0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MRF7S18125BHSR3

MRF7S18125BHSR3

  • 厂商:

    FREESCALE(飞思卡尔)

  • 封装:

  • 描述:

    MRF7S18125BHSR3 - RF Power Field Effect Transistors - Freescale Semiconductor, Inc

  • 数据手册
  • 价格&库存
MRF7S18125BHSR3 数据手册
Freescale Semiconductor Technical Data Document Number: MRF7S18125BH Rev. 0, 11/2008 RF Power Field Effect Transistors N - Channel Enhancement - Mode Lateral MOSFETs Designed for GSM and GSM EDGE base station applications with frequencies from 1800 to 2000 MHz. Can be used in Class AB and Class C for all typical cellular base station modulations. GSM Application • Typical GSM Performance: VDD = 28 Volts, IDQ = 1100 mA, Pout = 125 Watts CW, f = 1930 MHz. Power Gain — 16.5 dB Drain Efficiency — 55% GSM EDGE Application • Typical GSM EDGE Performance: VDD = 28 Volts, IDQ = 1100 mA, Pout = 57 Watts Avg., Full Frequency Band (1930 - 1990 MHz). Power Gain — 17 dB Drain Efficiency — 39% Spectral Regrowth @ 400 kHz Offset = - 60 dBc Spectral Regrowth @ 600 kHz Offset = - 74 dBc EVM — 2.6% rms • Capable of Handling 5:1 VSWR, @ 28 Vdc, 1960 MHz, 125 Watts CW Output Power • Typical Pout @ 1 dB Compression Point ] 140 Watts CW Features • Characterized with Series Equivalent Large - Signal Impedance Parameters • Internally Matched for Ease of Use • Integrated ESD Protection • RoHS Compliant • In Tape and Reel. R3 Suffix = 250 Units per 56 mm, 13 inch Reel. MRF7S18125BHR3 MRF7S18125BHSR3 1930- 1990 MHz, 125 W CW, 28 V GSM, GSM EDGE LATERAL N - CHANNEL RF POWER MOSFETs CASE 465 - 06, STYLE 1 NI - 780 MRF7S18125BHR3 CASE 465A - 06, STYLE 1 NI - 780S MRF7S18125BHSR3 Table 1. Maximum Ratings Rating Drain- Source Voltage Gate- Source Voltage Operating Voltage Storage Temperature Range Case Operating Temperature Operating Junction Temperature (1,2) Symbol VDSS VGS VDD Tstg TC TJ Value - 0.5, +65 - 6.0, +10 32, +0 - 65 to +150 150 225 Unit Vdc Vdc Vdc °C °C °C Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 81°C, 125 W CW Case Temperature 81°C, 71 W CW Symbol RθJC Value (2,3) 0.31 0.35 Unit °C/W 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955. © Freescale Semiconductor, Inc., 2008. All rights reserved. MRF7S18125BHR3 MRF7S18125BHSR3 1 RF Device Data Freescale Semiconductor Table 3. ESD Protection Characteristics Test Methodology Human Body Model (per JESD22 - A114) Machine Model (per EIA/JESD22 - A115) Charge Device Model (per JESD22 - C101) Class 1B (Minimum) A (Minimum) IV (Minimum) Table 4. Electrical Characteristics (TC = 25°C unless otherwise noted) Characteristic Off Characteristics Zero Gate Voltage Drain Leakage Current (VDS = 65 Vdc, VGS = 0 Vdc) Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) Gate- Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) On Characteristics Gate Threshold Voltage (VDS = 10 Vdc, ID = 316 μAdc) Gate Quiescent Voltage (VDS = 28 Vdc, ID = 1100 mAdc) Fixture Gate Quiescent Voltage (1) (VDD = 28 Vdc, ID = 1100 mAdc, Measured in Functional Test) Drain- Source On - Voltage (VGS = 10 Vdc, ID = 3.16 Adc) Dynamic Characteristics (1) Reverse Transfer Capacitance (VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Output Capacitance (VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Input Capacitance (VDS = 28 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz) Power Gain Drain Efficiency Input Return Loss Crss Coss Ciss — — — 1.15 673 309 — — — pF pF pF VGS(th) VGS(Q) VGG(Q) VDS(on) 1.2 — 4 0.1 1.9 2.7 5.3 0.2 2.7 — 7 0.3 Vdc Vdc Vdc Vdc IDSS IDSS IGSS — — — — — — 10 1 1 μAdc μAdc μAdc Symbol Min Typ Max Unit Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 1100 mA, Pout = 125 W CW, f = 1930 MHz Gps ηD IRL 15 51 — 16.5 55 - 12 18 — -7 dB % dB 1. VGG = 2 x VGS(Q). Parameter measured on Freescale Test Fixture, due to resistive divider network on the board. Refer to Test Circuit schematic. 2. Part internally matched both on input and output. (continued) MRF7S18125BHR3 MRF7S18125BHSR3 2 RF Device Data Freescale Semiconductor Table 4. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued) Characteristic Pout @ 1 dB Compression Point IMD Symmetry @ 125 W PEP, Pout where IMD Third Order Intermodulation ` 30 dBc (Delta IMD Third Order Intermodulation between Upper and Lower Sidebands > 2 dB) VBW Resonance Point (IMD Third Order Intermodulation Inflection Point) Gain Flatness in 60 MHz Bandwidth @ Pout = 125 W CW Average Deviation from Linear Phase in 60 MHz Bandwidth @ Pout = 125 W CW Average Group Delay @ Pout = 125 W CW, f = 1960 MHz Part - to - Part Insertion Phase Variation @ Pout = 125 W CW, f = 1960 MHz, Six Sigma Window Gain Variation over Temperature ( - 30°C to +85°C) Output Power Variation over Temperature ( - 30°C to +85°C) Symbol P1dB IMDsym Min — — Typ 140 10 Max — — Unit W MHz Typical Performances (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 1100 mA, 1930 - 1990 MHz Bandwidth VBWres GF Φ Delay ΔΦ ΔG ΔP1dB — — — — — — — 35 1.02 3.3 2.49 6.7 0.016 0.01 — — — — — — — MHz dB ° ns ° dB/°C dBm/°C Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 1100 mA, Pout = 57 W Avg., 1930 - 1990 MHz EDGE Modulation Power Gain Drain Efficiency Error Vector Magnitude Spectral Regrowth at 400 kHz Offset Spectral Regrowth at 600 kHz Offset Gps ηD EVM SR1 SR2 — — — — — 17 39 2.6 - 60 - 74 — — — — — dB % % rms dBc dBc MRF7S18125BHR3 MRF7S18125BHSR3 RF Device Data Freescale Semiconductor 3 R1 VBIAS Z13 VSUPPLY + R2 C1 C8 Z12 C9 C2 C3 C6 R3 RF INPUT Z6 Z7 Z8 C14 C16 Z9 C18 Z10 C10 C15 Z14 C17 RF OUTPUT Z11 Z1 C7 Z2 Z3 Z4 Z5 DUT C12 C13 C11 C4 C5 Z1 Z2 Z3 Z4 Z5 Z6 Z7 0.227″ x 0.083″ Microstrip 0.697″ x 0.083″ Microstrip 0.618″ x 0.083″ Microstrip 0.568″ x 1.000″ Microstrip 0.092″ x 1.000″ Microstrip 0.095″ x 1.000″ Microstrip 0.565″ x 1.000″ Microstrip Z8 Z9 Z10 Z11 Z12 Z13, Z14 PCB 0.200″ x 0.083″ Microstrip 1.045″ x 0.083″ Microstrip 0.071″ x 0.083″ Microstrip 0.227″ x 0.083″ Microstrip 1.280″ x 0.080″ Microstrip 0.760″ x 0.080″ Microstrip Taconic TLX - 8 RF35, 0.031″, εr = 2.55 Figure 1. MRF7S18125BHR3(HSR3) Test Circuit Schematic Table 5. MRF7S18125BHR3(HSR3) Test Circuit Component Designations and Values Part C1 C2, C3, C4, C5 C6 C7, C8, C9, C10, C11 C12, C13 C14, C15, C16, C17, C18 R1, R2 R3 Description 1 μF, 50 V Chip Capacitor 4.7 μF, 50 V Chip Capacitors 220 μF, 63 V Electrolytic Chip Capacitor 6.8 pF Chip Capacitors 1 pF Chip Capacitors 0.2 pF Chip Capacitors 10 kΩ, 1/4 W Chip Resistors 10 Ω, 1/4 W Chip Resistor Part Number 12065G105AT2A GRM55ER71H475KA01L 2222 136 68221 ATC100B6R8BT500XT ATC100B1R0BT500XT ATC100B0R2BT500XT CRCW12061001FKEA CRCW120610R1FKEA Manufacturer AVX Murata Vishay ATC ATC ATC Vishay Vishay MRF7S18125BHR3 MRF7S18125BHSR3 4 RF Device Data Freescale Semiconductor VDD VGS R1 R2 C1 C8 C9 C2 C3 R3 C14 C16 C6 C18 C10 C15 CUT OUT AREA C17 C7 C12 C13 C11 C4 C5 MRF7S18125BH Rev. 0 Figure 2. MRF7S18125BHR3(HSR3) Test Circuit Component Layout MRF7S18125BHR3 MRF7S18125BHSR3 RF Device Data Freescale Semiconductor 5 TYPICAL CHARACTERISTICS 18 17.5 Gps, POWER GAIN (dB) 17 16.5 ηD 16 15.5 IRL 15 1930 1940 1950 1960 1970 1980 52 1990 −19 54 53 VDD = 28 Vdc Pout = 125 W CW, IDQ = 1100 mA 58 57 ηD, DRAIN EFFICIENCY (%) 56 55 −7 −9 −11 −13 −15 −17 Gps f, FREQUENCY (MHz) Figure 3. Power Gain, Input Return Loss and Drain Efficiency versus Frequency @ Pout = 125 Watts CW 17.5 17 Gps, POWER GAIN (dB) 16.5 16 IRL 15.5 15 EVM 14.5 1930 1940 1950 1960 1970 1980 0 1990 ηD VDD = 28 Vdc, Pout = 57 W Avg. IDQ = 1100 mA, EDGE Modulation Gps 60 50 40 30 20 10 −9 −11 −13 −15 −17 −19 −21 ηD, DRAIN EFFICIENCY (%) IRL, INPUT RETURN LOSS (dB) IM5−L IM7−U IM7−L 10 IRL, INPUT RETURN LOSS (dB) f, FREQUENCY (MHz) Figure 4. Power Gain, Input Return Loss, EVM and Drain Efficiency versus Frequency @ Pout = 57 Watts Avg. 18 IDQ = 1650 mA 17 Gps, POWER GAIN (dB) 1100 mA 16 825 mA 550 mA 15 1375 mA IMD, INTERMODULATION DISTORTION (dBc) 0 −10 −20 −30 −40 −50 −60 0.1 1 100 TWO−TONE SPACING (MHz) IM3−U IM3−L IM5−U VDD = 28 Vdc, Pout = 125 W (PEP) IDQ = 1100 mA, Two−Tone Measurements (f1 + f2)/2 = Center Frequency of 1960 MHz 14 VDD = 28 Vdc f = 1960 MHz 13 10 100 Pout, OUTPUT POWER (WATTS) CW 300 Figure 5. Power Gain versus Output Power Figure 6. Intermodulation Distortion Products versus Two - Tone Spacing MRF7S18125BHR3 MRF7S18125BHSR3 6 RF Device Data Freescale Semiconductor EVM, ERROR VECTOR MAGNITUDE (% rms) TYPICAL CHARACTERISTICS 60 59 Pout, OUTPUT POWER (dBc) 58 Gps, POWER GAIN (dB) 57 56 55 54 P1dB = 51.61 dBm (145 W) 53 52 51 50 33 34 35 36 VDD = 28 Vdc, IDQ = 1100 mA, Pulsed CW 12 μsec(on), 1% Duty Cycle, f = 1960 MHz 37 38 39 40 41 42 43 P3dB = 52.16 dBm (164.4 W) P6dB = 52.59 dBm (181.6 W) Ideal 18 17.5 17 16.5 16 15.5 15 14.5 14 13.5 13 10 100 Pout, OUTPUT POWER (WATTS) CW ηD VDD = 28 Vdc IDQ = 1100 mA f = 1960 MHz Gps TC = −30_C 25_C 85_C −30_C 25_C 85_C 65 60 ηD, DRAIN EFFICIENCY (%) 200 55 50 45 40 35 30 25 20 15 300 Actual Pin, INPUT POWER (dBm) Figure 7. Pulsed CW Output Power versus Input Power SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc) 6 EVM, ERROR VECTOR MAGNITUDE (% rms) 5 4 3 50 W Avg. 2 1 0 1930 18 W Avg. VDD = 28 Vdc IDQ = 1100 mA EDGE Modulation Pout = 78 W Avg. −50 Figure 8. Power Gain and Drain Efficiency versus Output Power Pout = 78 W Avg. −55 SR @ 400 kHz −60 50 W Avg. −65 78 W Avg. −70 18 W Avg. −75 SR @ 600 kHz 50 W Avg. 18 W Avg. 1940 1950 1960 1970 1980 1990 VDD = 28 Vdc IDQ = 1100 mA EDGE Modulation 1940 1950 1960 1970 1980 1990 −80 1930 f, FREQUENCY (MHz) f, FREQUENCY (MHz) Figure 9. EVM versus Frequency −35 SPECTRAL REGROWTH @ 400 kHz (dBc) SPECTRAL REGROWTH @ 600 kHz (dBc) −40 −45 −50 −55 −60 −65 −70 −75 0 20 40 60 80 100 120 140 160 180 200 Pout, OUTPUT POWER (WATTS) 85_C TC = −30_C VDD = 28 Vdc IDQ = 1100 mA f = 1960 MHz EDGE Modulation 25_C −45 −50 −55 −60 −65 −70 −75 −80 −85 0 Figure 10. Spectral Regrowth at 400 kHz and 600 kHz versus Frequency 25_C 85_C TC = −30_C VDD = 28 Vdc, IDQ = 1100 mA f = 1960 MHz, EDGE Modulation 20 40 60 80 100 120 140 160 180 Pout, OUTPUT POWER (WATTS) Figure 11. Spectral Regrowth at 400 kHz versus Output Power Figure 12. Spectral Regrowth at 600 kHz versus Output Power MRF7S18125BHR3 MRF7S18125BHSR3 RF Device Data Freescale Semiconductor 7 TYPICAL CHARACTERISTICS EVM, ERROR VECTOR MAGNITUDE (% rms) 24 20 16 12 ηD 8 −30_C 4 EVM 0 1 10 100 Pout, OUTPUT POWER (WATTS) AVG. 0 500 14 1930 1940 1950 1960 1970 85_C 10 VDD = 28 Vdc, IDQ = 1100 mA f = 1960 MHz, EDGE Modulation 25_C 60 50 85_C −30_C 40 30 20 Gps, POWER GAIN (dB) TC = 25_C ηD, DRAIN EFFICIENCY (%) 19 18 TC = −30_C 17 25_C 16 85_C 15 VDD = 28 Vdc Pout = 125 W CW IDQ = 1100 mA 1980 1990 f, FREQUENCY (MHz) Figure 13. EVM and Drain Efficiency versus Output Power 109 Figure 14. Power Gain versus Frequency 108 MTTF (HOURS) 107 106 105 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours when the device is operated at VDD = 28 Vdc, Pout = 125 W CW, and ηD = 55%. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. Figure 15. MTTF versus Junction Temperature MRF7S18125BHR3 MRF7S18125BHSR3 8 RF Device Data Freescale Semiconductor GSM TEST SIGNAL −10 −20 −30 −40 −50 (dB) −60 −70 −80 −90 −100 −110 Center 1.96 GHz 200 kHz Span 2 MHz 400 kHz 600 kHz 400 kHz 600 kHz Reference Power VWB = 30 kHz Sweep Time = 70 ms RBW = 30 kHz Figure 16. EDGE Spectrum MRF7S18125BHR3 MRF7S18125BHSR3 RF Device Data Freescale Semiconductor 9 Zo = 5 Ω f = 2040 MHz Zload f = 1880 MHz f = 2040 MHz Zsource f = 1880 MHz VDD = 28 Vdc, IDQ = 1100 mA, Pout = 125 W CW f MHz 1880 1900 1920 1940 1960 1980 2000 2020 2040 Zsource W 1.31 - j3.61 1.25 - j3.06 1.21 - j3.30 1.17 - j3.17 1.13 - j3.06 1.10 - j2.92 1.06 - j2.83 0.99 - j2.75 0.91 - j2.66 Zload W 1.32 - j3.06 1.30 - j2.92 1.28 - j2.79 1.26 - j2.67 1.23 - j2.55 1.20 - j2.42 1.18 - j2.30 1.16 - j2.18 1.12 - j2.07 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Input Matching Network Device Under Test Z source Z load Figure 17. Series Equivalent Source and Load Impedance MRF7S18125BHR3 MRF7S18125BHSR3 10 RF Device Data Freescale Semiconductor ALTERNATIVE PEAK TUNE LOAD PULL CHARACTERISTICS 61 60 59 Pout, OUTPUT POWER (dBm) 58 57 56 55 54 53 52 51 50 49 32 33 34 35 P1dB = 52.89 dBm (194.5 W) Actual P6dB = 54.29 dBm (268.5 W) P3dB = 53.76 dBm (237.7 W) Ideal VDD = 28 Vdc, IDQ = 1100 mA, Pulsed CW 10 μsec(on), 10% Duty Cycle, f =1960 MHz 36 37 38 39 40 41 42 43 44 Pin, INPUT POWER (dBm) NOTE: Load Pull Test Fixture Tuned for Peak P1dB Output Power @ 28 V Test Impedances per Compression Level Zsource Ω P1dB 0.65 - j4.06 Zload Ω 0.73 - j2.62 Figure 18. Pulsed CW Output Power versus Input Power @ 28 V MRF7S18125BHR3 MRF7S18125BHSR3 RF Device Data Freescale Semiconductor 11 PACKAGE DIMENSIONS B G 1 2X Q bbb M TA M B M NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M−1994. 2. CONTROLLING DIMENSION: INCH. 3. DELETED 4. DIMENSION H IS MEASURED 0.030 (0.762) AWAY FROM PACKAGE BODY. DIM A B C D E F G H K M N Q R S aaa bbb ccc INCHES MIN MAX 1.335 1.345 0.380 0.390 0.125 0.170 0.495 0.505 0.035 0.045 0.003 0.006 1.100 BSC 0.057 0.067 0.170 0.210 0.774 0.786 0.772 0.788 .118 .138 0.365 0.375 0.365 0.375 0.005 REF 0.010 REF 0.015 REF MILLIMETERS MIN MAX 33.91 34.16 9.65 9.91 3.18 4.32 12.57 12.83 0.89 1.14 0.08 0.15 27.94 BSC 1.45 1.70 4.32 5.33 19.66 19.96 19.60 20.00 3.00 3.51 9.27 9.53 9.27 9.52 0.127 REF 0.254 REF 0.381 REF 3 (FLANGE) B 2 K D bbb M TA M B M M (INSULATOR) R M (LID) bbb N H (LID) M TA B M ccc M TA M B M S M (INSULATOR) ccc C TA M B M aaa M TA M B M F E A (FLANGE) A T SEATING PLANE CASE 465 - 06 ISSUE G NI - 780 MRF7S18125BHR3 STYLE 1: PIN 1. DRAIN 2. GATE 3. SOURCE 4X U (FLANGE) B 1 4X Z (LID) NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M−1994. 2. CONTROLLING DIMENSION: INCH. 3. DELETED 4. DIMENSION H IS MEASURED 0.030 (0.762) AWAY FROM PACKAGE BODY. DIM A B C D E F H K M N R S U Z aaa bbb ccc INCHES MIN MAX 0.805 0.815 0.380 0.390 0.125 0.170 0.495 0.505 0.035 0.045 0.003 0.006 0.057 0.067 0.170 0.210 0.774 0.786 0.772 0.788 0.365 0.375 0.365 0.375 −−− 0.040 −−− 0.030 0.005 REF 0.010 REF 0.015 REF MILLIMETERS MIN MAX 20.45 20.70 9.65 9.91 3.18 4.32 12.57 12.83 0.89 1.14 0.08 0.15 1.45 1.70 4.32 5.33 19.61 20.02 19.61 20.02 9.27 9.53 9.27 9.52 −−− 1.02 −−− 0.76 0.127 REF 0.254 REF 0.381 REF (FLANGE) B 2 2X K D bbb M TA M B M N (LID) R M (LID) ccc M H 3 TA M B M ccc aaa M TA TA M B B M (INSULATOR) S M (INSULATOR) M bbb C M TA B M M M F T SEATING PLANE E A (FLANGE) A CASE 465A - 06 ISSUE H NI - 780S MRF7S18125BHSR3 STYLE 1: PIN 1. DRAIN 2. GATE 5. SOURCE MRF7S18125BHR3 MRF7S18125BHSR3 12 RF Device Data Freescale Semiconductor PRODUCT DOCUMENTATION Refer to the following documents to aid your design process. Application Notes • AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices REVISION HISTORY The following table summarizes revisions to this document. Revision 0 Date Nov. 2008 • Initial Release of Data Sheet Description MRF7S18125BHR3 MRF7S18125BHSR3 RF Device Data Freescale Semiconductor 13 How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1 - 800- 521- 6274 or +1 - 480- 768- 2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1 - 800- 441- 2447 or +1 - 303- 675- 2140 Fax: +1 - 303- 675- 2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008. All rights reserved. MRF7S18125BHR3 MRF7S18125BHSR3 1Rev. 0, 11/2008 4 Document Number: MRF7S18125BH RF Device Data Freescale Semiconductor
MRF7S18125BHSR3 价格&库存

很抱歉,暂时无法提供与“MRF7S18125BHSR3”相匹配的价格&库存,您可以联系我们找货

免费人工找货