0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
FDW2521C

FDW2521C

  • 厂商:

    FAIRCHILD(仙童半导体)

  • 封装:

  • 描述:

    FDW2521C - Complementary PowerTrench MOSFET - Fairchild Semiconductor

  • 数据手册
  • 价格&库存
FDW2521C 数据手册
FDW2521C July 2008 FDW2521C Complementary PowerTrench MOSFET General Description This complementary MOSFET device is produced using Fairchild’s advanced PowerTrench process that has been especially tailored to minimize the on-state resistance and yet maintain low gate charge for superior switching performance. Features • Q1: N-Channel 5.5 A, 20 V. RDS(ON) = 21 mΩ @ VGS = 4.5 V RDS(ON) = 35 mΩ @ VGS = 2.5 V Applications • DC/DC conversion • Power management • Load switch • Q2: P-Channel –3.8 A, 20 V. RDS(ON) = 43 mΩ @ VGS = –4.5 V RDS(ON) = 70 mΩ @ VGS = –2.5 V • High performance trench technology for extremely low RDS(ON) Low profile TSSOP-8 package • G2 S2 S2 D2 G1 S1 S1 D1 Pin 1 Q1 Q2 1 2 3 4 8 7 6 5 TSSOP-8 Absolute Maximum Ratings Symbol VDSS VGSS ID PD TJ, TSTG Drain-Source Voltage Gate-Source Voltage Drain Current - Continuous - Pulsed Power Dissipation TA = 25°C unless otherwise noted Parameter Q1 20 (Note 1a) Q2 –20 ±12 –3.8 –30 1.0 0.6 -55 to +150 Units V V A W °C ±12 5.5 30 (Note 1a) (Note 1b) Operating and Storage Junction Temperature Range Thermal Characteristics RθJA Thermal Resistance, Junction-to-Ambient (Note 1a) (Note 1b) 125 208 °C/W Package Marking and Ordering Information Device Marking 2521C Device FDW2521C Reel Size 13’’ Tape width 12mm Quantity 2500 units 2008 Fairchild Semiconductor Corporation FDW2521C Rev D1(W) FDW2521C Electrical Characteristics Symbol BVDSS ∆BVDSS ∆TJ IDSS IGSS TA = 25°C unless otherwise noted Parameter Drain-Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate-Body Leakage (Note 2) Test Conditions VGS = 0 V, ID = 250 µA VGS = 0 V, ID = –250 µA ID = 250 µA, Referenced to 25°C ID = –250 µA, Referenced to 25°C VDS = 16 V, VGS = 0 V VDS = –16 V, VGS = 0 V VGS = +12 V, VDS = 0 V VGS = +12 V, VDS = 0 V VDS = VGS, ID = 250 µA VDS = VGS, ID = –250 µA ID = 250 µA, Referenced to 25°C ID = –250 µA, Referenced to 25°C VGS = 4.5 V, ID = 5.5 A VGS = 2.5 V, ID = 4.2 A VGS = 4.5 V, ID = 5.5 A, TJ = 125°C VGS = –4.5 V, ID = –3.8 A VGS = –2.5 V, ID = –3.0 A VGS = –4.5 V, ID = –3.8 A, TJ = 125°C VGS = 4.5 V, VDS = 5 V VGS = –4.5 V, VDS = –5 V VDS = 5 V, ID = 5.5 A VDS = –5 V, ID = –3.5 A Q1: VDS = 10 V, VGS = 0 V, f = 1.0 MHz Q2: VDS = –10 V, VGS = 0 V, f = 1.0 MHz Type Min Typ Max Units Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 20 –20 14 –16 1 –1 +100 +100 0.6 –0.6 0.8 –1.0 –3.2 3.0 17 24 23 36 56 49 1.5 –1.5 V mV/°C µA nA Off Characteristics On Characteristics VGS(th) ∆VGS(th) ∆TJ RDS(on) Gate Threshold Voltage Gate Threshold Voltage Temperature Coefficient Static Drain-Source On-Resistance V mV/°C Q2 21 35 34 43 70 69 mΩ ID(on) gFS On-State Drain Current Forward Transconductance Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 30 –15 26 13.2 1082 1030 277 280 130 120 8 11 8 18 24 34 8 34 12 9.7 2 2.2 3 2.4 20 20 27 32 38 55 16 55 17 16 A S Dynamic Characteristics Ciss Coss Crss Input Capacitance Output Capacitance Reverse Transfer Capacitance Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Q2: VDS = –5 V, ID = –3.8 A,VGS = –4.5 V Q1: VDS = 10 V, ID = 5.5 A, VGS = 4.5 V pF pF pF Switching Characteristics td(on) tr td(off) tf Qg Qgs Qgd Q1: VDD = 10 V, ID = 1 A, VGS = 4.5 V, RGEN = 6 Ω Q2: VDD = –5 V, ID = –1 A, VGS = –4.5V, RGEN = 6 Ω ns ns ns ns nC nC nC FDW2521C Rev D1(W) FDW2521C Electrical Characteristics (continued) Symbol Parameter TA = 25°C unless otherwise noted Test Conditions Type Min Typ Max Units Drain-Source Diode Characteristics and Maximum Ratings IS VSD Maximum Continuous Drain-Source Diode Forward Current Drain-Source Diode Forward Voltage VGS = 0 V, IS = 0.83 A (Note 2) VGS = 0 V, IS = –0.83 A (Note 2) Q1 Q2 Q1 Q2 0.7 –0.7 0.83 –0.83 1.2 –1.2 A V Notes: 1. RθJA is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. RθJC is guaranteed by design while RθCA is determined by the user's board design. a) RθJA is 125°C/W (steady state) when mounted on a 1 inch² copper pad on FR-4. b) RθJA is 208°C/W (steady state) when mounted on a minimum copper pad on FR-4. 2. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0% FDW2521C Rev D1(W) FDW2521C Typical Characteristics: Q1 30 25 ID, DRAIN CURRENT (A) 20 15 10 5 0 0 0.5 1 1.5 2 2.5 3 VDS, DRAIN-SOURCE VOLTAGE (V) 3.5V 3.0V 2.5V 2.0V RDS(ON), NORMALIZED DRAIN-SOURCE ON-RESISTANCE VGS = 4.5V 2.5 2 VGS = 2.0V 1.5 2.5V 3.0V 3.5V 4.0V 1 4.5V 0.5 0 5 10 15 20 25 30 ID, DRAIN CURRENT (A) Figure 1. On-Region Characteristics. Figure 2. On-Resistance Variation with Drain Current and Gate Voltage. 0.07 RDS(ON), ON-RESISTANCE (OHM) 1.6 RDS(ON), NORMALIZED DRAIN-SOURCE ON-RESISTANCE ID = 5.5A VGS = 4.5V 1.4 ID = 2.8 A 0.06 0.05 0.04 TA = 0.03 0.02 0.01 0 1 2 3 4 5 VGS, GATE TO SOURCE VOLTAGE (V) 125oC 1.2 1 0.8 TA = 25oC 0.6 -50 -25 0 25 50 75 100 o 125 150 TJ, JUNCTION TEMPERATURE ( C) Figure 3. On-Resistance Variation with Temperature. 30 25 C 125oC 20 15 10 5 0 0.5 1 1.5 2 2.5 3 VGS, GATE TO SOURCE VOLTAGE (V) o Figure 4. On-Resistance Variation with Gate-to-Source Voltage. 100 IS, REVERSE DRAIN CURRENT (A) VDS = 5V 25 ID, DRAIN CURRENT (A) TA = -55oC VGS = 0V 10 TA = 125oC 1 25oC 0.1 -55oC 0.01 0.001 0.0001 0 0.2 0.4 0.6 0.8 1 1.2 VSD, BODY DIODE FORWARD VOLTAGE (V) Figure 5. Transfer Characteristics. Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature. FDW2521C Rev D1(W) FDW2521C Typical Characteristics: Q1 5 VGS, GATE-SOURCE VOLTAGE (V) ID = 5.5A 4 15V 3 CAPACITANCE (pF) VDS = 5V 10V 1800 1500 CISS 1200 900 600 COSS 300 CRSS 0 0 2 4 6 8 10 12 14 0 4 8 12 16 20 Qg, GATE CHARGE (nC) VDS, DRAIN TO SOURCE VOLTAGE (V) f = 1MHz VGS = 0 V 2 1 0 Figure 7. Gate Charge Characteristics. 100 P(pk), PEAK TRANSIENT POWER (W) RDS(ON) LIMIT ID, DRAIN CURRENT (A) 10 1s 1 DC 0.1 VGS = 4.5V SINGLE PULSE RθJA = 250oC/W TA = 25oC 0.01 0.1 1 10 100 VDS, DRAIN-SOURCE VOLTAGE (V) 10s 10ms 100ms 1ms 50 Figure 8. Capacitance Characteristics. 40 SINGLE PULSE RθJA = 250°C/W TA = 25°C 30 20 10 0 0.001 0.01 0.1 1 t1, TIME (sec) 10 100 1000 Figure 9. Maximum Safe Operating Area. Figure 10. Single Pulse Maximum Power Dissipation. FDW2521C Rev D1(W) FDW2521C Typical Characteristics: Q2 30 VGS = -4.5V 24 -4.0V -3.5V -3.0V 1.6 VGS = -2.5V 1.4 18 -2.5V 12 1 -2.0V 1.2 -3.0V -3.5V -4.0V 6 -4.5V 0 0 1 2 3 4 5 0.8 0 5 10 15 20 25 30 -VDS, DRAIN-SOURCE VOLTAGE (V) - ID, DRAIN CURRENT (A) Figure 11. On-Region Characteristics. Figure 12. On-Resistance Variation with Drain Current and Gate Voltage. 0.15 1.6 ID = -3.8A VGS = -4.5V 1.4 ID = -1.9A 0.12 1.2 0.09 TA = 125 C o 1 0.06 TA = 25 C o 0.8 0.03 0.6 -50 -25 0 25 50 75 100 o 0 125 150 1.5 2 2.5 3 3.5 4 4.5 5 TJ, JUNCTION TEMPERATURE ( C) -VGS, GATE TO SOURCE VOLTAGE (V) Figure 13. On-Resistance Variation with Temperature. 30 VDS = -5.0V 24 125 C 18 o Figure 14. On-Resistance Variation with Gate-to-Source Voltage. 100 TA = -55 C o VGS = 0V 25 C o 10 1 0.1 -55 C o TA = 125 C 25 C o o 12 0.01 0.001 0.0001 0.4 1.3 2.2 3.1 4 0 0.2 0.4 0.6 0.8 1 1.2 1.4 6 0 -VGS, GATE TO SOURCE VOLTAGE (V) -VSD, BODY DIODE FORWARD VOLTAGE (V) Figure 15. Transfer Characteristics. Figure 16. Body Diode Forward Voltage Variation with Source Current and Temperature. FDW2521C Rev D1(W) FDW2521C Typical Characteristics: Q2 5 ID = -3.8A 4 -15V 3 VDS = -5V -10V 1800 1500 1200 CISS 900 f = 1MHz VGS = 0 V 2 600 COSS 1 300 CRSS 0 0 3 6 Qg, GATE CHARGE (nC) 9 12 0 0 5 10 15 20 -VDS, DRAIN TO SOURCE VOLTAGE (V) Figure 17. Gate Charge Characteristics. 100 100µs 20 Figure 18. Capacitance Characteristics. P(pk), PEAK TRANSIENT POWER (W) ID, DRAIN CURRENT (A) 10 RDS(ON) LIMIT 1ms 10ms 100ms 1s 10s DC 15 SINGLE PULSE RθJA = 250°C/W TA = 25°C 1 VGS = -4.5V SINGLE PULSE RθJA = 250oC/W TA = 25oC 0.01 0.01 10 0.1 5 0.1 1 10 100 0 0.01 0.1 1 t1, TIME (sec) 10 100 VDS, DRAIN-SOURCE VOLTAGE (V) Figure 19. Maximum Safe Operating Area. Figure 20. Single Pulse Maximum Power Dissipation. r(t), NORMALIZED EFFECTIVE TRANSIENT THERMAL RESISTANCE 1 D = 0.5 0.2 0.1 0.1 0.05 0.02 0.01 RθJA(t) = r(t) + RθJA RθJA = 250 °C/W P(pk) t1 t2 TJ - TA = P * RθJA(t) Duty Cycle, D = t1 / t2 0.01 SINGLE PULSE 0.001 0.0001 0.001 0.01 0.1 t1, TIME (sec) 1 10 100 1000 Figure 21. Transient Thermal Response Curve. Thermal characterization performed using the conditions described in Note 1b. Transient thermal response will change depending on the circuit board design. FDW2521C Rev D1(W) TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks. Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ EcoSPARK® EfficentMax™ EZSWITCH™ * ™ ® Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FlashWriter® * tm FPS™ F-PFS™ FRFET® Global Power ResourceSM Green FPS™ Green FPS™ e-Series™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR® ® tm PDP SPM™ Power-SPM™ PowerTrench® Programmable Active Droop™ QFET® QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW at a time™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SuperMOS™ SyncFET™ ® The Power Franchise® tm TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ * EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Farichild’s Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Farichild strongly encourages customers to purchase Farichild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handing and storage and provide access to Farichild’s full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Farichild is committed to committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Advance Information Preliminary No Identification Needed Obsolete Product Status Formative / In Design First Production Full Production Not In Production Definition Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. Rev. I35
FDW2521C 价格&库存

很抱歉,暂时无法提供与“FDW2521C”相匹配的价格&库存,您可以联系我们找货

免费人工找货