0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MC100LVEL17DWG

MC100LVEL17DWG

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    SOIC20_300MIL

  • 描述:

    Differential Receiver IC 20-SOIC

  • 数据手册
  • 价格&库存
MC100LVEL17DWG 数据手册
3.3 V ECL Quad Differential Receiver MC100LVEL17 Description The MC100LVEL17 is a 3.3 V ECL, quad differential receiver. The device is functionally equivalent to the E116 device with the capability of operation from either a −3.3 V or +3.3 V supply voltage. Under open input conditions, the D input will be biased at VCC/2 and the D input will be pulled down to VEE. This operation will force the Q output LOW and ensure stability. The VBB pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to VBB as a switching reference voltage. VBB may also rebias AC coupled inputs. When used, decouple VBB and VCC via a 0.01 mF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, VBB should be left open. www.onsemi.com SOIC−20 WB DW SUFFIX CASE 751D−05 MARKING DIAGRAM* Features • • • • • • • • 325 ps Propagation Delay High Bandwidth Output Transitions The 100 Series Contains Temperature Compensation PECL Mode Operating Range: VCC = 3.0 V to 3.8 V with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = −3.0 V to −3.8 V Internal Input Pulldown Resistors D Inputs; Pullup and Pulldown on D Inputs Q Output will Default LOW with Inputs Open or at VEE These Devices are Pb-Free, Halogen Free and are RoHS Compliant 20 100LVEL17 AWLYYWWG 1 A WL YY WW G = Assembly Location = Wafer Lot = Year = Work Week = Pb-Free Package *For additional marking information, refer to Application Note AND8002/D. ORDERING INFORMATION Device Package Shipping† MC100LVEL17DWR2G SOIC−20 WB (Pb-Free) 1000 / Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. © Semiconductor Components Industries, LLC, 2016 March, 2016 − Rev. 10 1 Publication Order Number: MC100LVEL17/D MC100LVEL17 VCC Q0 Q0 Q1 Q1 Q2 Q2 Q3 Q3 VEE 20 19 18 17 16 15 14 13 12 11 1 2 3 4 5 6 7 8 9 10 VCC D0 D0 D1 D1 D2 D2 D3 D3 VBB Table 1. PIN DESCRIPTION PIN FUNCTION Dn, Dn Qn, Qn VBB VCC VEE ECL Differential Data Inputs ECL Differential Data Outputs Reference Voltage Output Positive Supply Negative Supply * All VCC pins are tied together on the die. Warning: All VCC and VEE pins must be externally connected to Power Supply to guarantee proper operation. Figure 1. Logic Diagram and Pinout: (Top View) Table 2. ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 kW Internal Input Pullup Resistor 75 kW ESD Protection Human Body Model Machine Model Charged Device Model > 2 kV > 200 V > 4 kV Moisture Sensitivity (Note 1) Level 3 Flammability Rating Oxygen Index: 28 to 34 UL 94 V−0 @ 0.125 in Transistor Count 141 Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. www.onsemi.com 2 MC100LVEL17 Table 3. MAXIMUM RATINGS Symbol Rating Unit VCC PECL Mode Power Supply Parameter VEE = 0 V Condition 1 Condition 2 8 to 0 V VEE NECL Mode Power Supply VCC = 0 V −8 to 0 V VI PECL Mode Input Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V 6 to 0 −6 to 0 V Iout Output Current Continuous Surge 50 100 mA IBB VBB Sink/Source ±0.5 mA TA Operating Temperature Range −40 to +85 °C Tstg Storage Temperature Range −65 to +150 °C qJA Thermal Resistance (Junction-to-Ambient) 0 lfpm 500 lfpm SOIC−20 WB SOIC−20 WB 90 60 °C/W qJC Thermal Resistance (Junction-to-Case) Standard Board SOIC−20 WB 30 to 35 °C/W Tsol Wave Solder (Pb-Free) < 2 to 3 sec @ 260°C 265 °C VI ≤ VCC VI ≥ VEE Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. Table 4. LVPECL DC CHARACTERISTICS (VCC = 3.3 V; VEE = 0.0 V (Note 1)) −40°C Symbol Characteristic Min Typ 25°C Max Min Typ 85°C Max Min Typ Max Unit IEE Power Supply Current 26 31 26 31 27 33 mA VOH Output HIGH Voltage (Note 2) 2215 2295 2420 2275 2345 2420 2275 2345 2420 mV VOL Output LOW Voltage (Note 2) 1470 1605 1745 1490 1595 1680 1490 1595 1680 mV VIH Input HIGH Voltage (Single-Ended) 2135 2420 2135 2420 2135 2420 mV VIL Input LOW Voltage (Single-Ended) 1490 1825 1490 1825 1490 1825 mV VBB Output Voltage Reference 1.92 2.04 1.92 2.04 1.92 2.04 V VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 3) Vpp < 500 mV Vpp ≥ 500 mV IIH Input HIGH Current IIL Input LOW Current Dn Dn V 1.3 1.5 2.9 2.9 1.2 1.4 150 0.5 −300 2.9 2.9 1.2 1.4 150 0.5 −300 2.9 2.9 150 0.5 −300 mA mA NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. 1. Input and output parameters vary 1:1 with VCC. VEE can vary ±0.3 V. 2. Outputs are terminated through a 50 W resistor to VCC − 2.0 V. 3. VIHCMR min varies 1:1 with VEE, max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between VPPmin and 1 V. www.onsemi.com 3 MC100LVEL17 Table 5. LVNECL DC CHARACTERISTICS (VCC = 0.0 V; VEE = −3.3 V (Note 1)) −40°C Symbol Characteristic Min 25°C Typ Max 26 31 Min 85°C Typ Max 26 31 Min Typ Max Unit 27 33 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 2) −1085 −1005 −880 −1025 −955 −880 −1025 −955 −880 mV VOL Output LOW Voltage (Note 2) −1830 −1695 −1555 −1810 −1705 −1620 −1810 −1705 −1620 mV VIH Input HIGH Voltage (Single-Ended) −1165 −880 −1165 −880 −1165 −880 mV VIL Input LOW Voltage (Single-Ended) −1810 −1475 −1810 −1475 −1810 −1475 mV VBB Output Voltage Reference −1.38 −1.26 −1.38 −1.26 −1.38 −1.26 V VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 3) Vpp < 500 mV Vpp ≥ 500 mV IIH Input HIGH Current IIL Input LOW Current Dn Dn V −2.0 −1.8 −0.4 −0.4 −2.1 −1.9 −0.4 −0.4 150 0.5 −300 −2.1 −1.9 −0.4 −0.4 150 0.5 −300 150 mA mA 0.5 −300 NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. 1. Input and output parameters vary 1:1 with VCC. VEE can vary ±0.3 V. 2. Outputs are terminated through a 50 W resistor to VCC − 2.0 V. 3. VIHCMR min varies 1:1 with VEE, max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between VPPmin and 1 V. Table 6. AC CHARACTERISTICS (VCC = 3.3 V; VEE = 0.0 V or VCC = 0.0 V; VEE = −3.3 V (Note 1)) −40°C Symbol Characteristic Min Typ 25°C Max Min Typ 85°C Max Min Typ Max 1.75 Unit GHz fmax Maximum Toggle Frequency tPLH tPHL Propagation Delay D to Q tSKEW Skew Output-to-Output (Note 2) Part-to-Part (Diff) (Note 2) Duty Cycle (Diff) (Note 3) tJITTER Random Clock Jitter (RMS) VPP Input Swing (Note 4) 150 1000 150 1000 150 1000 mV tr tf Output Rise/Fall Times Q (20%−80%) 280 550 280 550 280 550 ps Diff S.E. 330 280 530 580 350 300 550 600 75 200 25 360 310 75 200 25 560 610 75 200 25 0.7 ps ps ps NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. 1. VEE can vary ±0.3 V. 2. Skews are valid across specified voltage range, part−to−part skew is for a given temperature. 3. Duty cycle skew is the difference between a tPLH and tPHL propagation delay through a device. 4. VPP(min) is minimum input swing for which AC parameters guaranteed. The device has a DC gain of ≈ 40. www.onsemi.com 4 MC100LVEL17 Q Zo = 50 W D Receiver Device Driver Device Q D Zo = 50 W 50 W 50 W VTT VTT = VCC − 2.0 V Figure 2. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D − Termination of ECL Logic Devices) Resource Reference of Application Notes AN1405/D − ECL Clock Distribution Techniques AN1406/D − Designing with PECL (ECL at +5.0 V) AN1503/D − ECLinPSt I/O SPiCE Modeling Kit AN1504/D − Metastability and the ECLinPS Family AN1568/D − Interfacing Between LVDS and ECL AN1672/D − The ECL Translator Guide AND8001/D − Odd Number Counters Design AND8002/D − Marking and Date Codes AND8020/D − Termination of ECL Logic Devices AND8066/D − Interfacing with ECLinPS AND8090/D − AC Characteristics of ECL Devices ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. www.onsemi.com 5 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS SOIC−20 WB CASE 751D−05 ISSUE H DATE 22 APR 2015 SCALE 1:1 A 20 q X 45 _ M E h 0.25 H NOTES: 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION. 11 B M D 1 10 20X B b 0.25 M T A S B DIM A A1 b c D E e H h L q S L A 18X e SEATING PLANE A1 c T GENERIC MARKING DIAGRAM* RECOMMENDED SOLDERING FOOTPRINT* 20 20X 20X 1.30 0.52 20 XXXXXXXXXXX XXXXXXXXXXX AWLYYWWG 11 1 11.00 1 XXXXX A WL YY WW G 10 1.27 PITCH DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. DOCUMENT NUMBER: DESCRIPTION: MILLIMETERS MIN MAX 2.35 2.65 0.10 0.25 0.35 0.49 0.23 0.32 12.65 12.95 7.40 7.60 1.27 BSC 10.05 10.55 0.25 0.75 0.50 0.90 0_ 7_ 98ASB42343B SOIC−20 WB = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “G”, may or may not be present. Some products may not follow the Generic Marking. Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 onsemi and are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
MC100LVEL17DWG 价格&库存

很抱歉,暂时无法提供与“MC100LVEL17DWG”相匹配的价格&库存,您可以联系我们找货

免费人工找货