0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
A2T09VD250NR1

A2T09VD250NR1

  • 厂商:

    NXP(恩智浦)

  • 封装:

    TO270-6

  • 描述:

    IC TRANS RF LDMOS

  • 数据手册
  • 价格&库存
A2T09VD250NR1 数据手册
Freescale Semiconductor Technical Data Document Number: A2T09VD250N Rev. 0, 8/2015 RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET This 65 W RF power LDMOS transistor is designed for cellular base station applications covering the frequency range of 716 to 960 MHz. A2T09VD250NR1 900 MHz  Typical Single--Carrier W--CDMA Performance: VDD = 48 Vdc, IDQ(A+B) = 1000 mA, Pout = 65 W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. Frequency Gps (dB) D (%) Output PAR (dB) ACPR (dBc) IRL (dB) 920 MHz 22.5 34.8 7.5 –34.4 –18 940 MHz 22.7 35.4 7.4 –34.2 –19 960 MHz 22.4 35.4 7.2 –34.3 –12 716–960 MHz, 65 W AVG., 48 V AIRFAST RF POWER LDMOS TRANSISTOR 800 MHz TO--270WB--6A PLASTIC  Typical Single--Carrier W--CDMA Performance: VDD = 48 Vdc, IDQ(A+B) = 1000 mA, Pout = 65 W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. Frequency Gps (dB) D (%) Output PAR (dB) ACPR (dBc) IRL (dB) 790 MHz 23.0 37.3 7.4 –33.0 –15 806 MHz 23.1 37.8 7.2 –33.3 –19 821 MHz 22.8 37.0 7.0 –33.8 –13 RFinA/VGSA 1 6 RFoutA/VDSA GND 2 5 GND RFinB/VGSB 3 4 RFoutB/VDSB Features  Greater Negative Gate--Source Voltage Range for Improved Class C Operation  Designed for Digital Predistortion Error Correction Systems  Optimized for Doherty Applications (Top View) Note: Exposed backside of the package is the source terminal for the transistors. Figure 1. Pin Connections  Freescale Semiconductor, Inc., 2015. All rights reserved. RF Device Data Freescale Semiconductor, Inc. A2T09VD250NR1 1 Table 1. Maximum Ratings Symbol Value Unit Drain--Source Voltage Rating VDSS –0.5, +105 Vdc Gate--Source Voltage VGS –6.0, +10 Vdc Operating Voltage VDD 55, +0 Vdc Storage Temperature Range Tstg –65 to +150 C Case Operating Temperature Range TC –40 to +150 C TJ –40 to +225 C Symbol Value (2,3) Unit RJC 0.56 C/W Operating Junction Temperature Range (1,2) Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 82C, 65 W CW, 48 Vdc, IDQ(A+B) = 1000 mA, 940 MHz Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 2 Machine Model (per EIA/JESD22--A115) A Charge Device Model (per JESD22--C101) IV Table 4. Moisture Sensitivity Level Test Methodology Per JESD22--A113, IPC/JEDEC J--STD--020 Rating Package Peak Temperature Unit 3 260 C Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 105 Vdc, VGS = 0 Vdc) IDSS — — 10 Adc Zero Gate Voltage Drain Leakage Current (VDS = 55 Vdc, VGS = 0 Vdc) IDSS — — 1 Adc Gate--Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) IGSS — — 1 Adc Gate Threshold Voltage (4) (VDS = 10 Vdc, ID = 96 Adc) VGS(th) 1.3 1.8 2.3 Vdc Gate Quiescent Voltage (5) (VDS = 48 Vdc, IDQ(A+B) = 1000 mAdc) VGS(Q) — 2.5 — Vdc Fixture Gate Quiescent Voltage (5) (VDD = 48 Vdc, IDQ(A+B) = 1000 mAdc, Measured in Functional Test) VGG(Q) 4.0 5.0 6.0 Vdc Drain--Source On--Voltage (4) (VGS = 10 Vdc, ID = 0.96 Adc) VDS(on) 0.1 0.21 0.5 Vdc Characteristic Off Characteristics (4) On Characteristics 1. 2. 3. 4. 5. Continuous use at maximum temperature will affect MTTF. MTTF calculator available at http://www.freescale.com/rf/calculators. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf and search for AN1955. Each side of device measured separately. Side A and Side B are tied together for this measurement. A2T09VD250NR1 2 RF Device Data Freescale Semiconductor, Inc. Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Functional Tests (1) (In Freescale Test Fixture, 50 ohm system) VDD = 48 Vdc, IDQ(A+B) = 1000 mA, Pout = 65 W Avg., f = 920 MHz, Single--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ 5 MHz Offset. Power Gain Gps 21.0 22.5 24.0 dB Drain Efficiency D 31.0 34.8 — % Output Peak--to--Average Ratio @ 0.01% Probability on CCDF Adjacent Channel Power Ratio PAR 6.8 7.5 — dB ACPR — –34.4 –31.5 dBc IRL — –18 –10 dB Input Return Loss Load Mismatch (In Freescale Test Fixture, 50 ohm system) IDQ(A+B) = 1000 mA, f = 940 MHz, 12 sec(on), 10% Duty Cycle VSWR 10:1 at 52 Vdc, 363 W Pulsed CW Output Power (3 dB Input Overdrive from 308 W Pulsed CW Rated Power) No Device Degradation Typical Performance (In Freescale Test Fixture, 50 ohm system) VDD = 48 Vdc, IDQ(A+B) = 1000 mA, 920–960 MHz Bandwidth Pout @ 1 dB Compression Point, CW P1dB — 240 — W Pout @ 3 dB Compression Point (2) P3dB — 326 — W  — 19 —  VBWres — 90 — MHz Gain Flatness in 40 MHz Bandwidth @ Pout = 65 W Avg. GF — 0.3 — dB Gain Variation over Temperature (–30C to +85C) G — 0.013 — dB/C P1dB — 0.007 — dB/C AM/PM (Maximum value measured at the P3dB compression point across the 920–960 MHz frequency range) VBW Resonance Point (IMD Third Order Intermodulation Inflection Point) Output Power Variation over Temperature (–30C to +85C) Table 6. Ordering Information Device A2T09VD250NR1 Tape and Reel Information R1 Suffix = 500 Units, 44 mm Tape Width, 13--inch Reel Package TO--270WB--6A 1. Part internally input matched. 2. P3dB = Pavg + 7.0 dB where Pavg is the average output power measured using an unclipped W--CDMA single--carrier input signal where output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF. A2T09VD250NR1 RF Device Data Freescale Semiconductor, Inc. 3 D69443 A2T09VD250N Rev. 0 VGG R1 C16 R2 R3 C5 C8 C20 C7 C23* C3 C10* CUT OUT AREA C1 C4 C2 C9 VDD C18 C6 C11* C15 C13 C14 C12 C22* C21 R4 R6 C17 R5 C19 *C10, C11, C22 and C23 are mounted vertically. Figure 2. A2T09VD250NR1 Test Circuit Component Layout Table 7. A2T09VD250NR1 Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1 3.3 pF Chip Capacitor ATC800B3R3BT500XT ATC C2 2.7 pF Chip Capacitor ATC800B2R7BT500XT ATC C3, C4 4.3 pF Chip Capacitors ATC800B4R3BT500XT ATC C5, C6, C7, C15, C16, C17 47 pF Chip Capacitors ATC800B470JT500XT ATC C8, C9 1 F Chip Capacitors C3216X7R2A105M160AA TDK C10, C11 12 pF Chip Capacitors ATC800B120JT500XT ATC C12 5.1 pF Chip Capacitor ATC800B5R1BT500XT ATC C13 4.7 pF Chip Capacitor ATC800B4R7BT500XT ATC C14 5.6 pF Chip Capacitor ATC800B5R6BT500XT ATC C18, C19 10 F Chip Capacitors C5750X7S2A106M230KB TDK C20, C21 220 F, 100 V Electrolytic Capacitors EEVFK2A221M Panasonic C22, C23 1.7 pF Chip Capacitor ATC800B1R7BT500XT ATC R1, R2, R5, R6 1 k, 1/4 W Chip Resistors WCR1206-1KF Welwyn R3, R4 10 , 1/4 W Chip Resistors WCR1206-10RF Welwyn PCB Rogers RO4350B, 0.020, r = 3.66 D69443 MTL A2T09VD250NR1 4 RF Device Data Freescale Semiconductor, Inc. TYPICAL CHARACTERISTICS 30 24 25 23 –33 5 –34 0 Gps PARC 22 ACPR 21 20 –35 –36 IRL 19 18 820 840 860 –37 880 900 920 f, FREQUENCY (MHz) 940 960 –38 980 –5 –10 –15 –20 –2 –2.2 –2.4 –2.6 –2.8 PARC (dB) 35 IRL, INPUT RETURN LOSS (dB) 40 ACPR (dBc) Gps, POWER GAIN (dB) VDD = 48 Vdc, Pout = 65 W (Avg.), IDQ(A+B) = 1000 mA 27 Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth 26 Input Signal PAR = 9.9 dB @ 0.01% D Probability on CCDF 25 D, DRAIN EFFICIENCY (%) 45 28 –3 IMD, INTERMODULATION DISTORTION (dBc) Figure 3. Single--Carrier Output Peak--to--Average Ratio Compression (PARC) Broadband Performance @ Pout = 65 Watts Avg. –10 VDD = 48 Vdc, Pout = 130 W (PEP) IDQ(A+B) = 1000 mA, Two--Tone Measurements (f1 + f2)/2 = Center Frequency of 940 MHz –20 IM3--U –30 IM3--L –40 IM5--U IM5--L IM7--U –50 IM7--L –60 1 10 100 200 TWO--TONE SPACING (MHz) 23 0 22.5 22 21.5 21 20.5 VDD = 48 Vdc, IDQ(A+B) = 1000 mA f = 940 MHz, Single--Carrier W--CDMA 70 –25 60 –30 ACPR –1 –2 –1 dB = 38.3 W –5 20 –2 dB = 54.5 W 40 Gps –3 dB = 72.7 W –3 –4 50 D 3.84 MHz Channel Bandwidth Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF 40 60 80 Pout, OUTPUT POWER (WATTS) 30 –40 –45 20 –50 10 120 –55 PARC 100 –35 ACPR (dBc) 1 D DRAIN EFFICIENCY (%) 23.5 OUTPUT COMPRESSION AT 0.01% PROBABILITY ON CCDF (dB) Gps, POWER GAIN (dB) Figure 4. Intermodulation Distortion Products versus Two--Tone Spacing Figure 5. Output Peak--to--Average Ratio Compression (PARC) versus Output Power A2T09VD250NR1 RF Device Data Freescale Semiconductor, Inc. 5 TYPICAL CHARACTERISTICS Gps, POWER GAIN (dB) 24 22 940 MHz 20 14 30 ACPR 20 10 920 MHz 960 MHz 940 MHz 1 –10 40 920 MHz 16 50 960 MHz 940 MHz 960 MHz 18 0 D Gps 920 MHz 60 10 Pout, OUTPUT POWER (WATTS) AVG. 100 0 200 –20 –30 –40 ACPR (dBc) VDD = 48 Vdc, IDQ(A+B) = 1000 mA, Single--Carrier W--CDMA 3.84 MHz Channel Bandwidth, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF D, DRAIN EFFICIENCY (%) 26 –50 –60 Figure 6. Single--Carrier W--CDMA Power Gain, Drain Efficiency and ACPR versus Output Power 26 5 GAIN (dB) 22 20 0 Gain –5 VDD = 28 Vdc Pin = 0 dBm IDQ(A+B) = 1000 mA –10 18 –15 16 14 600 IRL (dB) 24 –20 IRL 700 800 900 1000 1100 f, FREQUENCY (MHz) 1200 1300 –25 1400 Figure 7. Broadband Frequency Response A2T09VD250NR1 6 RF Device Data Freescale Semiconductor, Inc. Table 8. Single Side Load Pull Performance — Maximum Power Tuning VDD = 48 Vdc, IDQ = 500 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle Max Output Power P1dB f (MHz) Zsource () Zin () 920 2.52 – j4.76 2.19 + j4.75 940 2.88 – j5.34 2.22 + j5.10 960 3.53 – j5.36 2.36 + j5.64 Zload () (1) Gain (dB) (dBm) (W) D (%) AM/PM () 3.04 + j0.55 21.4 52.5 178 61.2 –14 2.93 + j0.37 21.4 52.5 178 61.8 –14 2.87 + j0.07 21.3 52.4 174 60.3 –12 Max Output Power P3dB f (MHz) Zsource () Zin () Zload (2) () Gain (dB) (dBm) (W) D (%) AM/PM () 920 2.52 – j4.76 2.01 + j5.09 3.37 + j0.34 19.4 53.2 208 62.3 –20 940 2.88 – j5.34 2.06 + j5.48 3.24 + j0.13 19.3 53.2 207 62.2 –19 960 3.53 – j5.36 2.19 + j6.04 3.19 – j0.10 19.2 53.1 204 61.5 –18 (1) Load impedance for optimum P1dB power. (2) Load impedance for optimum P3dB power. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Table 9. Single Side Load Pull Performance — Maximum Drain Efficiency Tuning VDD = 48 Vdc, IDQ = 500 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle Max Drain Efficiency P1dB f (MHz) Zsource () Zin () Zload (1) () Gain (dB) (dBm) (W) D (%) AM/PM () 920 2.52 – j4.76 1.87 + j4.79 2.65 + j2.94 23.8 50.8 121 71.4 –20 940 2.88 – j5.34 1.85 + j5.18 2.40 + j2.86 24.0 50.4 111 71.9 –21 960 3.53 – j5.36 1.99 + j5.66 2.32 + j2.45 23.7 50.5 112 70.9 –19 Max Drain Efficiency P3dB Gain (dB) (dBm) (W) D (%) AM/PM () 3.13 + j2.50 21.3 52.1 162 72.0 –26 1.83 + j5.50 2.80 + j2.46 21.5 51.7 149 72.1 –26 1.95 + j6.05 2.65 + j2.16 21.4 51.7 147 71.4 –25 f (MHz) Zsource () Zin () 920 2.52 – j4.76 1.83 + j5.10 940 2.88 – j5.34 960 3.53 – j5.36 Zload () (2) (1) Load impedance for optimum P1dB efficiency. (2) Load impedance for optimum P3dB efficiency. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Input Load Pull Tuner and Test Circuit Output Load Pull Tuner and Test Circuit Device Under Test Zsource Zin Zload A2T09VD250NR1 RF Device Data Freescale Semiconductor, Inc. 7 P1dB – TYPICAL LOAD PULL CONTOURS — 940 MHz 5 5 48.5 50 3 50.5 E 51 2 51.5 1 52 P 0 58 4 IMAGINARY () IMAGINARY () 4 49.5 49 56 60 3 E 70 2 68 1 66 64 62 P 0 60 58 56 –1 –2 –1 50 1 1.5 2 2.5 3 3.5 4 REAL () 4.5 5 –2 6 5.5 Figure 8. P1dB Load Pull Output Power Contours (dBm) 5 4 4 IMAGINARY () E 23.5 IMAGINARY () 24 24.5 23 2 22.5 1 P 0 22 21.5 21 1 1.5 2 2.5 3 3.5 4 REAL () 2 4.5 3 2.5 3.5 4 REAL () 4.5 5 5.5 6 –12 –24 3 E –22 2 –20 1 –16 –18 –14 P 0 –1 –2 1.5 Figure 9. P1dB Load Pull Efficiency Contours (%) 5 3 1 –1 5 5.5 6 Figure 10. P1dB Load Pull Gain Contours (dB) NOTE: –2 1 1.5 2 2.5 3 3.5 4 REAL () 4.5 5 5.5 6 Figure 11. P1dB Load Pull AM/PM Contours () P = Maximum Output Power E = Maximum Drain Efficiency Gain Drain Efficiency Linearity Output Power A2T09VD250NR1 8 RF Device Data Freescale Semiconductor, Inc. P3dB – TYPICAL LOAD PULL CONTOURS — 940 MHz 5 5 49 49.5 50 50.5 51.5 3 52 E 2 52.5 1 0 51.5 P –1 –2 53 1.5 2 3 2.5 3.5 4 REAL () 4.5 5 68 4 64 62 60 58 56 1 2 IMAGINARY () 20.5 E 20 1 19.5 P 0 2.5 3 3.5 4 REAL () 4.5 5 5.5 6 Figure 14. P3dB Load Pull Gain Contours (dB) NOTE: 3.5 4 REAL () 4.5 5 5.5 6 –32 –26 –24 –16 –20 –28 3 –30 –18 –22 E 2 1 P –1 18.5 2 3 2.5 0 19 –1 2 4 22 22.5 1.5 Figure 13. P3dB Load Pull Efficiency Contours (%) 21 3 1.5 66 P 5 21.5 1 70 1 –2 6 5.5 5 IMAGINARY () E 2 –1 Figure 12. P3dB Load Pull Output Power Contours (dBm) –2 3 0 51 1 56 4 51 IMAGINARY () IMAGINARY () 4 –2 –16 1 1.5 2 2.5 3 3.5 4 REAL () 4.5 5 5.5 6 Figure 15. P3dB Load Pull AM/PM Contours () P = Maximum Output Power E = Maximum Drain Efficiency Gain Drain Efficiency Linearity Output Power A2T09VD250NR1 RF Device Data Freescale Semiconductor, Inc. 9 D69443 A2T09VD250N Rev. 0 R1 VGG R2 R3 C5 C8 VDD C18 C16 C20 C7 C22* CUT OUT AREA C3 C1 C4 C2 C15 C13 C10* C11* C14 C12 C23* C9 C6 C21 R4 R6 C17 C19 R5 *C10, C11, C22 and C23 are mounted vertically. Figure 16. A2T09VD250NR1 Test Circuit Component Layout — 790–821 MHz Table 10. A2T09VD250NR1 Test Circuit Component Designations and Values — 790–821 MHz Part Description Part Number Manufacturer C1 3.3 pF Chip Capacitor ATC800B3R3BT500XT ATC C2 3.9 pF Chip Capacitor ATC800B3R9BT500XT ATC C3, C4, C13, C14 6.8 pF Chip Capacitors ATC800B6R8BT500XT ATC C5, C6, C7, C15, C16, C17 47 pF Chip Capacitors ATC800B470JT500XT ATC C8, C9 1 F Chip Capacitors C3216X7R2A105M160AA TDK C10, C11 18 pF Chip Capacitors ATC800B180JT500XT ATC C12 6.2 pF Chip Capacitor ATC800B6R2BT500XT ATC C18, C19 10 F Chip Capacitors C5750X7S2A106M230KB TDK C20, C21 220 F, 100 V Electrolytic Capacitors EEVFK2A221M Panasonic C22, C23 0.5 pF Chip Capacitors ATC800B0R5BT500XT ATC R1, R2, R5, R6 1 k, 1/4 W Chip Resistors WCR1206-1KF Welwyn R3, R4 10 , 1/4 W Chip Resistors WCR1206-10RF Welwyn PCB Rogers RO4350B, 0.020, r = 3.66 D69443 MTL A2T09VD250NR1 10 RF Device Data Freescale Semiconductor, Inc. TYPICAL CHARACTERISTICS — 790–821 MHz 22 21 30 D Gps 25 ACPR 20 19 –32 0 –33 –4 –34 18 PARC 17 16 760 –36 Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF IRL 780 –35 800 820 840 860 880 900 f, FREQUENCY (MHz) 920 –12 –16 –20 –37 960 940 –8 –1.5 –2 –2.5 –3 –3.5 PARC (dB) 23 IRL, INPUT RETURN LOSS (dB) Gps, POWER GAIN (dB) 24 ACPR (dBc) 25 D, DRAIN EFFICIENCY (%) 45 VDD = 48 Vdc, Pout = 65 W (Avg.), IDQ(A+B) = 1000 mA Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth 40 35 26 –4 Figure 17. Single--Carrier Output Peak--to--Average Ratio Compression (PARC) Broadband Performance @ Pout = 65 Watts Avg. Gps, POWER GAIN (dB) 24 22 Gps 806 MHz 821 MHz 790 MHz 18 30 20 10 Pout, OUTPUT POWER (WATTS) AVG. 1 –10 ACPR 10 821 MHz 806 MHz 14 50 40 790 MHz 16 0 D 790 MHz 821 MHz 806 MHz 20 60 100 0 200 –20 –30 –40 ACPR (dBc) VDD = 48 Vdc, IDQ(A+B) = 1000 mA, Single--Carrier W--CDMA 3.84 MHz Channel Bandwidth, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF D, DRAIN EFFICIENCY (%) 26 –50 –60 Figure 18. Single--Carrier W--CDMA Power Gain, Drain Efficiency and ACPR versus Output Power Gain GAIN (dB) 22 5 VDD = 48 Vdc Pin = 0 dBm 0 IDQ(A+B) = 1000 mA 20 –5 18 –10 16 –15 14 IRL (dB) 24 –20 IRL 12 500 600 700 800 900 1000 f, FREQUENCY (MHz) 1100 1200 –25 1300 Figure 19. Broadband Frequency Response A2T09VD250NR1 RF Device Data Freescale Semiconductor, Inc. 11 Table 11. Single Side Load Pull Performance — Maximum Power Tuning VDD = 48 Vdc, IDQ = 501 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle Max Output Power P1dB f (MHz) Zsource () Zin () 790 3.03 – j2.71 2.16 + j2.10 806 3.30 – j2.82 2.16 + j2.40 821 3.27 – j3.34 2.10 + j2.70 Zload () (1) Gain (dB) (dBm) (W) D (%) AM/PM () 3.38 + j1.69 21.3 52.8 193 64.9 –12 3.29 + j1.70 21.3 52.7 187 63.4 –11 3.34 + j1.67 21.4 52.7 185 63.5 –12 Max Output Power P3dB f (MHz) Zsource () Zin () Zload (2) () Gain (dB) (dBm) (W) D (%) AM/PM () 790 3.03 – j2.71 1.99 + j2.30 3.58 + j1.49 19.2 53.4 221 65.9 –15 806 3.30 – j2.82 2.00 + j2.62 3.66 + j1.41 19.2 53.4 217 64.6 –15 821 3.27 – j3.34 1.94 + j2.93 3.67 + j1.47 19.3 53.3 215 65.7 –16 (1) Load impedance for optimum P1dB power. (2) Load impedance for optimum P3dB power. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Table 12. Single Side Load Pull Performance — Maximum Drain Efficiency Tuning VDD = 48 Vdc, IDQ = 501 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle Max Drain Efficiency P1dB f (MHz) Zsource () Zin () Zload (1) () Gain (dB) (dBm) (W) D (%) AM/PM () 790 3.03 – j2.71 1.81 + j2.34 3.66 + j5.16 24.0 50.5 113 75.8 –17 806 3.30 – j2.82 1.82 + j2.60 3.53 + j4.98 24.0 50.6 114 74.9 –17 821 3.27 – j3.34 1.86 + j2.84 3.63 + j4.24 23.5 51.2 133 74.0 –15 Max Drain Efficiency P3dB Gain (dB) (dBm) (W) D (%) AM/PM () 4.26 + j3.66 21.0 52.5 177 75.2 –19 1.84 + j2.75 4.19 + j4.15 21.3 52.1 161 74.3 –20 1.81 + j3.04 4.12 + j3.87 21.2 52.2 166 73.8 –20 f (MHz) Zsource () Zin () 790 3.03 – j2.71 1.86 + j2.40 806 3.30 – j2.82 821 3.27 – j3.34 Zload () (2) (1) Load impedance for optimum P1dB efficiency. (2) Load impedance for optimum P3dB efficiency. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Input Load Pull Tuner and Test Circuit Output Load Pull Tuner and Test Circuit Device Under Test Zsource Zin Zload A2T09VD250NR1 12 RF Device Data Freescale Semiconductor, Inc. P1dB – TYPICAL LOAD PULL CONTOURS — 806 MHz 7 7 6 IMAGINARY () 5 49.5 50 50.5 E 51.5 3 52 2 P 52.5 1 1 2 3 4 REAL () 6 5 70 68 3 66 2 –1 7 P 64 60 62 58 2 1 3 4 REAL () 6 5 7 Figure 21. P1dB Load Pull Efficiency Contours (%) 7 7 24.5 5 23.5 24 23 4 22.5 3 22 P 21.5 1 2 3 4 REAL () –22 –16 5 –14 E –12 4 3 2 P –10 1 21 0 1 –20 5 E 2 –18 –24 6 IMAGINARY () 25 6 IMAGINARY () 72 4 0 Figure 20. P1dB Load Pull Output Power Contours (dBm) –1 E 1 0 –1 74 5 51 4 62 60 6 IMAGINARY () 49 48.5 0 6 7 Figure 22. P1dB Load Pull Gain Contours (dB) NOTE: –1 1 2 3 4 REAL () 5 6 7 Figure 23. P1dB Load Pull AM/PM Contours () P = Maximum Output Power E = Maximum Drain Efficiency Gain Drain Efficiency Linearity Output Power A2T09VD250NR1 RF Device Data Freescale Semiconductor, Inc. 13 P3dB – TYPICAL CARRIER LOAD PULL CONTOURS — 806 MHz 8 49.5 7 4 IMAGINARY () 51.5 E 52 3 53 52.5 2 P 1 0 4 3 5 REAL () 6 7 70 66 68 2 –2 8 64 62 60 P 58 3 2 4 5 REAL () 6 7 8 Figure 25. P3dB Load Pull Efficiency Contours (%) 8 8 22.5 6 22 5 20.5 3 20 2 19.5 P 1 3 4 5 REAL () 6 –26 4 –22 –16 E –14 3 –12 2 P 0 18.5 –1 –20 –24 5 1 19 0 2 –18 6 21 E 4 7 21.5 IMAGINARY () 7 IMAGINARY () 72 3 –1 Figure 24. P3dB Load Pull Output Power Contours (dBm) –2 E 4 0 51 51.5 2 5 1 52 –1 58 6 51 5 IMAGINARY () 7 50.5 6 –2 8 50 –10 –1 8 7 Figure 26. P3dB Load Pull Gain Contours (dB) NOTE: –2 2 3 4 5 REAL () 6 7 8 Figure 27. P3dB Load Pull AM/PM Contours () P = Maximum Output Power E = Maximum Drain Efficiency Gain Drain Efficiency Linearity Output Power A2T09VD250NR1 14 RF Device Data Freescale Semiconductor, Inc. PACKAGE DIMENSIONS A2T09VD250NR1 RF Device Data Freescale Semiconductor, Inc. 15 A2T09VD250NR1 16 RF Device Data Freescale Semiconductor, Inc. A2T09VD250NR1 RF Device Data Freescale Semiconductor, Inc. 17 PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS Refer to the following resources to aid your design process. Application Notes  AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins  EB212: Using Data Sheet Impedances for RF LDMOS Devices Software  Electromigration MTTF Calculator  RF High Power Model  s2p File Development Tools  Printed Circuit Boards To Download Resources Specific to a Given Part Number: 1. Go to http://www.freescale.com/rf 2. Search by part number 3. Click part number link 4. Choose the desired resource from the drop down menu REVISION HISTORY The following table summarizes revisions to this document. Revision Date 0 Aug. 2015 Description  Initial Release of Data Sheet A2T09VD250NR1 18 RF Device Data Freescale Semiconductor, Inc. How to Reach Us: Home Page: freescale.com Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions. Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. E 2015 Freescale Semiconductor, Inc. A2T09VD250NR1 Document Number: RF Device Data A2T09VD250N Rev. 0, 8/2015Semiconductor, Inc. Freescale 19
A2T09VD250NR1 价格&库存

很抱歉,暂时无法提供与“A2T09VD250NR1”相匹配的价格&库存,您可以联系我们找货

免费人工找货