 2022 Texas Instruments Incorporated 29 EVM Assembly Drawing and PCB Layout www.ti.com Figure 8-9. TPS546C20AEVM2-746 EVM Bottom Copper (Top View) 30 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Bill of Materials 9 Bill of Materials Table 9-1 lists the BOM for the TPS546C20AEVM2-746 (TPS546C20A EVM). Table 9-1. TPS546C20AEVM2-746 Components List Qty Designator Description Part Number Manufacturer 4 C1, C20, C29, C31 CAP, CERM, 1 µF, 25 V, ±10%, X7R, 0603 GRM188R71E105KA12D MuRata 4 C2–C5 CAP, AL, 100 µF, 35 V, ±20%, 0.15 Ω, SMD EEE-FC1V101P Panasonic 6 C6–C8, C17–C19 CAP, CERM, 6800 pF, 50 V, ±10%, X7R, 0402 GRM155R71H682KA88D MuRata 8 C9–C16 CAP, CERM, 22 µF, 25 V, ±10%, X6S, 1210 GRM32EC81E226KE15L MuRata 2 C21, C22 CAP, CERM, 0.1 µF, 50 V, ±10%, X7R, 0603 C0603C104K5RACTU Kemet 2 C23, C24 CAP, CERM, 1200 pF, 100 V, ±5%, C0G/NP0, 0603 GRM1885C2A122JA01D MuRata 2 C25, C26 CAP, CERM, 1000 pF, 100 V, ±5%, X7R, 0603 06031C102JAT2A AVX 2 C27, C28 CAP, CERM, 2200 pF, 50 V, ± 5%, C0G/NP0, 0603 GRM1885C1H222JA01D MuRata 2 C31, C32 CAP, CERM, 270 pF, 50 V, ±5%, C0G/NP0, 0603 GRM1885C1H271JA01D MuRata 4 C33, C36–C38 CAP, CERM, 2.2 µF, 16 V, ±10%, X7R, 0603 GRM188Z71C225KE43 MuRata 2 C34, C39 CAP, CERM, 4.7 µF, 10 V, ±10%, X5R, 0603 C0603C475K8PACTU Kemet 2 C35, C40 CAP, CERM, 0.1 µF, 16 V, ±10%, X7R, 0603 C0603C104K4RACTU Kemet 10 C41, C44, C45, C48, C49, C52, C55, C60, C64, C68 CAP, CERM, 47 µF, 10 V, ±10%, X7R, 1210 GRM32ER71A476KE15L MuRata 2 C56, C76 CAP, CERM, 330 pF, 50 V, ±1%, C0G/NP0, 0603 C1608C0G1H331F080AA TDK 2 C72, C74 CAP, Tantalum Polymer, 470 µF, 6.3 V, ±20%, 0.01 Ω, 7343-40 SMD 6TPF470MAH Panasonic 6 H1–H6 MACHINE SCREW PAN PHILLIPS 6-32 PMSSS 632 0038 PH B&F Fastener Supply 4 H7–H10 Bumpon, Cylindrical, 0.312 × 0.200, Black SJ61A1 3M 1 J1 Header (shrouded), 100 mil, 5×2, Gold, TH 5103308-1 TE Connectivity 6 J2, J3, J7, J8, J10, J11 Swage Threaded Standoff, Brass,Swage Mount, TH 1546 Keystone 4 J4, J5, J6, J9 JUMPER TIN SMD S1911-46R Harwin 8 JP1, JP2, JP5, JP6 Header, 100 mil, 2×1, Tin, TH 5-146278-2 TE Connectivity 2 JP3, JP4 Header, 100 mil, 3×1, Tin, TH 5-146278-3 TE Connectivity 2 L1, L2 Inductor, Shielded, Ferrite, 300 nH, 52 A, 0.00015 Ω, SMD SLC1480-301MLB Coilcraft 1 LBL1 Thermal Transfer Printable Labels, 0.650" W × 0.200" H 10,000 per roll THT-14-423-10 Brady 1 LED1 LED, Green, SMD 150060GS75000 Wurth Elektronik 1 R1 RES, 1.00 k, 1%, 0.1 W, 0603 CRCW06031K00FKEA Vishay-Dale 14 R2–R5, R29, R30, R40– R43, R48–R51 RES, 0, 5%, 0.1 W, 0603 ERJ-3GEY0R00V Panasonic 2 R6, R8 RES, 1.10 k, 1%, 0.1 W, 0603 RC0603FR-071K1L Yageo America 9 R7, R10, R13, R14, R17–R19, R24, R25 RES, 10.0 k, 0.1%, 0.1 W, 0603 RT0603BRD0710KL Yageo America 7 R11, R15, R16, R44–R47 RES, 49.9, 1%, 0.1 W, 0603 CRCW060349R9FKEA Vishay-Dale 8 R14, R17–R21, R24, R25 RES, 10.0 k, 1%, 0.1 W, 0603 RC0603FR-0710KL Yageo America 2 R20, R21 RES, 5.60 k, 1%, 0.1 W, 0603 RC0603FR-075K6L Yageo America 2 R22, R23 RES, 1.0, 5%, 0.25 W, 1206 CRCW12061R00JNEA Vishay-Dale 2 R26, R27 RES, 5.11 k, 1%, 0.1 W, 0603 CRCW06035K11FKEA Vishay-Dale 2 R33, R35 RES, 34.8 k, 1%, 0.1 W, 0603 RC0603FR-0734K8L Yageo America 2 R36, R37 RES, 51.1 k, 1%, 0.1 W, 0603 RC0603FR-0751K1L Yageo America 2 R38, R39 RES, 40.2 k, 1%, 0.1 W, 0603 CRCW060340K2FKEA Vishay-Dale 6 SH-JP1–SH-JP6 Shunt, 100 mil, Gold plated, Black 969102-0000-DA 3M 7 TP5, TP14–TP17, TP31, TP32 Test Point, Miniature, Red, TH 5000 Keystone 3 TP6, TP23, TP24 Test Point, Miniature, Black, TH 5001 Keystone 2 TP7, TP8 Test Point, Miniature, Red, TH 5000 Keystone 10 TP9, TP10, TP25, TP26, TP43, TP19, TP20, TP40, TP41, TP42 Test Point, Miniature, White, TH 5002 Keystone SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module Submit Document Feedback User's Guide Copyright © 2022 Texas Instruments Incorporated 31 Bill of Materials www.ti.com Table 9-1. TPS546C20AEVM2-746 Components List (continued) Qty 32 Designator Description Part Number Manufacturer 3 TP11, TP12, TP27 Test Point, Multipurpose, Black, TH 5011 Keystone 2 TP37, TP38 Test Point, Miniature, Black, TH 5001 Keystone 2 U1, U2 4.5-V to 18-V, 35-A PMBUS STACKABLE SYNCHRONOUS BUCK CONVERTER, RVF0040A TPS546C20A Texas Instruments TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Screenshots 10 Screenshots 10.1 Fusion GUI Screenshots When launching the Fusion GUI, select IC_DEVICE_ID (Figure 10-1) as the scanning mode to find the TPS546C20A. Figure 10-1. Select Device Scanning Mode SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module Submit Document Feedback User's Guide Copyright © 2022 Texas Instruments Incorporated 33 Screenshots • www.ti.com Use the Limits & On/Off tab (Figure 10-2) to configure the following: – Vref (Vout_Command) – OC fault and OC warn – OT fault and OT warn (die temperature) – Power-good limits – Fault response – UVLO – On/Off config – Soft-start time (turn-on rise) – Margin voltage After making changes to one or more configurable parameters, the changes can be committed to nonvolatile memory by clicking Store DefaultAll. This action prompts a confirm selection pop-up, and if confirmed, the changes are committed to nonvolatile memory to store all the modifications in non-volatile memory. For modifications on Vref and soft-start time, to make the changes effective in next power up, DIS_VSEL in Advanced tab (Figure 10-4) should be checked and stored to nonvolatile memory as well. Both the loop controller device and the loop follower device are tied to same bus interface, a scroll-down menu in the upper right corner can be used to switch view screens from one to the other. In two-phase stacking system, most configurable parameters are disabled in GUI if the device is detected as loop follower (Figure 10-7). 34 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Screenshots Figure 10-2. Configure – Limits and On/Off for U1 and U2 SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module Submit Document Feedback User's Guide Copyright © 2022 Texas Instruments Incorporated 35 Screenshots www.ti.com Changing the on/off configuration prompts a pop-up window with details of the options (Figure 10-3). Figure 10-3. ON/OFF Control Pop-Up 36 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com • Screenshots Use the Advanced tab (Figure 10-4) to configure: – OPTIONS: MFR_SPECIFIC_21 register – API_OPTIONS: MFR_SPECIFIC_32 register Figure 10-4. Configure – Advanced SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module Submit Document Feedback User's Guide Copyright © 2022 Texas Instruments Incorporated 37 Screenshots www.ti.com The sources of SMBALERT that can be masked can be found and configured on the SMBALERT # Mask tab (Figure 10-5). Figure 10-5. Configure – SMBALERT # Mask 38 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Screenshots The device information, User Scratch Pad, Write Protection options, and the configuration of Vout Scale Loop, Vout Transition Rate, and Iout Cal Offset can be found on Device Info tab (Figure 10-6). Figure 10-6. Configure – Device Info SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module Submit Document Feedback User's Guide Copyright © 2022 Texas Instruments Incorporated 39 Screenshots www.ti.com Use the All Config tab (Figure 10-7) to configure all of the configurable parameters, which also shows other details like Hex encoding. Figure 10-7. Configure – All Config 40 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Screenshots When the Monitor screen (Figure 10-8) is selected, the screen changes to display real-time data of the parameters that are measured by the device. This screen provides access to: • • • • • • Graphs of VOUT, Iout, Temperature, and Pout Start/Stop Polling, which turns ON or OFF the real-time display of data Quick access to On/Off config Control pin activation and OPERATION command Margin control Clear Fault. Selecting Clear Faults clears any prior fault flags. With two devices stacked together, the IOUT reading from either the loop controller or the loop follower device is the load current supported by the device itself, thus the Iout reading is half of the total load. SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module Submit Document Feedback User's Guide Copyright © 2022 Texas Instruments Incorporated 41 Screenshots www.ti.com Figure 10-8. Monitor Screen with 10-A Total Load Selecting Status screen (Figure 10-9) from lower left corner shows the status of the device. 42 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Screenshots SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module Submit Document Feedback User's Guide Copyright © 2022 Texas Instruments Incorporated 43 Revision History www.ti.com Figure 10-9. Status Screen 11 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision * (November 2016) to Revision A (February 2022) Page • Updated the numbering format for tables, figures, and cross-references throughout the document. ................3 • Updated the updated user's guide title .............................................................................................................. 3 44 TPS546C20A 2-Phase SWIFT Step-Down Converter Evaluation Module SLUUBH3A – NOVEMBER 2016 – REVISED FEBRUARY 2022 User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated
TPS546C20AEVM2-746 价格&库存

很抱歉,暂时无法提供与“TPS546C20AEVM2-746”相匹配的价格&库存,您可以联系我们找货

免费人工找货