0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MW6IC2015GNBR1

MW6IC2015GNBR1

  • 厂商:

    FREESCALE(飞思卡尔)

  • 封装:

  • 描述:

    MW6IC2015GNBR1 - RF LDMOS Wideband Integrated Power Amplifiers - Freescale Semiconductor, Inc

  • 数据手册
  • 价格&库存
MW6IC2015GNBR1 数据手册
Freescale Semiconductor Technical Data Document Number: MW6IC2015N Rev. 2, 2/2007 RF LDMOS Wideband Integrated Power Amplifiers The MW6IC2015N wideband integrated circuit is designed for base station applications. It uses Freescale’s newest High Voltage (26 to 32 Volts) LDMOS IC technology and integrates a multi - stage structure. Its wideband on - chip design makes it usable from 1805 to 1990 MHz. The linearity performances cover all modulation formats for cellular applications: GSM, GSM EDGE, PHS, TDMA, CDMA, W - CDMA and TD - SCDMA. Final Application • Typical Two - Tone Performance: VDD = 26 Volts, IDQ1 = 100 mA, IDQ2 = 170 mA, Pout = 15 Watts PEP, Full Frequency Band (1805 - 1880 MHz or 1930 - 1990 MHz) Power Gain — 26 dB Power Added Efficiency — 28% IMD — - 30 dBc Driver Application • Typical GSM EDGE Performance: VDD = 26 Volts, IDQ1 = 130 mA, IDQ2 = 170 mA, Pout = 3 Watts Avg., Full Frequency Band (1805 - 1880 MHz or 1930 - 1990 MHz) Power Gain — 27 dB Power Added Efficiency — 19% Spectral Regrowth @ 400 kHz Offset = - 69 dBc Spectral Regrowth @ 600 kHz Offset = - 78 dBc EVM — 0.8% rms • Capable of Handling 3:1 VSWR, @ 26 Vdc, 1990 MHz, 15 Watts CW Output Power • Stable into a 3:1 VSWR. All Spurs Below - 60 dBc @ 100 mW to 8 W CW Pout. Features • Characterized with Series Equivalent Large - Signal Impedance Parameters and Common Source Scattering Parameters • On - Chip Matching (50 Ohm Input, DC Blocked, >5 Ohm Output) • Integrated Quiescent Current Temperature Compensation with Enable/Disable Function • Integrated ESD Protection • Designed for Lower Memory Effects and Wide Instantaneous Bandwidth Applications • 200°C Capable Plastic Package • RoHS Compliant • In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel MW6IC2015NBR1 MW6IC2015GNBR1 1805 - 1990 MHz, 15 W, 26 V GSM/GSM EDGE, CDMA RF LDMOS WIDEBAND INTEGRATED POWER AMPLIFIERS CASE 1329 - 09 TO - 272 WB - 16 PLASTIC MW6IC2015NBR1 CASE 1329A - 03 TO - 272 WB - 16 GULL PLASTIC MW6IC2015GNBR1 VDS1 RFin RFout/VDS2 GND VDS1 NC NC NC RFin NC VGS1 VGS2 NC GND 1 2 3 4 5 6 7 8 9 10 11 16 15 GND NC 14 RFout / VDS2 VGS1 VGS2 Quiescent Current Temperature Compensation 13 12 NC GND (Top View) Note: Exposed backside flag is source terminal for transistors. Figure 1. Functional Block Diagram Figure 2. Pin Connections © Freescale Semiconductor, Inc., 2007. All rights reserved. MW6IC2015NBR1 MW6IC2015GNBR1 1 RF Device Data Freescale Semiconductor Table 1. Maximum Ratings Rating Drain - Source Voltage Gate - Source Voltage Storage Temperature Range Operating Junction Temperature Input Power Symbol VDSS VGS Tstg TJ Pin Value - 0.5, +68 - 0.5, +6 - 65 to +200 200 20 Unit Vdc Vdc °C °C dBm Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Final Application (Pout = 15 W CW) Driver Application (Pout = 3 W CW) Stage 1, 26 Vdc, IDQ1 = 100 mA Stage 2, 26 Vdc, IDQ2 = 170 mA Stage 1, 26 Vdc, IDQ1 = 130 mA Stage 2, 26 Vdc, IDQ2 = 170 mA Symbol RθJC 4.3 1.2 4.3 1.3 Value (1) Unit °C/W Table 3. ESD Protection Characteristics Test Methodology Human Body Model (per JESD22 - A114) Machine Model (per EIA/JESD22 - A115) Charge Device Model (per JESD22 - C101) Class 1A (Minimum) A (Minimum) III (Minimum) Table 4. Moisture Sensitivity Level Test Methodology Per JESD 22 - A113, IPC/JEDEC J - STD - 020 Rating 3 Package Peak Temperature 260 Unit °C Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Functional Tests (In Freescale 1930 - 1990 MHz Test Fixture, 50 ohm system) VDD = 26 Vdc, IDQ1 = 100 mA, IDQ2 = 170 mA, Pout = 15 W PEP, f1 = 1930 MHz, f2 = 1930.1 MHz and f1 = 1990 MHz, f2 = 1990.1 MHz, Two - Tone CW Power Gain Power Added Efficiency Intermodulation Distortion Input Return Loss Gps PAE IMD IRL 24 26 — — 26 28 - 30 — — — - 27 - 10 dB % dBc dB Typical Two - Tone Performances (In Freescale Test Fixture, 50 ohm system) VDD = 26 Vdc, IDQ1 = 100 mA, IDQ2 = 170 mA, Pout = 15 W PEP, 1805 - 1880 MHz, Two - Tone CW, 100 kHz Tone Spacing Power Gain Power Added Efficiency Intermodulation Distortion Input Return Loss Gps PAE IMD IRL — — — — 26 28 - 30 - 10 — — — — dB % dBc dB 1. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf . Select Documentation/Application Notes - AN1955. (continued) MW6IC2015NBR1 MW6IC2015GNBR1 2 RF Device Data Freescale Semiconductor Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Typical Performances (In Freescale Test Fixture, 50 ohm system) VDD = 26 Vdc, IDQ1 = 100 mA, IDQ2 = 170 mA, 1805 - 1880 MHz and 1930 - 1990 MHz Saturated Pulsed Output Power, CW (8 μsec(on), 1 msec(off)) Quiescent Current Accuracy over Temperature with 1.8 kΩ Gate Feed Resistors ( - 10 to 85°C) (1) Gain Flatness in 30 MHz Bandwidth @ Pout = 3 W CW Average Deviation from Linear Phase in 30 MHz Bandwidth @ Pout = 3 W CW Average Group Delay @ Pout = 3 W CW Including Output Matching Part - to - Part Insertion Phase Variation @ Pout = 3 W CW, Six Sigma Window Psat ΔIQT GF Φ Delay ΔΦ — — — — — — 35 ±3 0.3 ±1 2.7 ±15 — — — — — — W % dB ° ns ° Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 ohm system) VDD = 26 Vdc, IDQ1 = 130 mA, IDQ2 = 170 mA, Pout = 3 W Avg., 1805 - 1990 MHz and 1930 - 1990 MHz EDGE Modulation Power Gain Power Added Efficiency Error Vector Magnitude Spectral Regrowth at 400 kHz Offset Spectral Regrowth at 600 kHz Offset Gps PAE EVM SR1 SR2 — — — — — 27 19 0.8 - 69 - 78 — — — — — dB % % dBc dBc 1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family. Go to http://www.freescale.com/rf . Select Documentation/Application Notes - AN1977. MW6IC2015NBR1 MW6IC2015GNBR1 RF Device Data Freescale Semiconductor 3 VDD2 VDD1 C1 RF INPUT 1 2 3 NC 4 NC 5 NC 6 C11 C6 VGG1 R1 C14 VGG2 R2 C4 C15 C5 7 NC 8 Quiescent Current Temperature Compensation 9 NC 13 10 NC 11 12 C8 Z9 C10 C12 C13 DUT 16 NC 15 C2 Z8 RF OUTPUT C3 Z1 Z2 Z3 14 Z4 Z5 C7 C9 Z6 Z7 Z1* Z2 Z3 Z4 Z5 1.68″ 0.50″ 0.15″ 0.13″ 0.10″ x 0.08″ Microstrip x 0.08″ Microstrip x 0.04″ Microstrip x 0.35″ Microstrip x 0.35″ Microstrip Z6* Z7 Z8, Z9 PCB 0.61″ x 0.04″ Microstrip 1.30″ x 0.04″ Microstrip 1.18″ x 0.08″ Microstrip Taconic TLX8 - 0300, 0.030″, εr = 2.55 * Variable for tuning. Figure 3. MW6IC2015NBR1(GNBR1) Test Circuit Schematic — 1930 - 1990 MHz Table 6. MW6IC2015NBR1(GNBR1) Test Circuit Component Designations and Values — 1930 - 1990 MHz Part C1, C14, C15 C2, C4, C11 C3, C5 C6 C7, C8 C9, C10 C12 C13 R1 R2 Description 2.2 μF Chip Capacitors 5.6 pF Chip Capacitors 10 μF Chip Capacitors 1 pF Chip Capacitor 2.2 pF Chip Capacitors 0.5 pF Chip Capacitors 0.2 pF Chip Capacitor 0.1 pF Chip Capacitor 10 kΩ, 1/4 W Chip Resistor 18 Ω, 1/4 W Chip Resistor Part Number C3225X5R1H225MT ATC100B5R6CT500XT C5750X5R1H106MT ATC100B1R0BT500XT ATC100B2R2BT500XT ATC100B0R5BT500XT ATC100B0R2BT500XT ATC100B0R1BT500XT CRCW12061001FKTA CRCW120618R0FKTA Manufacturer TDK ATC TDK ATC ATC ATC ATC ATC Vishay Vishay MW6IC2015NBR1 MW6IC2015GNBR1 4 RF Device Data Freescale Semiconductor VDD1 C2 C3 VDD2 MW6IC2015, Rev. 0 C1 CUT OUT AREA C7 C8 C9 C11 C10 C12 C13 C6 C14 R1 R2 C4 VGG2 C5 VGG1 C15 Figure 4. MW6IC2015NBR1(GNBR1) Test Circuit Component Layout — 1930 - 1990 MHz MW6IC2015NBR1 MW6IC2015GNBR1 RF Device Data Freescale Semiconductor 5 TYPICAL CHARACTERISTICS — 1930 - 1990 MHz IMD, INTERMODULATION DISTORTION (dBc) IRL, INPUT RETURN LOSS (dB) IMD, INTERMODULATION DISTORTION (dBc) IRL, INPUT RETURN LOSS (dB) 40 PAE, POWER ADDED EFFICIENCY (%) Gps, POWER GAIN (dB) 35 PAE 30 Gps 25 20 IMD 15 10 1900 VDD = 26 Vdc, Pout = 7.5 W (Avg.) IDQ1 = 100 mA, IDQ2 = 170 mA 100 kHz Tone Spacing 1920 1940 1960 1980 −50 −60 2000 IRL −30 −40 −20 0 −10 f, FREQUENCY (MHz) Figure 5. Two - Tone Wideband Performance @ Pout = 7.5 Watts Avg. 30 Gps PAE, POWER ADDED EFFICIENCY (%) Gps, POWER GAIN (dB) 25 20 15 10 5 IMD PAE IRL −10 −20 −30 −40 VDD = 26 Vdc, Pout = 1.5 W (Avg.) IDQ1 = 100 mA, IDQ2 = 170 mA 100 kHz Tone Spacing 1920 1940 1960 1980 −50 −60 2000 0 0 1900 f, FREQUENCY (MHz) Figure 6. Two - Tone Wideband Performance @ Pout = 1.5 Watts Avg. IDQ1 = 130 mA IDQ2 = 170 mA IDQ1 = 100 mA IDQ2 = 170 mA IDQ1 = 100 mA IDQ2 = 130 mA IDQ1 = 70 mA IDQ2 = 170 mA IMD, INTERMODULATION DISTORTION (dBc) 31 30 Gps, POWER GAIN (dB) 29 28 27 26 25 24 23 0.1 −10 −20 −30 −40 −50 7th Order −60 −70 −80 0.1 1 Pout, OUTPUT POWER (WATTS) PEP 10 30 5th Order VDD = 26 Vdc IDQ1 = 100 mA, IDQ2 = 170 mA f = 1960 MHz, 100 kHz Tone Spacing 3rd Order IDQ1 = 100 mA IDQ2 = 210 mA VDD = 26 Vdc Center Frequency = 1960 MHz 100 kHz Tone Spacing 1 Pout, OUTPUT POWER (WATTS) AVG. 10 30 Figure 7. Two - Tone Power Gain versus Output Power Figure 8. Intermodulation Distortion Products versus Output Power MW6IC2015NBR1 MW6IC2015GNBR1 6 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS — 1930 - 1990 MHz IMD, INTERMODULATION DISTORTION (dBc) −30 3rd Order Pout, OUTPUT POWER (dBm) 48 P3dB = 44.8 dBm (30 W) P1dB = 44 dBm (25 W) 44 Actual Ideal −40 46 −50 5th Order −60 7th Order VDD = 26 Vdc, Pout = 75 W (PEP) IDQ1 = 100 mA, IDQ2 = 170 mA Two −Tone Measurements (f1 + f2)/2 = Center Frequency of 1960 MHz 1 10 100 42 VDD = 26 Vdc IDQ1 = 100 mA, IDQ2 = 170 mA Pulsed CW, 8 μsec(on), 1 msec(off) f = 1960 MHz 10 15 20 Pin, INPUT POWER (dBm) 25 30 −70 40 −80 0.1 38 TWO −TONE SPACING (MHz) Figure 9. Intermodulation Distortion Products versus Tone Spacing PAE, POWER ADDED EFFICIENCY (%), Gps, POWER GAIN (dB) 35 30 25 20 15 10 5 0 0.1 PAE ACPR Figure 10. Pulsed CW Output Power versus Input Power −25 −30 −35 −40 −45 −50 −55 −60 1 10 30 IM3 (dBc), ACPR (dBc) Gps VDD = 26 Vdc IDQ1 = 100 mA, IDQ2 = 170 mA f1 = 1955 MHz, f2 = 1965 MHz 2−Carrier W−CDMA 10 MHz Carrier Spacing 3.84 MHz Channel Bandwidth PAR = 8.5 dB @ 0.01% Probability (CCDF) IM3 Pout, OUTPUT POWER (WATTS) AVG. Figure 11. 2 - Carrier W - CDMA ACPR, IM3, Power Gain and Power Added Efficiency versus Output Power 50 PAE, POWER ADDED EFFICIENCY (%) 32 TC = − 30_C −30_C 25_C 30 28 Gps, POWER GAIN (dB) 26 24 22 20 26 V 30 Gps, POWER GAIN (dB) 25_C 28 VDD = 26 Vdc IDQ1 = 100 mA IDQ2 = 170 mA f = 1960 MHz 85_C 40 85_C 30 Gps 30 V 28 V 20 V 16 V IDQ1 = 100 mA IDQ2 = 170 mA f = 1840 MHz 15 20 25 30 26 PAE 20 24 10 0 1 10 30 VDD = 12 V 18 0 5 10 22 0.1 Pout, OUTPUT POWER (WATTS) CW Pout, OUTPUT POWER (WATTS) CW Figure 12. Power Gain and Power Added Efficiency versus CW Output Power Figure 13. Power Gain versus Output Power MW6IC2015NBR1 MW6IC2015GNBR1 RF Device Data Freescale Semiconductor 7 TYPICAL CHARACTERISTICS — 1930 - 1990 MHz 28 S21 Gps, POWER GAIN (dB) 27 −15 30 25_C −10 32 TC = − 30_C S21 (dB) 26 −20 S11 (dB) 28 26 85_C VDD = 26 Vdc, Pout = 7.5 W (Avg.) IDQ1 = 100 mA, IDQ2 = 170 mA Two −Tone Measurements, Center Frequency = 1960 MHz 1900 1920 1940 1960 1980 2000 2020 25 VDD = 26 Vdc Pout = 35 dBm CW IDQ1 = 100 mA IDQ2 = 170 mA 1900 1950 −25 S11 2000 2050 −30 2100 24 24 1850 22 1880 f, FREQUENCY (MHz) f, FREQUENCY (MHz) Figure 14. Broadband Frequency Response SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc) Figure 15. Power Gain versus Frequency EVM, ERROR VECTOR MAGNITUDE (% ms) 10 VDD = 26 Vdc IDQ1 = 100 mA IDQ2 = 170 mA f = 1960 MHz EDGE Modulation TC = − 30_C 85_C 25_C 50 PAE, POWER ADDED EFFICIENCY (%) −50 −55 −60 −65 −70 −75 −80 −85 0.1 1 Pout, OUTPUT POWER (WATTS) AVG. 10 SR @ 600 kHz −30_C 25_C 85_C SR @ 400 kHz VDD = 26 Vdc, IDQ1 = 100 mA IDQ2 = 170 mA, f = 1960 MHz EDGE Modulation TC = − 30_C 25_C 8 40 6 EVM 4 PAE 30 85_C 20 2 0 1 10 Pout, OUTPUT POWER (WATTS) AVG. 10 0 30 30 Figure 16. EVM and Power Added Efficiency versus Output Power Figure 17. Spectral Regrowth at 400 and 600 kHz versus Output Power MW6IC2015NBR1 MW6IC2015GNBR1 8 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS 109 108 MTTF (HOURS) 1st Stage 107 2nd Stage 106 105 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours when the device is operated at VDD = 26 Vdc, Pout = 15 W PEP, and PAE = 28%. MTTF calculator available at http:/www.freescale.com/rf. Select Tools/ Software/Application Software/Calculators to access the MTTF calcu− lators by product. Figure 18. MTTF versus Junction Temperature GSM TEST SIGNAL −10 −20 −30 −40 −50 (dB) −60 −70 −80 −90 −100 −110 Center 1.96 GHz 200 kHz Span 2 MHz 400 kHz 600 kHz 400 kHz 600 kHz Reference Power VBW = 30 kHz Sweep Time = 70 ms RBW = 30 kHz Figure 19. EDGE Spectrum MW6IC2015NBR1 MW6IC2015GNBR1 RF Device Data Freescale Semiconductor 9 f = 1930 MHz Zload f = 1990 MHz Z o = 25 Ω f = 1990 MHz f = 1930 MHz Zsource VDD = 26 Vdc, IDQ1 = 100 mA, IDQ2 = 170 mA, Pout = 15 W CW f MHz 1930 1950 1970 1990 Zsource W 23.37 - j21.93 22.77 - j22.53 22.19 - j22.20 22.64 - j21.84 Zload W 1.62 + j0.26 1.59 + j0.04 1.57 - j0.16 1.54 - j0.36 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Input Matching Network Device Under Test Output Matching Network Z source Z load Figure 20. Series Equivalent Source and Load Impedance — 1930 - 1990 MHz MW6IC2015NBR1 MW6IC2015GNBR1 10 RF Device Data Freescale Semiconductor VDD2 VDD1 C1 RF INPUT 1 2 3 NC 4 NC 5 NC 6 C6 VGG1 R1 C14 VGG2 R2 C4 C15 C5 7 NC 8 Quiescent Current Temperature Compensation 9 NC 13 10 NC 11 12 C8 Z10 C11 C10 C16 C12 C13 DUT 16 NC 15 C2 Z9 RF OUTPUT C3 Z1 Z2 Z3 14 Z4 Z5 C7 C9 Z6 Z7 Z8 Z1* Z2 Z3 Z4 Z5 Z6* 1.64″ 0.54″ 0.15″ 0.13″ 0.10″ 0.26″ x 0.08″ Microstrip x 0.08″ Microstrip x 0.04″ Microstrip x 0.35″ Microstrip x 0.35″ Microstrip x 0.04″ Microstrip Z7* Z8 Z9, Z10 PCB 0.41″ x 0.04″ Microstrip 1.18″ x 0.04″ Microstrip 1.18″ x 0.08″ Microstrip Taconic TLX8 - 0300, 0.030″, εr = 2.55 * Variable for tuning. Figure 21. MW6IC2015NBR1(GNBR1) Test Circuit Schematic — 1805 - 1880 MHz Table 7. MW6IC2015NBR1(GNBR1) Test Circuit Component Designations and Values — 1805 - 1880 MHz Part C1, C14, C15 C2, C4, C11 C3, C5 C6 C7, C8 C9, C10, C12 C13 C16 R1 R2 Description 2.2 μF Chip Capacitors 5.6 pF Chip Capacitors 10 μF Chip Capacitors 1.5 pF Chip Capacitor 2.7 pF Chip Capacitors 0.8 pF Chip Capacitors 0.1 pF Chip Capacitor 1 pF Chip Capacitor 10 kΩ, 1/4 W Chip Resistor 18 Ω, 1/4 W Chip Resistor Part Number C3225X5R1H225MT ATC100B5R6CT500XT C5750X5R1H106MT ATC100A1R5BT500XT ATC100B2R7BT500XT ATC100B0R8BT500XT ATC100B0R1BT500XT ATC100B1R0BT500XT CRCW12061001FKTA CRCW120618R0FKTA Manufacturer TDK ATC TDK ATC ATC ATC ATC ATC Vishay Vishay MW6IC2015NBR1 MW6IC2015GNBR1 RF Device Data Freescale Semiconductor 11 VDD1 C2 C3 VDD2 MW6IC2015, Rev. 0 C1 CUT OUT AREA C7 C8 C9 C11 C16 C10 C12 C13 C6 C14 R1 VGG1 C15 R2 C4 VGG2 C5 Figure 22. MW6IC2015NBR1(GNBR1) Test Circuit Component Layout — 1805 - 1880 MHz MW6IC2015NBR1 MW6IC2015GNBR1 12 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS — 1805 - 1880 MHz IMD, INTERMODULATION DISTORTION (dBc) IRL, INPUT RETURN LOSS (dB) IMD, INTERMODULATION DISTORTION (dBc) IRL, INPUT RETURN LOSS (dB) 32 PAE, POWER ADDED EFFICIENCY (%) Gps, POWER GAIN (dB) 31 30 29 IMD 28 27 26 1800 VDD = 26 Vdc, Pout = 7.5 W (Avg.) IDQ1 = 100 mA, IDQ2 = 170 mA 100 kHz Tone Spacing 1820 1840 1860 1880 Gps −40 −50 −60 1900 IRL 0 −10 −20 −30 PAE f, FREQUENCY (MHz) Figure 23. Two - Tone Wideband Performance @ Pout = 7.5 Watts Avg. 30 PAE, POWER ADDED EFFICIENCY (%) Gps, POWER GAIN (dB) Gps IRL 22 VDD = 26 Vdc, Pout = 1.5 W (Avg.) IDQ1 = 100 mA, IDQ2 = 170 mA 100 kHz Tone Spacing −24 0 26 −12 18 IMD −36 14 PAE 10 1800 1820 1840 f, FREQUENCY (MHz) 1860 −48 −60 1880 Figure 24. Two - Tone Wideband Performance @ Pout = 1.5 Watts Avg. IMD, INTERMODULATION DISTORTION (dBc) 32 31 Gps, POWER GAIN (dB) 30 29 28 27 26 25 24 0.1 IDQ1 = 130 mA IDQ2 = 170 mA IDQ1 = 100 mA IDQ2 = 170 mA IDQ1 = 100 mA IDQ2 = 130 mA IDQ1 = 70 mA IDQ2 = 170 mA IDQ1 = 100 mA IDQ2 = 210 mA −10 −20 −30 5th Order −40 −50 −60 −70 −80 0.1 1 Pout, OUTPUT POWER (WATTS) PEP 10 30 7th Order VDD = 26 Vdc IDQ1 = 100 mA, IDQ2 = 170 mA f = 1840 MHz, 100 kHz Tone Spacing 3rd Order VDD = 26 Vdc Center Frequency = 1840 MHz 100 kHz Tone Spacing 1 Pout, OUTPUT POWER (WATTS) PEP 10 30 Figure 25. Two - Tone Power Gain versus Output Power Figure 26. Intermodulation Distortion Products versus Output Power MW6IC2015NBR1 MW6IC2015GNBR1 RF Device Data Freescale Semiconductor 13 TYPICAL CHARACTERISTICS — 1805 - 1880 MHz IMD, INTERMODULATION DISTORTION (dBc) −30 −35 −40 −45 −50 −55 −60 7th Order −65 −70 0.1 38 1 10 100 10 15 20 Pin, INPUT POWER (dBm) 25 30 TWO −TONE SPACING (MHz) VDD = 26 Vdc, Pout = 7.5 W (Avg.), IDQ1 = 100 mA IDQ2 = 170 mA, Two −Tone Measurements (f1 + f2)/2 = Center Frequency of 1840 MHz 5th Order Pout, OUTPUT POWER (dBm) 3rd Order 46 48 P3dB = 44.7 dBm (30 W) P1dB = 44 dBm (25 W) 44 Actual Ideal 42 VDD = 26 Vdc IDQ1 = 100 mA, IDQ2 = 170 mA Pulsed CW, 8 μsec(on), 1 msec(off) f = 1840 MHz 40 Figure 27. Intermodulation Distortion Products versus Tone Spacing PAE, POWER ADDED EFFICIENCY (%), Gps, POWER GAIN (dB) 40 35 30 25 20 15 10 IM3 5 0 0.1 PAE ACPR 1 VDD = 26 Vdc IDQ1 = 100 mA, IDQ2 = 170 mA f1 = 1835 MHz, f2 = 1845 MHz 2−Carrier W−CDMA 10 MHz Carrier Spacing 3.84 MHz Channel Bandwidth PAR = 8.5 dB @ 0.01% Probability (CCDF) Figure 28. Pulsed CW Output Power versus Input Power −20 −25 IM3 (dBc), ACPR (dBc) −30 Gps −35 −40 −45 −50 −55 −60 10 30 Pout, OUTPUT POWER (WATTS) AVG. Figure 29. 2 - Carrier W - CDMA ACPR, IM3, Power Gain and Power Added Efficiency versus Output Power 50 PAE, POWER ADDED EFFICIENCY (%) 32 TC = − 30_C 30 Gps, POWER GAIN (dB) 25_C 25_C PAE 26 85_C 24 −30_C 30 30 V 28 V 28 Gps, POWER GAIN (dB) 26 24 V 24 20 V 22 20 VDD = 12 V 18 0 5 10 15 20 25 Pout, OUTPUT POWER (WATTS) CW 16 V IDQ1 = 100 mA IDQ2 = 170 mA f = 1840 MHz 26 V 40 85_C 28 30 20 Gps 10 VDD = 26 Vdc, IDQ1 = 100 mA IDQ2 = 170 mA, f = 1840 MHz 1 Pout, OUTPUT POWER (WATTS) CW 10 30 0 22 0.1 Figure 30. Power Gain and Power Added Efficiency versus CW Output Power MW6IC2015NBR1 MW6IC2015GNBR1 14 Figure 31. Power Gain versus Output Power RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS — 1805 - 1880 MHz 27 S11 26 25 S21 (dB) 24 23 22 21 20 1600 VDD = 26 Vdc, Pout = 35 dBm CW IDQ1 = 100 mA, IDQ2 = 170 mA 1700 1800 1900 2000 2100 −40 2200 S21 −5 −10 −15 S11 (dB) −20 −25 −30 −35 Gps, POWER GAIN (dB) 34 32 30 28 26 24 85_C VDD = 26 Vdc, Pout = 7.5 W (Avg.) IDQ1 = 100 mA, IDQ2 = 170 mA Two −Tone Measurements, Center Frequency = 1840 MHz 1800 1820 1840 1860 1880 1900 1920 TC = − 30_C 25_C 22 1780 f, FREQUENCY (MHz) f, FREQUENCY (MHz) Figure 32. Broadband Frequency Response 10 VDD = 26 Vdc IDQ1 = 100 mA IDQ2 = 170 mA f = 1840 MHz EDGE Modulation PAE 4 EVM 2 0 1 10 Pout, OUTPUT POWER (WATTS) AVG. 10 0 30 20 TC = 85_C −30_C 50 PAE, POWER ADDED EFFICIENCY (%) SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc) −50 −55 −60 −65 −70 −75 Figure 33. Power Gain versus Frequency EVM, ERROR VECTOR MAGNITUDE (% ms) 8 40 25_C 30 VDD = 26 Vdc IDQ1 = 100 mA, IDQ2 = 170 mA f = 1840 MHz, EDGE Modulation −30_C SR @ 400 kHz 85_C TC = 25_C 6 −30_C 25_C −80 −85 0.1 1 Pout, OUTPUT POWER (WATTS) AVG. 10 30 SR @ 600 kHz 85_C Figure 34. EVM and Power Added Efficiency versus Output Power Figure 35. Spectral Regrowth at 400 and 600 kHz versus Output Power MW6IC2015NBR1 MW6IC2015GNBR1 RF Device Data Freescale Semiconductor 15 Z o = 50 Ω f = 1800 MHz f = 1880 MHz Zload f = 1880 MHz Zsource f = 1800 MHz VDD = 26 Vdc, IDQ1 = 130 mA, IDQ2 = 170 mA, Pout = 3 W Avg. f MHz 1800 1820 1840 1860 1880 Zsource W 24.32 - j26.99 23.96 - j25.93 23.86 - j25.63 23.01 - j24.23 23.55 - j23.33 Zload W 1.94 - j1.29 1.88 - j1.42 1.83 - j1.54 1.79 - j1.64 1.74 - j1.75 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Input Matching Network Device Under Test Output Matching Network Z source Z load Figure 36. Series Equivalent Source and Load Impedance — 1805 - 1880 MHz MW6IC2015NBR1 MW6IC2015GNBR1 16 RF Device Data Freescale Semiconductor TD - SCDMA CHARACTERIZATION VDD2 VDD1 C1 RF INPUT 1 2 3 4 5 6 C6 7 NC 8 9 C12 C14 R2 C4 C13 C5 10 11 NC NC NC NC NC 14 Z3 DUT NC 16 NC 15 C2 Z9 RF OUTPUT C3 Z1 Z2 Z4 C7 Z5 C9 Z6 C10 Z7 Z8 C11 C8 Quiescent Current Temperature Compensation Z10 R1 VGG NC 13 NC 12 Z1 Z2 Z3 Z4 Z5 0.772″ 0.409″ 0.138″ 0.148″ 0.064″ x 0.056″ Microstrip x 0.056″ Microstrip x 0.237″ Microstrip x 0.237″ Microstrip x 0.237″ Microstrip Z6 Z7 Z8 Z9, Z10 PCB 0.060″ x 0.237″ Microstrip 0.539″ x 0.056″ Microstrip 0.190″ x 0.056″ Microstrip 1.066″ x 0.078″ Microstrip Taconic TLX8, 0.020″, εr = 2.55 Figure 37. MW6IC2015NBR1(GNBR1) Test Circuit Schematic — TD - SCDMA Table 8. MW6IC2015NBR1(GNBR1) Test Circuit Component Designations and Values — TD - SCDMA Part C1, C3, C5, C14 C2, C4, C10 C6 C7, C8 C9, C11 C12, C13 R1, R2 Description 2.2 μF Chip Capacitors 5.6 pF Chip Capacitors 1 pF Chip Capacitor 2.7 pF Chip Capacitors 0.5 pF Chip Capacitors 100 nF Chip Capacitors 5 kΩ Potentiometer CMS Cermet Multi - turn Part Number C3225X5R1H225MT 08051J5R6CBS 08051J1R0BBS 08051J2R7CBS 08051J0R5BBS C1206CK104K5RC 3224W Manufacturer TDK ATC ATC ATC ATC Kemet Bourns MW6IC2015NBR1 MW6IC2015GNBR1 RF Device Data Freescale Semiconductor 17 VDD1 VDD2 C3 MW6IC2015NB, Rev. 1 C1 C2 C7 C9 C6 C8 C10 C11 C12 C13 C14 C5 C4 R1 R2 VGG Figure 38. MW6IC2015NBR1(GNBR1) Test Circuit Component Layout — TD - SCDMA MW6IC2015NBR1 MW6IC2015GNBR1 18 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS −20 −25 −30 ALT/ACPR (dBc) −35 −40 −45 Adj −L −50 Alt−L −55 −60 15 17 19 21 23 25 Pout, OUTPUT POWER (dBm) AVG. Alt−U 27 1 0.5 0 Adj −U 3−Carrier TD−SCDMA VDD1 = VDD2 = 28 V IDQ1 = 150 mA, IDQ2 = 160 mA f = 2017.5 MHz 4 3.5 3 PAE 2.5 2 1.5 PAE, POWER ADDED EFFICIENCY (%) PAE, POWER ADDED EFFICIENCY (%) 1.28 MHz Channel BW Figure 39. 3 - Carrier TD - SCDMA ACPR, ALT and Power Added Efficiency versus Output Power −20 −25 −30 ALT/ACPR (dBc) −35 −40 −45 −50 −55 −60 15 17 19 21 23 Alt−U 25 27 Adj −U Adj −L Alt−L 6−Carrier TD−SCDMA VDD1 = VDD2 = 28 V IDQ1 = 150 mA, IDQ2 = 160 mA f = 2017.5 MHz 4 3.5 3 PAE 2.5 2 1.5 1 0.5 0 Pout, OUTPUT POWER (dBm) AVG. Figure 40. 6 - Carrier TD - SCDMA ACPR, ALT and Power Added Efficiency versus Output Power TD - SCDMA TEST SIGNAL −30 −40 −50 −60 −70 −80 −90 −100 −110 −120 −ALT1 in 1.28 MHz BW −1.6 MHz Offset 1.5 MHz f, FREQUENCY (MHz) +ALT1 in 1.28 MHz BW +1.6 MHz Offset Span 15 MHz −ALT2 in 1.28 MHz BW −3.2 MHz Offset +ALT2 in 1.28 MHz BW +3.2 MHz Offset (dBm) (dBm) 1.28 MHz Channel BW −30 VBW = 300 kHz Sweep Time = 200 ms RBW = 30 kHz −40 −50 −60 −70 −80 −90 −100 −110 −120 −ALT1 in 1.28 MHz BW −1.6 MHz Offset 2.5 MHz f, FREQUENCY (MHz) +ALT1 in 1.28 MHz BW +1.6 MHz Offset Span 25 MHz −ALT2 in 1.28 MHz BW −3.2 MHz Offset +ALT2 in 1.28 MHz BW +3.2 MHz Offset VBW = 300 kHz Sweep Time = 200 ms RBW = 30 kHz −130 Center 2.0175 GHz −130 Center 2.0175 GHz Figure 41. 3 - Carrier TD - SCDMA Spectrum Figure 42. 6 - Carrier TD - SCDMA Spectrum MW6IC2015NBR1 MW6IC2015GNBR1 RF Device Data Freescale Semiconductor 19 Z o = 50 Ω Zload f = 2070 MHz Zsource f = 2070 MHz f = 1950 MHz f = 1950 MHz VDD = 28 Vdc, IDQ1 = 150 mA, IDQ2 = 160 mA f MHz 1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 Zsource W 25.25 + j0.19 25.16 + j0.34 25.07 + j0.49 24.98 + j0.64 24.89 + j0.79 24.80 + j0.94 24.71 + j1.09 24.63 + j1.25 24.54 + j1.40 24.45 + j1.56 24.37 + j1.71 24.28 + j1.87 24.20 + j2.03 Zload W 1.78 + j0.33 1.75 + j0.43 1.72 + j0.54 1.68 + j0.67 1.65 + j0.78 1.63 + j0.89 1.62 + j1.00 1.61 + j1.09 1.58 + j1.19 1.55 + j1.31 1.50 + j1.43 1.48 + j1.62 1.46 + j1.65 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Input Matching Network Device Under Test Z source Z load Figure 43. Series Equivalent Input and Load Impedance — TD - SCDMA MW6IC2015NBR1 MW6IC2015GNBR1 20 RF Device Data Freescale Semiconductor PACKAGE DIMENSIONS MW6IC2015NBR1 MW6IC2015GNBR1 RF Device Data Freescale Semiconductor 21 MW6IC2015NBR1 MW6IC2015GNBR1 22 RF Device Data Freescale Semiconductor MW6IC2015NBR1 MW6IC2015GNBR1 RF Device Data Freescale Semiconductor 23 MW6IC2015NBR1 MW6IC2015GNBR1 24 RF Device Data Freescale Semiconductor MW6IC2015NBR1 MW6IC2015GNBR1 RF Device Data Freescale Semiconductor 25 MW6IC2015NBR1 MW6IC2015GNBR1 26 RF Device Data Freescale Semiconductor PRODUCT DOCUMENTATION Refer to the following documents to aid your design process. Application Notes • AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages • AN1955: Thermal Measurement Methodology of RF Power Amplifiers • AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family • AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over - Molded Plastic Packages Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices REVISION HISTORY The following table summarizes revisions to this document. Revision 2 Date Feb. 2007 Description • Added “and TD - SCDMA” to data sheet description paragraph, p. 1. • Updated verbiage on Typical Performances table, p. 2 • Corrected VBIAS and VSUPPLY callouts, Figs. 3 and 21, Test Circuit Schematic, p. 4, 11, Figs. 4 and 22, Test Circuit Component Layout, p. 5, 12 • Updated Part Numbers in Tables 6 and 7, Component Designations and Values, to RoHS compliant part numbers, p. 4, 11 • Adjusted scale for Figs. 7 and 25, Two - Tone Power Gain versus Output Power, Figs. 8 and 26, Intermodulation Distortion Products versus Output Power, Figs. 11 and 29, 2 - Carrier W - CDMA ACPR, IM3, Power Gain and Power Added Efficiency versus Output Power, Figs. 12 and 30, Power Gain and Power Added Efficiency versus CW Output Power, Figs. 16 and 34, EVM and Power Added Efficiency versus Output Power, Figs. 17 and 35, Spectral Regrowth at 400 and 600 kHz versus Output Power, to better match the device’s capabilities, p. 6 - 8, 13 - 15 • Replaced Figure 18, MTTF versus Junction Temperature with updated graph. Removed Amps2 and listed operating characteristics and location of MTTF calculator for device, p. 9 • Corrected Series Impedance data table test conditions, Figs. 20 and 36, p. 10, 16 • Added TD - SCDMA test circuit schematic, component designations and values, component layout, typical characteristic curves, test signal and series impedance, p. 17 - 20. • Added Product Documentation and Revision History, p. 27 MW6IC2015NBR1 MW6IC2015GNBR1 RF Device Data Freescale Semiconductor 27 How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1 - 800 - 441 - 2447 or 303 - 675 - 2140 Fax: 303 - 675 - 2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007. All rights reserved. MW6IC2015NBR1 MW6IC2015GNBR1 2Rev. 2, 2/2007 8 Document Number: MW6IC2015N RF Device Data Freescale Semiconductor
MW6IC2015GNBR1 价格&库存

很抱歉,暂时无法提供与“MW6IC2015GNBR1”相匹配的价格&库存,您可以联系我们找货

免费人工找货