0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
FDU2572

FDU2572

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    TO-251-3

  • 描述:

    MOSFET N-CH 150V 29A I-PAK

  • 数据手册
  • 价格&库存
FDU2572 数据手册
FDD2572 / FDU2572 N-Channel PowerTrench® MOSFET 150V, 29A, 54mΩ Features Applications • r DS(ON) = 45mΩ (Typ.), VGS = 10V, ID = 9A • DC/DC converters and Off-Line UPS • Qg(tot) = 26nC (Typ.), VGS = 10V • Distributed Power Architectures and VRMs • Low Miller Charge • Low • Primary Switch for 24V and 48V Systems Q RR Body Diode • UIS Capability (Single Pulse and Repetitive Pulse) • High Voltage Synchronous Rectifier Formerly developmental type 82860 DRAIN (FLANGE) D SOURCE DRAIN DRAIN (FLANGE) GATE GATE G SOURCE TO-252AA TO-251AA FDD SERIES FDU SERIES S MOSFET Maximum Ratings TC = 25°C unless otherwise noted Symbol V DSS Drain to Source Voltage Parameter Ratings 150 Units V VGS Gate to Source Voltage ±20 V Continuous (TC = 25oC, VGS = 10V) 29 A Continuous (TC = 100 C, VGS = 10V) 20 A Drain Current ID o Continuous (Tamb = 25oC, VGS = 10V, R θJA = 52oC/W) Pulsed E AS PD TJ, TSTG 4 Figure 4 A Single Pulse Avalanche Energy (Note 1) 36 mJ Power dissipation 135 W Derate above 25oC 0.9 W/oC Operating and Storage Temperature o -55 to 175 C Thermal Characteristics RθJC Thermal Resistance Junction to Case TO-251, TO-252 1.11 o C/W RθJA Thermal Resistance Junction to Ambient TO-251, TO-252 100 o C/W Thermal Resistance Junction to Ambient TO-252, 1in2 copper pad area 52 o C/W RθJA ©2002 Fairchild Semiconductor Corporation FDD2572 / FDU2572 Rev. 2.3 FDD2572 / FDU2572 July 2014 Device Marking FDD2572 Device FDD2572 Package TO-252AA Reel Size 330mm Tape Width 16mm Quantity 2500 units FDU2572 FDU2572 TO-251AA Tube N/A 75 units Electrical Characteristics TC = 25°C unless otherwise noted Symbol Parameter Test Conditions Min Typ Max Units 150 - - - V - 1 - - 250 VGS = ±20V - - ±100 nA VGS = VDS, ID = 250µA 2 - 4 V - 0.045 0.054 ID = 4A, VGS = 6V, - 0.050 0.075 - 0.126 0.146 - 1770 - - 183 - pF - 40 - pF nC Off Characteristics B VDSS Drain to Source Breakdown Voltage IDSS Zero Gate Voltage Drain Current IGSS Gate to Source Leakage Current ID = 250µA, VGS = 0V V DS = 120V VGS = 0V TC = 150o µA On Characteristics VGS(TH) Gate to Source Threshold Voltage rDS(ON) Drain to Source On Resistance ID=9A, VGS=10V ID=9A, VGS=10V, TC=175oC Ω Dynamic Characteristics CISS Input Capacitance COSS Output Capacitance CRSS Reverse Transfer Capacitance Qg(TOT) Total Gate Charge at 10V VGS = 0V to 10V - 26 34 Qg(TH) Threshold Gate Charge VGS = 0V to 2V - 3.3 4.3 nC Qgs Gate to Source Gate Charge - 8 - nC Qgs2 Gate Charge Threshold to Plateau Qgd Gate to Drain “Miller” Charge VDS = 25V, VGS = 0V, f = 1MHz VDD = 75V ID = 9A Ig = 1.0mA pF - 5 - nC - 6 - nC Resistive Switching Characteristics (VGS = 10V) tON Turn-On T ime - - 36 ns td(ON) Turn-On Delay Time - 11 - ns tr Rise Time td(OFF) Turn-Off Delay Time tf tOFF - 14 - ns - 31 - ns Fall Time - 14 - ns Turn-Off Time - - 66 ns V VDD = 75V, ID = 9A V GS = 10V, RGS = 11.0Ω Drain-Source Diode Characteristics V SD Source to Drain Diode Voltage trr Reverse Recovery Time QRR Reverse Recovered Charge ISD = 9A - - 1.25 ISD = 4A - - 1.0 V - - 74 ns ISD = 9A, dISD/dt =100A/µs - - 169 nC ISD = 9A, dISD/dt =100A/µs Notes: 1: Starting TJ = 25°C, L = 0.2mH, IAS = 19A. ©2002 Fairchild Semiconductor Corporation FDD2572 / FDU2572 Rev. 2.3 FDD2572 / FDU2572 Package Marking and Ordering Information FDD2572 / FDU2572 Typical Characteristics TC = 25°C unless otherwise noted 40 VGS = 10V 35 1.0 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.2 0.8 0.6 0.4 30 25 20 15 10 0.2 5 0 0 25 50 75 100 150 125 175 0 25 TC , CASE TEMPERATURE (oC) Figure 1. Normalized Power Dissipation vs Ambient Temperature 50 75 100 125 TC, CASE TEMPERATURE (oC) 150 175 Figure 2. Maximum Continuous Drain Current vs Case Temperature 2.0 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 ZθJC, NORMALIZED THERMAL IMPEDANCE 1.0 PDM 0.1 SINGLE PULSE t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC 0.01 10-5 10-4 10-3 10-2 10-1 t , RECTANGULAR PULSE DURATION (s) 100 101 Figure 3. Normalized Maximum Transient Thermal Impedance 500 TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: IDM, PEAK CURRENT (A) TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 175 - TC I = I25 150 100 VGS = 10V 20 10-5 10-4 10-3 10-2 t , PULSE WIDTH (s) 10-1 100 101 Figure 4. Peak Current Capability ©2002 Fairchild Semiconductor Corporation FDD2572 / FDU2572 Rev. 2.3 FDD2572 / FDU2572 Typical Characteristics TC = 25°C unless otherwise noted 100 1000 STARTING TJ = 25oC IAS, AVALANCHE CURRENT (A) ID, DRAIN CURRENT (A) 10µs 100 100µs 1ms 10 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 10ms 1 SINGLE PULSE TJ = MAX RATED TC = 25oC DC STARTING TJ = 150oC 1 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] 0.1 0.1 1 10 100 VDS, DRAIN TO SOURCE VOLTAGE (V) 0.001 200 1 Figure 6. Unclamped Inductive Switching Capability 60 60 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V TC = 25oC 40 TJ = 175o C 30 TJ = 25o C 20 VGS = 10V 50 ID, DRAIN CURRENT (A) 50 TJ = -55oC 10 40 VGS = 7V VGS = 6V 30 VGS = 5V 20 10 0 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 0 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VGS , GATE TO SOURCE VOLTAGE (V) 0 6.5 Figure 7. Transfer Characteristics 1 2 3 4 VDS , DRAIN TO SOURCE VOLTAGE (V) 5 Figure 8. Saturation Characteristics 3.0 60 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX NORMALIZED DRAIN TO SOURCE ON RESISTANCE DRAIN TO SOURCE ON RESISTANCE (m Ω) 0.01 0.1 tAV, TIME IN AVALANCHE (ms) NOTE: Refer to Fairchild Application Notes AN7514 and AN7515 Figure 5. Forward Bias Safe Operating Area ID , DRAIN CURRENT (A) 10 VGS = 6V 55 50 VGS = 10V 45 40 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 2.5 2.0 1.5 1.0 0.5 VGS = 10V, ID =9A 0 0 10 20 30 ID, DRAIN CURRENT (A) Figure 9. Drain to Source On Resistance vs Drain Current ©2002 Fairchild Semiconductor Corporation -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) 200 Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature FDD2572 / FDU2572 Rev. 2.3 FDD2572 / FDU2572 Typical Characteristics TC = 25°C unless otherwise noted 1.2 1.4 VGS = VDS, ID = 250µA NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE ID = 250µA NORMALIZED GATE THRESHOLD VOLTAGE 1.2 1.0 0.8 0.6 0.4 1.1 1.0 0.9 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) 200 Figure 11. Normalized Gate Threshold Voltage vs Junction Temperature -80 -40 0 40 80 120 160 TJ , JUNCTION TEMPERATURE (oC) 200 Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature 1000 10 1000 C, CAPACITANCE (pF) VGS , GATE TO SOURCE VOLTAGE (V) VDD = 75V CISS = CGS + CGD COSS ≅ CDS + C GD CRSS = CGD 100 VGS = 0V, f = 1MHz 10 8 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 9A ID = 4A 2 0 0.1 1 10 VDS , DRAIN TO SOURCE VOLTAGE (V) Figure 13. Capacitance vs Drain to Source Voltage ©2002 Fairchild Semiconductor Corporation 150 0 5 10 15 20 Qg , GATE CHARGE (nC) 25 30 Figure 14. Gate Charge Waveforms for Constant Gate Currents FDD2572 / FDU2572 Rev. 2.3 VDS BVDSS tP VDS L IAS VDD VARY tP TO OBTAIN + RG REQUIRED PEAK IAS VDD - VGS DUT tP IAS 0V 0 0.01Ω tAV Figure 15. Unclamped Energy Test Circuit Figure 16. Unclamped Energy Waveforms VDS VDD Qg(TOT) VDS L VGS = 10V VGS + VDD VGS - VGS = 2V DUT Qgs2 0 Ig(REF) Qg(TH) Qgs Qgd Ig(REF) 0 Figure 17. Gate Charge Test Circuit Figure 18. Gate Charge Waveforms VDS tON tOFF td(ON) td(OFF) RL tf tr VDS 90% 90% + VGS VDD - 10% 0 10% DUT 90% RGS VGS 50% 50% PULSE WIDTH VGS 0 Figure 19. Switching Time Test Circuit ©2002 Fairchild Semiconductor Corporation 10% Figure 20. Switching Time Waveforms FDD2572 / FDU2572 Rev. 2.3 FDD2572 / FDU2572 Test Circuits and Waveforms FDD2572 / FDU2572 Thermal Resistance vs. Mounting Pad Area (T –T ) JM A P D M = ----------------------------R θ JA (EQ. 1) In us ing su rface mount de vices suc h as t he TO-252 package, the environment in which it is applied will have a significant in fluence o n t he p art’s cur rent and max imum power d issipation ratings. Precise d etermination of PDM is complex and influenced by many factors: 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 125 RθJA = 33.32+ 23.84/(0.268+Area) EQ.2 RθJA = 33.32+ 154/(1.73+Area) EQ.3 100 RθJA (oC/W) The max imum r ated j unction t emperature, T JM , an d t he thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM , in an application. T herefore t he a pplication’s amb ient temperature, T A (oC), an d t hermal resistance R θJA (oC/W) must be reviewed to en sure t hat T JM is ne ver ex ceeded. Equation 1 ma thematically represents the relationship and serves as the basis for establishing the rating of the part. 75 50 25 0.01 (0.0645) 0.1 (0.645) 1 10 (6.45) (64.5) AREA, TOP COPPER AREA in2 (cm2) Figure 21. Thermal Resistance vs Mounting Pad Area 2. T he number o f co pper la yers and t he t hickness of t he board. 3. The use of external heat sinks. 4. The use of thermal vias. 5. Air flow and board orientation. 6. F or no n s teady st ate ap plications, t he pu lse w idth, t he duty cycle and the transient thermal response of the part, the board and the environment they are in. Fairchild p rovides t hermal information to as sist t he designer’s preliminary ap plication ev aluation. F igure 21 defines t he R θJA f or t he de vice as a f unction of t he t op copper ( component si de) ar ea. T his is f or a h orizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction t emperature o r p ower di ssipation. P ulse applications ca n be ev aluated us ing t he F airchild device Spice t hermal model or m anually u tilizing t he no rmalized maximum transient thermal impedance curve. Thermal resistances co rresponding to ot her co pper areas can be obtained f rom F igure 21 or by calculation using Equation 2 or 3. Equation 2 is used for copper area defined in inches s quare an d e quation 3 i s for ar ea i n ce ntimeter square. The area, in square inches or square centimeters is the top copper area including the gate and source pads. R θ JA 23.84 ( 0.268 + Area ) = 33.32 + ------------------------------------- (EQ. 2) Area in Inches Squared R θ JA 154 ( 1.73 + Area ) = 33.32 + ---------------------------------- (EQ. 3) Area in Centimeters Squared ©2002 Fairchild Semiconductor Corporation FDD2572 / FDU2572 Rev. 2.3 rev April 2002 LDRAIN DPLCAP 10 Dbody 7 5 DbodyMOD Dbreak 5 11 DbreakMOD Dplcap 10 5 DplcapMOD RSLC2 5 51 EVTHRES + 19 8 + LGATE GATE 1 ESLC 11 + 17 EBREAK 18 - 50 RDRAIN 6 8 ESG DBREAK + Lgate 1 9 1.21e-9 Ldrain 2 5 1.0e-9 Lsource 3 7 4.45e-9 RLDRAIN RSLC1 51 Ebreak 11 7 17 18 160 Eds 14 8 5 8 1 Egs 13 8 6 8 1 Esg 6 10 6 8 1 Evthres 6 21 19 8 1 Evtemp 20 6 18 22 1 It 8 17 1 DRAIN 2 5 EVTEMP RGATE + 18 22 9 20 21 16 DBODY MWEAK 6 MMED MSTRO RLGATE LSOURCE CIN 8 7 RSOURCE RLgate 1 9 12.1 RLdrain 2 5 10 RLsource 3 7 44.5 Mmed 16 6 8 8 MmedMOD Mstro 16 6 8 8 MstroMOD Mweak 16 21 8 8 MweakMOD S1A 12 S2A S1B CA Rbreak 17 18 RbreakMOD 1 Rdrain 50 16 RdrainMOD 35e-3 Rgate 9 20 1.6 RSLC1 5 51 RSLCMOD 1.0e-6 RSLC2 5 50 1.0e3 Rsource 8 7 RsourceMOD 3.0e-3 Rvthres 22 8 RvthresMOD 1 Rvtemp 18 19 RvtempMOD 1 S1a 6 12 13 8 S1AMOD S1b 13 12 13 8 S1BMOD S2a 6 15 14 13 S2AMOD S2b 13 15 14 13 S2BMOD 17 18 RVTEMP S2B 13 CB 6 8 5 8 EDS - 19 VBAT + IT 14 + + EGS RLSOURCE RBREAK 15 14 13 13 8 SOURCE 3 - 8 22 RVTHRES Vbat 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*52),3))} .MODEL DbodyMOD D (IS=6.0E-11 N=1.14 RS=3.9e-3 TRS1=3.5e-3 TRS2=3.0e-6 + CJO=1.1e-9 M=0.63 TT=6.2e-8 XTI=4.5) .MODEL DbreakMOD D (RS=10 TRS1=5.0e-3 TRS2=-5.0e-6) .MODEL DplcapMOD D (CJO=3.5e-10 IS=1.0e-30 N=10 M=0.65) .MODEL MmedMOD NMOS (VTO=3.55 KP=3 IS=1e-40 N=10 TOX=1 L=1u W=1u RG=1.6) .MODEL MstroMOD NMOS (VTO=4.0 KP=25 IS=1e-30 N=10 TOX=1 L=1u W=1u) .MODEL MweakMOD NMOS (VTO=2.95 KP=0.05 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=16 RS=0.1) .MODEL RbreakMOD RES (TC1=1.15e-3 TC2=-9.5e-7) .MODEL RdrainMOD RES (TC1=9.0e-3 TC2=2.5e-5) .MODEL RSLCMOD RES (TC1=3.0e-3 TC2=2.5e-6) .MODEL RsourceMOD RES (TC1=4.0e-3 TC2=1.0e-6) .MODEL RvthresMOD RES (TC1=-4.1e-3 TC2=-1.0e-5) .MODEL RvtempMOD RES (TC1=-4.0e-3 TC2=1.0e-6) .MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-5.0 VOFF=-3.5) .MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-3.5 VOFF=-5.0) .MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.5 VOFF=0.3) .MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=0.3 VOFF=-0.5) .ENDS Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. ©2002 Fairchild Semiconductor Corporation FDD2572 / FDU2572 Rev. 2.3 FDD2572 / FDU2572 PSPICE Electrical Model .SUBCKT FDD2572 2 1 3 ; CA 12 8 5.5e-10 Cb 15 14 7.4e-10 Cin 6 8 1.7e-9 dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod EVTHRES + 19 8 + LGATE spe.ebreak n11 n7 n17 n18 = 160 GATE 1 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evthres n6 n21 n19 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 RDRAIN 6 8 ESG DBREAK 50 - EVTEMP RGATE + 18 22 9 20 21 11 DBODY 16 MWEAK 6 EBREAK + 17 18 - MMED MSTRO RLGATE CIN 8 LSOURCE 7 SOURCE 3 RSOURCE RLSOURCE i.it n8 n17 = 1 l.lgate n1 n9 = 1.21e-9 l.ldrain n2 n5 = 1.0e-9 l.lsource n3 n7 = 4.45e-9 S1A 12 S2A S1B CA res.rlgate n1 n9 = 12.1 res.rldrain n2 n5 = 10 res.rlsource n3 n7 = 44.5 15 14 13 13 8 RBREAK 17 18 RVTEMP S2B 13 CB + - IT 14 + 6 8 EGS 19 VBAT 5 8 EDS - m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u + 8 22 RVTHRES res.rbreak n17 n18 = 1, tc1=1.15e-3,tc2=-9.5e-7 res.rdrain n50 n16 = 35e-3, tc1=9.0e-3,tc2=2.5e-5 res.rgate n9 n20 = 1.6 res.rslc1 n5 n51 = 1.0e-6, tc1=3.0e-3,tc2=2.5e-6 res.rslc2 n5 n50 = 1.0e3 res.rsource n8 n7 = 3.0e-3, tc1=4.0e-3,tc2=1.0e-6 res.rvthres n22 n8 = 1, tc1=-4.1e-3,tc2=-1.0e-5 res.rvtemp n18 n19 = 1, tc1=-4.0e-3,tc2=1.0e-6 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/52))** 3))} } ©2002 Fairchild Semiconductor Corporation FDD2572 / FDU2572 Rev. 2.3 FDD2572 / FDU2572 SABER Electrical Model REV April 2002 ttemplate FDD2572 n2,n1,n3 electrical n2,n1,n3 { var i iscl dp..model dbodymod = (isl=6.0e-11,nl=1.14,rs=3.9e-3,trs1=3.5e-3,trs2=3.0e-6,cjo=1.1e-9,m=0.63,tt=6.2e-8,xti=4.5) dp..model dbreakmod = (rs=10,trs1=5.0e-3,trs2=-5.0e-6) dp..model dplcapmod = (cjo=3.5e-10,isl=10.0e-30,nl=10,m=0.65) m..model mmedmod = (type=_n,vto=3.55,kp=3,is=1e-40, tox=1) m..model mstrongmod = (type=_n,vto=4.0,kp=25,is=1e-30, tox=1) LDRAIN m..model mweakmod = (type=_n,vto=2.95,kp=0.05,is=1e-30, tox=1,rs=0.1) DPLCAP 5 DRAIN sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-5.0,voff=-3.5) 2 sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-3.5,voff=-5.0) 10 RLDRAIN sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-0.5,voff=0.3) RSLC1 sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=0.3,voff=-0.5) 51 RSLC2 c.ca n12 n8 = 5.5e-10 ISCL c.cb n15 n14 = 7.4e-10 c.cin n6 n8 = 1.7e-9 th JUNCTION FDD2572 CTHERM1 TH 6 3.8e-3 CTHERM2 6 5 4.0e-3 CTHERM3 5 4 4.2e-3 CTHERM4 4 3 4.3e-3 CTHERM5 3 2 8.5e-3 CTHERM6 2 TL 3.0e-2 RTHERM1 CTHERM1 6 RTHERM1 TH 6 5.5e-4 RTHERM2 6 5 5.0e-3 RTHERM3 5 4 4.5e-2 RTHERM4 4 3 10.5e-2 RTHERM5 3 2 3.7e-1 RTHERM6 2 TL 3.8e-1 CTHERM2 RTHERM2 5 SABER Thermal Model SABER thermal model FDD2572 template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 =3.8e-3 ctherm.ctherm2 6 5 =4.0e-3 ctherm.ctherm3 5 4 =4.2e-3 ctherm.ctherm4 4 3 =4.3e-3 ctherm.ctherm5 3 2 =8.5e-3 ctherm.ctherm6 2 tl =3.0e-2 rtherm.rtherm1 th 6 =5.5e-4 rtherm.rtherm2 6 5 =5.0e-3 rtherm.rtherm3 5 4 =4.5e-2 rtherm.rtherm4 4 3 =10.5e-2 rtherm.rtherm5 3 2 =3.7e-1 rtherm.rtherm6 2 tl =3.8e-1 } CTHERM3 RTHERM3 4 RTHERM4 CTHERM4 3 CTHERM5 RTHERM5 2 CTHERM6 RTHERM6 tl ©2002 Fairchild Semiconductor Corporation CASE FDD2572 / FDU2572 Rev. 2.3 FDD2572 / FDU2572 SPICE Thermal Model REV 26 April 2002 TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. F-PFS FRFET® SM Global Power Resource GreenBridge Green FPS Green FPS e-Series Gmax GTO IntelliMAX ISOPLANAR Making Small Speakers Sound Louder and Better™ MegaBuck MICROCOUPLER MicroFET MicroPak MicroPak2 MillerDrive MotionMax MotionGrid® MTi® MTx® MVN® mWSaver® OptoHiT OPTOLOGIC® AccuPower AttitudeEngine™ Awinda® AX-CAP®* BitSiC Build it Now CorePLUS CorePOWER CROSSVOLT CTL Current Transfer Logic DEUXPEED® Dual Cool™ EcoSPARK® EfficientMax ESBC ® ® Fairchild Fairchild Semiconductor® FACT Quiet Series FACT® FAST® FastvCore FETBench FPS OPTOPLANAR® ® Power Supply WebDesigner PowerTrench® PowerXS™ Programmable Active Droop QFET® QS Quiet Series RapidConfigure  Saving our world, 1mW/W/kW at a time™ SignalWise SmartMax SMART START Solutions for Your Success SPM® STEALTH SuperFET® SuperSOT-3 SuperSOT-6 SuperSOT-8 SupreMOS® SyncFET Sync-Lock™ ®* TinyBoost® TinyBuck® TinyCalc TinyLogic® TINYOPTO TinyPower TinyPWM TinyWire TranSiC TriFault Detect TRUECURRENT®* μSerDes UHC® Ultra FRFET UniFET VCX VisualMax VoltagePlus XS™ Xsens™ 仙童™ * Trademarks of System General Corporation, used under license by Fairchild Semiconductor. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT HTTP://WWW.FAIRCHILDSEMI.COM. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. AUTHORIZED USE Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer’s use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild’s product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild’s Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties. ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Advance Information Formative / In Design Preliminary First Production No Identification Needed Full Production Obsolete Not In Production Definition Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. Rev. I75 © Fairchild Semiconductor Corporation www.fairchildsemi.com
FDU2572 价格&库存

很抱歉,暂时无法提供与“FDU2572”相匹配的价格&库存,您可以联系我们找货

免费人工找货