0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLE4998C8DXUMA1

TLE4998C8DXUMA1

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    -

  • 描述:

    SPEED SENSORS 8TDSO

  • 数据手册
  • 价格&库存
TLE4998C8DXUMA1 数据手册
TLE4998C8(D) High Performance Programmable Single/Dual Linear Hall Sensor Data Sheet Revision 1.1, 2017-01 Sense & Control Edition 2017-01 Published by Infineon Technologies AG 81726 Munich, Germany © 2017 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. TLE4998C8(D) Table of Contents Table of Contents Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 1.1 1.2 1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Target Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 5 5 2 2.1 2.2 2.3 2.4 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Principle of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transfer Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6 6 7 7 3 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4 Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5 5.1 5.2 5.3 5.4 Electrical, Thermal and Magnetic Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Magnetic Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical and Magnetic Characteristics in Undervoltage Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . Magnetic Field Direction Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 7 7.1 7.2 7.3 7.4 7.4.1 7.4.2 7.4.3 SPC Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPC Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unit Time Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Master Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPC Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Synchronous Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Synchronous Transmission Including Range Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Synchronous Mode with ID Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Configuration and Calibration Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 9 9.1 9.2 Error Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Voltages Outside the Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 EEPROM Error Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 10 10.1 10.2 10.3 PG-TDSO-8 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Distance Chip to package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Moisture Sensitivity Level (MSL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PG-TDSO-8 Package Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Sheet 3 10 10 11 12 12 15 15 16 16 18 18 18 19 24 24 24 25 Revision 1.1, 2017-01 TLE4998C8(D) Overview 1 Overview Characteristic Supply Voltage Supply Current Magnetic Range Interface Temperature Programmable Single/Dual Die Linear Hall Sensor 4.5~5.5 V 6 mA ±50mT ±100mT ±200mT SPC (Short PWM Code) Open Drain Output -40°C to 125°C Figure 1-1 1.1 • • • • • • • • • • • • • • • • SMD package PG-TDSO-8 for the TLE4998C8(D) Features Integration of two individual programmable Linear Hall sensor IC’s with SPC (Short PWM Code) protocol with enhanced interface features based on SENT (Single Edge Nibble Transmission, defined by SAE J2716) 20-bit Digital Signal Processing (DSP) Digital temperature and stress compensation 16-bit overall resolution Operating automotive temperature range -40°C to 125°C Minimal drift of output signal over temperature and lifetime Programmable parameters stored in EEPROM with single-bit error correction: – SPC protocol modes: synchronous transmission, dynamic range selection, ID selection mode – Magnetic range, sensitivity (gain), offset, and polarity of the output slope – Bandwidth – Clamping levels – Customer temperature compensation coefficients for all common magnets Re-programmable until memory lock Supply voltage 4.5-5.5 V (4.1-16 V extended range) Configurable magnetic range: ±50 mT, ±100 mT, or ±200 mT Reverse-polarity and overvoltage protection for all pins Output short-circuit protection On-board diagnostics (overvoltage, EEPROM error) Output of internal magnetic field values and temperature Programming and operation of multiple sensors with common power supply Two-point calibration of magnetic transfer function without iteration steps Note: Product qualification is based on “AEC Q100 Rev. G” grade 1 (Automotive Electronics Council - Stress test qualification for integrated circuits) Table 1-1 Ordering Information Product Name Marking Ordering Code Package TLE4998C8 C8S SP000902764 single sensor, PG-TDSO-8-1 TLE4998C8D C8D SP000902768 dual sensor, PG-TDSO-8-2 Data Sheet 4 Revision 1.1, 2017-01 TLE4998C8(D) Overview 1.2 • • • Target Applications Robust replacement of potentiometers: No mechanical abrasion, resistant to humidity, temperature, pollution and vibration Linear and angular position sensing in automotive and industrial applications with highest accuracy requirements Suited for safety applications such as pedal position, throttle position and steering torque sensing 1.3 Pin Configuration Figure 1-2 shows the location of the Hall elements in the package and the pin configuration of the TLE4998C8(D). Figure 1-2 Pin Configuration of PG-TDSO-8 package Table 1-2 TLE4998C8(D) Pin Definitions and Functions Pin No. Symbol TLE4998C8 Function TLE4998C8D Function 1 TST Test pin (connection to GND is recommended) Test pin (top die, connection to GND is recommended) 2 VDD Supply voltage / programming interface Supply voltage / programming interface (top die) 3 GND Ground Ground (top die) 4 OUT Output / programming interface Output / programming interface (top die) 5 OUT Not connected Output / programming interface (bottom die) 6 GND Not connected Ground (bottom die) 7 VDD Not connected Supply voltage / programming interface (bottom die) 8 TST Not connected Test pin (bottom die, connection to GND is recommended) Data Sheet 5 Revision 1.1, 2017-01 TLE4998C8(D) General 2 General 2.1 Block Diagram Figure 2-1 shows is a simplified block diagram. VDD Bias Supply spinning HALL A EEPROM Interface TST D OUT Temp. Sense Stress Sense DSP A SPC D GND ROM Figure 2-1 2.2 Block Diagram of the TLE4998C8(D) with the SPC interface Functional Description The linear Hall IC TLE4998C8(D) has been designed specifically to meet the requirements of highly accurate angle and position detection. The sensor provides a digital SPC (Short PWM Code) signal, based on the standardized SENT (Single Edge Nibble Transmission, SAE J2716) protocol. The SPC protocol allows transmissions initiated by the ECU. Two further operation modes are available. • • “range selection” for dynamically switching of the measurement range during operation “ID selection” to build a bus system with up to 4 IC’s on a single output line and a common supply, which can be individually accessed by the ECU. Each transmission sequence contains an adjustable number of nibbles representing the magnetic field, the temperature value and a status information of the sensor. The interface is further described in Chapter 7. The output stage is an open-drain driver pulling the output pin to low only. Therefore, the high level needs to be obtained by an external pull-up resistor. This output type has the advantage that the receiver may use an even lower supply voltage (e.g. 3.3 V). In this case the pull-up resistor must be connected to the given receiver supply. The IC is produced in BiCMOS technology with high voltage capability and it also has reverse-polarity protection. Digital signal processing using a 16-bit DSP architecture together with digital temperature and stress compensation guarantees excellent stability over the whole temperature range and life time. Data Sheet 6 Revision 1.1, 2017-01 TLE4998C8(D) General 2.3 • • • • • • • • • Principle of Operation A magnetic flux is measured by a Hall-effect cell The output signal from the Hall-effect cell is converted from analog to digital signals The chopped Hall-effect cell and continuous-time A/D conversion ensure a very low and stable magnetic offset A programmable low-pass filter to reduce noise The temperature is measured and A/D converted Temperature compensation is done digitally using a second-order function Digital processing of the output value is based on zero field and sensitivity value The output value range can be clamped by digital limiters The final output value is represented by the data nibbles of the SPC protocol 2.4 Transfer Functions The examples in Figure 2-2 show how different magnetic field ranges can be mapped to the desired output value ranges. • • Polarity Mode: – Bipolar: Magnetic fields can be measured in both orientations. The limit points do not necessarily have to be symmetrical around the zero field point – Unipolar: Only north- or south-oriented magnetic fields are measured Inversion: Both gain can be set to positive values, negative values or positive/negative values. B (mT) OUT12 / OUT16 50 4095 / 100 65535 0 0 -50 Data Sheet 4095 / 65535 0 0 -100 Example 1: - Bipolar Figure 2-2 OUT12 / OUT16 B (mT) B (mT) OUT12 / OUT16 200 4095 / 65535 0 0 -200 Example 2: - Unipolar - Big offset Example 3: - Bipolar - Inverted (neg. gain) Examples of Operation 7 Revision 1.1, 2017-01 TLE4998C8(D) Maximum Ratings 3 Maximum Ratings All further given specifications are regarded to each of the implemented sensors IC’s, or otherwise noted. Table 3-1 Absolute Maximum Ratings Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Junction temperature TJ - 40 – 1601) °C – Voltage on VDD pin with respect to ground VDD -18 – 18.35 V 2)3) Supply current @ overvoltage VDD max. IDDov – – 15 mA – Reverse supply current @ VDD min. -1 – 0 mA – V – IDDrev Voltage on output pin with respect to ground VOUT -1 Magnetic field BMAX ESD protection VESD 4) 5) – 18.35 – – 1 T – – – ±2 kV According HBM ANSI/ESDA/JEDEC JS-001 1) For limited time of 96 h. Depends on customer temperature lifetime cycles. Please ask Infineon for support. 2) Higher voltage stress than absolute maximum rating, e.g. 150% in latch-up tests is not applicable. In such cases, Rseries ≥100 Ω for current limitation is required. 3) Max 1h, in operating temperature range. 4) IDD can exceed 10 mA when the voltage on OUT is pulled below -1 V (-5 V at room temperature). 5) VDD = 5 V, open drain permanent low, for max. 10 minutes Attention: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Furthermore, only single error cases are assumed. More than one stress/error case may also damage the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions the voltage on VDD pins with respect to ground (VSS) must not exceed the values defined by the absolute maximum ratings. Lifetime statements are an anticipation based on an extrapolation of Infineon’s qualification test results. The actual lifetime of a component depends on its form of application and type of use etc. and may deviate from such statement. The lifetime statement shall in no event extend the agreed warranty period. Data Sheet 8 Revision 1.1, 2017-01 TLE4998C8(D) Operating Range 4 Operating Range The following operating conditions must not be exceeded in order to ensure correct operation of the TLE4998C8(D). All parameters specified in the following sections refer to these operating conditions and each of the implemented sensors IC’s if applicable or unless otherwise indicated. Table 4-1 Operating Range Parameter Symbol Supply voltage VDD Values Min. Typ. Max. 4.5 – 5.5 4.1 3) 1)2) Unit Note / Test Condition V – V Extended range – 16 – 4.1 V Undervoltage range, reduced magnetic performance (see Table 5-3) Supply undervoltage VDDuv VDDpon Output pull-up voltage4) Vpull-up – – 18.35 V – RL 1 – – kΩ – Iout 0 – 5 mA – CL 1 – 8 nF – TA -40 – 125 °C max. 1200 h at 125°C6) 4) Load resistance 4) Output current 4) Load capacitance 5) Ambient temperature 1) For supply voltages > 12 V, a series resistance Rseries ≥100 Ω is recommended 2) The open drain switch off, due to overvoltage on the VDD line, can take place in the range of 16.65 V to 18.35 V, as defined in Chapter 9.1 of the data sheet. 3) VDDpon ... power-on reset level, see Table 5-1 4) Output protocol characteristics depend on these parameters, RL must be according to max. output current 5) RTHja ≤ 150 K/W. 6) Maximum exposure time at other ambient temperatures between -40°C and 125°C shall be calculated based on the values specified in this table using the Arrhenius model. Note: Keeping signal levels within the limits specified in this table ensures operation without overload conditions. Data Sheet 9 Revision 1.1, 2017-01 TLE4998C8(D) Electrical, Thermal and Magnetic Parameters 5 Electrical, Thermal and Magnetic Parameters All specification values are valid over temperature and lifetime, unless noted otherwise. 5.1 Electrical Characteristics Table 5-1 Electrical Characteristics Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. IDD 3 6 8 mA per die RthJA – 150 – K/W junction to air RthJC – 85 – K/W junction to case tPon – 0.7 2 ms ≤ ±5% target out value – 15 20 VDDpon 3.1 3.5 3.9 V Output impedance ZOUT 20 40 70 kΩ Output fall time tfall 2 3.5 5 μs VOUT 4.5 V to 0.5 V4) Output rise time trise – 20 – μs VOUT 0.5 V to 4.5 V4) Output low saturation voltage VOUTsat – 0.3 0.6 V IOUTsink= 5 mA – 0.2 0.4 V IOUTsink= 2.2 mA Output noise (rms) OUTnoise – – 2 LSB12 With LP filter setting from 80 Hz until 1390 Hz5) Oscillator frequency variation ∆f / f -20 – 20 % Nominal oscillator frequency: 8MHz Supply current 1) Thermal resistance 2) Power-on time Power-on reset level 3) ≤ ±1% target out value 1) Values derived from a simulation with a 4-layer PCB 2) Response time to set up output data at power on when a constant field is applied. The first value given has a ±5% error, the second value has a ±1% error. 3) Power-on and power-off 4) Depends on External RL and CL, See Figure 5-1 5) Range ±50 mT (also valid for ranges ±100 mT and ±200 mT), Gain 1.0 (scales linearly with gain) VOUT *) t HIGH tlow VDD 90% VDD 10% VDD VOUTsat *) tfall Figure 5-1 Data Sheet RL to VDD assumed trise t Output Characteristic 10 Revision 1.1, 2017-01 TLE4998C8(D) Electrical, Thermal and Magnetic Parameters Calculation of the Junction Temperature The internal power dissipation PTOT of the sensor increases the chip junction temperature above the ambient temperature. The power multiplied by the total thermal resistance RthJA (Junction to Ambient) added to TA leads to the final junction temperature. RthJA is the sum of the addition of the two components, Junction to Case and Case to Ambient. RthJA = RthJC + RthCA TJ = TA + ∆T = RthJA x PTOT = RthJA x ( VDD x IDD + VOUT x IOUT ); IDD, IOUT > 0, if direction is into IC Example (assuming no load on VOUT and TLE4998C8(D) type): • • • VDD = 5 V IDD = 8 mA ∆T= 150 [K/W] x (5 [V] x 0.008 [A] + 0 [VA]) = 6 K per silicon For molded sensors, the calculation with RthJC is more adequate. 5.2 Magnetic Characteristics Table 5-2 Magnetic Characteristics Parameter Symbol 1) Values Unit Note / Test Condition programmable2) Min. Typ. Max. ±8.2 – ±245 LSB12/mT Sensitivity S Sensitivity drift ∆S -2.0 – +2.0 % Magnetic field range MFR ±50 ±100 ±200 mT programmable3) Integral nonlinearity INL – ±2.0 ±4.1 LSB12 4) Magnetic offset BOS – ±100 ±400 μT Magnetic offset drift ∆BOS – ±1 ±5 μT/°C Magnetic hysteresis BHYS – – 20 10 μT 1) 2) 3) 4) in 50mT range in 100mT range Defined as ∆OUT / ∆B. Programmable in steps of 0.024%. Depending on offset and gain settings, the output may already be saturated at lower fields. Range ±50 mT (also valid for ranges ±100 mT and ±200 mT), Gain = 1.0 (scales linearly with gain) Data Sheet 11 Revision 1.1, 2017-01 TLE4998C8(D) Electrical, Thermal and Magnetic Parameters 5.3 Electrical and Magnetic Characteristics in Undervoltage Range Table 5-3 Electrical and Magnetic Characteristics in Supply Undervoltage Range Parameter Symbol Values Unit Min. Typ. Max. Note / Test Condition Sensitivity drift SE(T) – – +2.5/-7.5 % Magnetic offset drift ∆BOS – – ±400 μT Integral nonlinearity INL – – ±8.2 LSB12 1) Output noise (rms) OUTnoise – – 8 LSB12 With LP filter setting from 80 Hz until 1390 Hz1) 1) Range ±50 mT (also valid for ranges ±100 mT and ±200 mT), Gain = 1.0 (scales linearly with gain) 5.4 Magnetic Field Direction Definition Figure 5-2 shows the definition of the magnetic field direction. By standard the south pole field defines the positive field values of the top die of the TLE4998C8(D). TLE4998x8D (dual die): TLE4998 x8 (single die): N Top Die S N Branded Side S Branded Side Bottom Die Figure 5-2 Definition of magnetic field direction of the TLE4998C8(D). For the TLE4998C8D, the bottom die measures the inverted field value of the top die. This leads to a default output characteristic as shown in Figure 5-3. Data Sheet 12 Revision 1.1, 2017-01 TLE4998C8(D) Electrical, Thermal and Magnetic Parameters Output [LSB16] 65535 Dual Die Top / Single Die Dual Die Bottom 32768 0 -50 Figure 5-3 Data Sheet -32 0 Magnetic Flux B [mT] 32 50 Example of the dual die output characteristic (range 50 mT, gain 1.0, typical) 13 Revision 1.1, 2017-01 TLE4998C8(D) Application Circuit 6 Application Circuit Figure 6-1 shows the connection of two Linear Hall sensors to a microcontroller. Sensor Module Voltage Supply Sensor Voltage Supply µC µC VDD VDD 47nF TLE out 4998 ECU Module Vdd 2k2 OUT1 GND 50 CCin1 1nF 4.7nF GND VGND CCin2 2k2 V DD 47nF TLE out 4998 OUT2 50 GND 1nF 4.7nF Figure 6-1 Application Circuit The application circuit shown should be regarded as an example only. Data Sheet 14 Revision 1.1, 2017-01 TLE4998C8(D) SPC Output 7 SPC Output The sensor supports a SPC (Short PWM Code) protocol, which enhances the standard SENT protocol (Single Edge Nibble Transmission) defined by SAE J2716. SPC is a synchronous SENT output, triggered by a master pulse from the ECU. 7.1 SPC Protocol The single edge is defined by a 3 unit time (UT) low pulse on the output, followed by the high time defined in the protocol (nominal values, may vary by tolerance of internal RC oscillator and the programming, see Chapter 7.2). All values are multiples of a configurable unit time. A transfer consists of the following parts: • • • • • • A trigger pulse by the master, which initiates the data transmission A synchronization period of 56 UT (in parallel, a new sample is calculated) A status nibble of 12-27 UT Between 3 and 6 data nibbles of 12-27 UT each (number is programmable, see Table 7-1), representing the Hall value and temperature information A Checksum (CRC) nibble of 12-27 UT. An end pulse to terminate the SPC transmission. Line idle Master Trigger Pulse Sync frame Status Nibble Data Nibble 1 Data Nibble 2 Data Nibble 3 OUT Data Nibble 3 Data Nibble 4* Data Nibble 5* Data Nibble 6* CRC Nibble End Pulse Available for next sample * Data Nibbles 4 to 6 are optional (programmable ) Figure 7-1 SPC Frame The CRC checksum includes the status nibble and the data nibbles and can be used to check the validity of the decoded data. It is calculated using a polynomial x4 +x3 + x2 + 1 with a seed value of 0101. The calculation scheme of the CRC is described in detail in the TLE4998 User’s Manual. The sensor is available for the next sample 90 μs after the falling edge of the end pulse. The sensor’s sampling time is at the beginning of the synchronization period. The number of transmitted SPC nibbles is programmable to customize the amount of information sent by the sensor. The default frame contains a 16 bit Hall value and an 8bit temperature value. Table 7-1 Frame Selection Frame Type Parameter F Data Nibbles 16 bit Hall, 8 bit temperature 0 6 nibbles 16 bit Hall 1 4 nibbles 12 bit Hall, 8 bit temperature 2 5 nibbles 12 bit Hall 3 3 nibbles The temperature is coded as an 8 bit value. The value is transferred in unsigned integer format and corresponds to the range between -55 °C and +200 °C, so a transferred value of 55 corresponds to 0 °C. The temperature is additional information and although it is not calibrated, may be used for a plausibility check, for example. Table 7-2 shows the mapping between junction temperature and the transmitted value in the SPC frame. Data Sheet 15 Revision 1.1, 2017-01 TLE4998C8(D) SPC Output Table 7-2 Mapping of Temperature Value Junction Temperature Typ. Decimal Value from Sensor Note - 55 °C 0 Theoretical lower limit1) 0 °C 55 – 25 °C 80 – 200 °C 255 Theoretical upper limit1) 1) Theoretical range of temperature values, not operating temperature range. The status nibble allows to check internal states and conditions of the sensor. • • • Depending on the selected SPC mode, the first two bits of the status nibble contain either the selected magnetic range or the ID of the sensor and allow therefore an easy interpretation of the received data. The third bit is set to 1 for the first transmission after the sensor returns from an overvoltage operation with disabled open drain stage to regular operation (see Chapter 9). The fourth bit is switched to 1 for the first data package transferred after a reset. 7.2 Unit Time Setup The basic SPC protocol unit time granularity is defined as 3 μs. Every timing is a multiple of this basic time unit. To achieve more flexibility, trimming of the unit time can be used to: • • Allow a calibration trim within a timing error of less than 20% clock error (as given in SAE standard) Allow a modification of the unit time for small speed adjustments This enables a setup of different unit times. The output characteristic depends on the external load, the wiring, as well on the pull-up resistor and the temperature. Furthermore, sufficient driving capability of the reciever is required, in order to fulfill the master pulse requirements. Table 7-3 Pre-divider Setting Parameter Symbol tUNIT Unit time Values Min. Typ. Max. 2.0 – 3.88 Unit Note / Test Condition μs ClkUNIT=8 MHz1)2) 1) Default setting is 3 μs nominal SPC unit time. 2) Subject to RC oscillator frequency variation ± 20%. The nominal unit time is calculated by: tUNIT = (Prediv + 16) / ClkUNIT Clk UNIT = 8MHz ± 20% 7.3 (7.1) Master Pulse An SPC transmission is initiated by a Master pulse from the ECU on the OUT pin. To detect a low-level on the OUT pin, the voltage has to be below a threshold Vthf. The sensor detects that the OUT line has been released as soon as Vthr is crossed. Figure 7-2 shows the timing definitions for the master pulse. The master low time tmlow as well as the total trigger time tmtr are individual for the different SPC modes and are given in the subsequent sections. It is recommended to choose the typical master low time exactly between the minimum and the maximum possible time: tmlow,typ = (tmlow,min + tmlow,max) / 2. The master shall provide a high timing accuracy (approx. 1%). If the master low time exceeds the maximum low time, the sensor does not respond and is available for a next triggering 30μs Data Sheet 16 Revision 1.1, 2017-01 TLE4998C8(D) SPC Output after the master pulse crosses Vthr. tmd,tot is the delay between internal triggering of the falling edge in the sensor and the triggering of the ECU. Note: Internal acceptance limits for trigger low time are wider than those specified in Table 7-6, Table 7-7, and Table 7-8, to accomodate +-20% oscillator drift. Table 7-4 Master Pulse Parameters Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Falling edge threshold Vthf 1.1 1.3 1.7 V – Rising edge threshold Vthr 1.25 1.43 1.8 V – Total trigger time tmtr — 13 — UT Synchronous mode1)2) — 56 — UT Dyn. range mode 1)2) — 90 — UT ID selection mode 1)2) 3.7 5.8 7.9 μs 3) tmd,tot Master delay time 1) UT = Programmed nominal SPC unit time 2) Trigger time in the sensor is fixed to the number of unit times specified in the “typ.” column, but the effective trigger time varies due to the sensor’s clock variation 3) Depends on External RL, CL and Vdd tmtr OUT Vthf,max Vthf,min Vthr,max ECU trigger level Vthr,min tmd,tot t mlow,min t mlow,max Figure 7-2 Data Sheet SPC Master Pulse Timing 17 Revision 1.1, 2017-01 TLE4998C8(D) SPC Output 7.4 SPC Modes SPC enables the use of enhanced protocol functionality due to the ability to select between “synchronous”, “range selection” and “ID selection” protocol mode. The ID register is only used in ID selection mode. Table 7-5 SPC Mode Selection Mode Parameter Prot MSB Parameter Prot LSB Synchronous 0 No effect Dynamic range selection 1 0 ID selection 1 1 7.4.1 Synchronous Transmission In the “synchronous” mode, the sensor (slave) starts to transfer a complete data frame only after a low pulse is forced by the master on the OUT pin. This means that the data line is bidirectional - an open drain output of the micro controller (master) sends the trigger pulse. The sensor then initiates a sync pulse and starts to calculate the new output data value. After the synchronization period, the data follows in form of a standard SENT frame, starting with the status, data and CRC nibbles. At the end, an end pulse allows the CRC nibble decoding and indicates that the data line is idle again. The timing diagram in Figure 7-1 visualizes a synchronous transmission. Table 7-6 Master Pulse Timing for Synchronous Mode Parameter Symbol tmlow Master low time Values Min. Typ. Max. 1.5 2.75 4 Unit Note / Test Condition UT1) – 1) UT = Programmed nominal SPC unit time. CPU Sensor VDD OUT Capcom-Unit Outpin (OD) GND Figure 7-3 7.4.2 Bidirectional Communication in Synchronous Mode Synchronous Transmission Including Range Selection The low time duration of the master can be used to select the magnetic range of the sensor in SPC dynamic range selection mode. Table 7-7 Parameter Master low time Master Pulse Timing for Dynamic Range Mode Symbol tmlow Values Unit Note / Test Condition Min. Typ. Max. 1.5 3.25 5 UT1) Range = 200 mT (R=0) 9 12 15 UT Range = 100 mT (R=1) 24 31.5 39 UT Range = 50 mT (R=3) 1) UT = Programmed nominal SPC unit time. Data Sheet 18 Revision 1.1, 2017-01 TLE4998C8(D) SPC Output Changing the range takes some time due to the settling time of internal circuitry. The first sample after a range switch therefore still displays a value sampled with the old range setting and the second transmission after changing the range displays the new range with reduced accuracy. 7.4.3 Synchronous Mode with ID Selection In ID selection mode, one of up to four sensors are selectable on a bus (bus mode, 1 master with up to 4 slaves). This allows parallel connection of up to 4 sensors on one data line, as illustrated in Figure 7-4. CPU Sensor 1 VDD OUT Capcom-Unit Outpin (OD) GND Sensor 2 VDD OUT GND Figure 7-4 Bidirectional Communication with ID Selection In this mode, the sensor starts to transfer complete packages only after receiving a master low pulse with an ID that is equivalent to the programmed value in its ID register. The mapping between master low time and ID is given in Table 7-8. A proper addressing requires the different sensors on a same bus to be programmed with the same nominal SPC unit time. Table 7-8 Parameter Master low time Master Pulse Timing for ID Selection Mode Symbol tmlow Values Unit Note / Test Condition Min. Typ. Max. 9 10.5 12 UT1) ID = 0 19 21 23 UT ID = 1 35.5 38 40.5 UT ID = 2 61.5 64.5 67.5 UT ID = 3 1) UT = Programmed nominal SPC unit time. Data Sheet 19 Revision 1.1, 2017-01 TLE4998C8(D) SPC Output omitted if F[0] = 1* omitted if F[1] = 1* TRIGGER SYNC bits STATUS H1 H2 H3 H4 T1 T2 description CRC description state state status information 10 RR/ID startup condition in RR / of ID 01 RR/ID overvoltage in RR / of ID 00 RR/ID normal state in RR / of ID CRC calculation for all nibbles seed value : 0101 polynomial : X4+X3 +X2+1 bits description 11 +/- 50mT or ID #3 10 +/- 100mT or ID #2 01 +/- 100mT or ID #1 00 +/- 200mT or ID #0 bits description 1 description 2 decimal: OUT12 decimal: OUT16 ( = H1*256+H2*16 +H3 ) ( = OUT12*16+H4 ) 1111 4095 (FSR) 1110 4095 1111 : 1111 1111 1111 1111 1111 1111 1111 bits description T1 T2 decimal: TEMP8 65535 (FSR) 1111 1111 200 °C 65534 1111 1110 199 °C 4095 : 1111 : : 0000 4095 65520 1111 0000 185 °C 1110 1111 4094 65519 1110 1111 184 °C 1110 1110 4094 65518 : : : 1111 1110 : 4094 : 0101 0000 25 °C 1111 1111 1110 0000 4094 65504 0100 1111 24 °C 1111 1111 1101 1111 4093 65503 : : : H1 H2 H3 H4 1111 1111 1111 1111 1111 1111 1111 1111 1111 ( = T1*16 + T2 ) : : : : : : 0011 0111 0°C 0000 0000 0010 0000 2 32 0011 0110 -1°C 0000 0000 0001 1111 1 31 : : : 0000 0000 0001 : 1 : 0000 0001 -54 °C 0000 0000 0001 0000 1 16 0000 0000 -55 °C 0000 0000 0000 1111 0 15 0000 0000 0000 1110 0 14 0000 0000 0000 : 0 : 0000 0000 0000 0001 0 1 0000 0000 0000 0000 0 0 * The number of nibbles is programmed in the frame register F Figure 7-5 Data Sheet Abbreviations : TRIGGER – trigger nibble SYNC – synchronization nibble STATUS – status nibble CRC – cyclic redundancy code nibble FSR – full scale range H1..4 – hall value T1..2 – temperature value OUT12 – 12 bit output value OUT16 – 16 bit output value TEMP8 – 8 bit temperature value Content of a SPC Data Frame (5-8 Nibbles) 20 Revision 1.1, 2017-01 TLE4998C8(D) Configuration and Calibration Parameters 8 Configuration and Calibration Parameters The TLE4998C8(D) has several configurable parameters which are stored in the EEPROM. These parameters affect the internal data processing and compensation and the output protocol. This chapter gives an overview of the parameters. A detailed description of all the parameters and the programming procedure is given in the TLE4998 User’s Manual. Table 8-1 TLE4998C8(D) Paramters Parameter Setting range Note Magnetic range ±50 mT ±100 mT ±200 mT Magnetic input range of Hall ADC Gain -4.0...4.0 Gain value of +1.0 corresponds to typical 32 LSB12/mT sensitivity in 100 mT range (64 LSB12/mT in 50mT range) Offset -16384 LSB12 ... 16384 LSB12 Quantization step: 1 LSB12 Clamping low level 0 LSB16 ... 64512 LSB16 Quantization step: 1024 LSB16 (see Figure 8-1) Clamping high level 1023 LSB16 ... 65535 LSB16 Quantization step: 1024 LSB16 Bandwidth 80 Hz 240 Hz 440 Hz 640 Hz 860 Hz 1100 Hz 1390 Hz Off Low-pass filter cut-off (-3 dB) frequency (see Figure 8-2) 1st order temperature coefficient TC1 -1000 ppm/°C ... 2500 ppm/°C 2) 2nd order temperature coefficient TC2 -4 ppm/°C2 ... 4 ppm/°C2 3) SPC unit time1) 2.0 µs ... 3.88 µs see Chapter 7 SPC protocol frames 16 bit Hall + 8 bit temperature 16 bit Hall 12 bit Hall + 8 bit temperature 12 bit Hall see Chapter 7 SPC mode Synchronous Dynamic Range ID Selection see Chapter 7 1) 1) Subject to oscillator variation ±20%. 2) Relative range to Infineon temperature pre-calibration, the maximum adjustable range is limited by the register-size and depends on specific pre-calibrated TL setting, full adjustable range: -2441 to +5355 ppm/°C. 3) Relative range to Infineon temperature pre-calibration, the maximum adjustable range is limited by the register-size and depends on specific pre-calibrated TQ setting, full adjustable range: -15 to +15 ppm/°C2. Data Sheet 21 Revision 1.1, 2017-01 TLE4998C8(D) Configuration and Calibration Parameters OUT (LSB16) 65535 Error range OUTCH 55295 Operating range OUTCL 10240 Error range 0 Bmax Bmin B (mT) Figure 8-1 Clamping Example 0 Magnitude (dB) -1 -2 -3 -4 -5 -6 101 2 10 10 3 Frequency (Hz) Figure 8-2 Data Sheet DSP Input Filter (Magnitude Plot) 22 Revision 1.1, 2017-01 TLE4998C8(D) Error Detection 9 Error Detection Different error cases can be detected by the On-Board Diagnostics (OBD) and reported to the micro controller in the status nibble (see Chapter 7). 9.1 • • Voltages Outside the Operating Range Inside the ratings specified in Table 3-1 “Absolute Maximum Ratings” on Page 8 Outside the range specified in Table 4-1 “Operating Range” on Page 9 The output signals an error condition if VDD crosses the overvoltage threshold level. Table 9-1 Overvoltage Parameter Symbol Overvoltage threshold 9.2 VDDov Values Unit Min. Typ. Max. 16.65 17.5 18.35 Note / Test Condition V EEPROM Error Correction The parity method is able to correct a single bit in the EEPROM line. One other single bit error in another EEPROM line can also be detected, but not corrected. In case there is an incorrectable EEPROM failure, the open drain stage is disabled and permanently kept in off state (high ohmic/sensor defect). Data Sheet 23 Revision 1.1, 2017-01 TLE4998C8(D) PG-TDSO-8 Package Outlines 10 PG-TDSO-8 Package Outlines Figure 10-1 10.1 PG-TDSO-8 (PG-TDSO-Plastic Green Thin Dual Small Outline), Package Dimensions Distance Chip to package Figure 10-2 shows the distance of the chip surface to the PG-TDSO-8 surface. TLE4998x8D (dual die): Figure 10-2 10.2 TLE4998x8 (single die ): Distance of chip surface to package surface Moisture Sensitivity Level (MSL) The PG-TDSO-8 fulfills the MSL level 3 according to IPC/JEDEC J-STD-033B.1. Data Sheet 24 Revision 1.1, 2017-01 TLE4998C8(D) PG-TDSO-8 Package Outlines 10.3 PG-TDSO-8 Package Marking Figure 10-3 Data Sheet PG-TDSO-8 (PG-TDSO-Plastic Green Thin Dual Small Outline), Package Marking 25 Revision 1.1, 2017-01 TLE4998C8(D) Revision History Page or Item Subjects (major changes since previous revision) Revision 1.1, 2017-01 Page 10 Added Note / Test Condition to parameter Output noise (rms) Page 12 Added Note / Test Condition to parameter Output noise (rms) Page 15 Corrected typo in Chapter 7.1, 9 μs low pulse corrected to 3 unit time (UT) Trademarks of Infineon Technologies AG AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™. Other Trademarks Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited. Last Trademarks Update 2011-02-24 Data Sheet 26 Revision 1.1, 2017-01 w w w . i n f i n e o n . c o m Published by Infineon Technologies AG
TLE4998C8DXUMA1 价格&库存

很抱歉,暂时无法提供与“TLE4998C8DXUMA1”相匹配的价格&库存,您可以联系我们找货

免费人工找货