0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BD5227NVX-2CTL

BD5227NVX-2CTL

  • 厂商:

    ROHM(罗姆)

  • 封装:

    SSON004R1010

  • 描述:

    ROHM - BD5227NVX-2CTL - Voltage Detector, 1 Monitor, 2.7 V, Active-Low, SSON004R1010-4, -40 °C to 12...

  • 数据手册
  • 价格&库存
BD5227NVX-2CTL 数据手册
Datasheet Voltage Detector (Reset) IC Series for Automotive Application Free Time Delay Setting CMOS Voltage Detector (Reset) IC BD52xxNVX-2C Series General Description Key Specifications  Detection Voltage: ROHM's Free Time Delay Setting CMOS Voltage Detector ICs are highly accurate, with ultra-low current consumption feature that uses CMOS process. Delay time setting can be control by an external capacitor. The lineup includes N-channel open drain output (BD52xxNVX-2C). The devices are available for specific detection voltage ranging from 2.6 V to 3.1 V with 0.1 V increment. The time delay has ±50 % accuracy in the overall operating temperature range of -40 °C to 125 °C. 2.6 V to 3.1 V (Typ) 0.1 V step  Ultra-Low Current Consumption: 270 nA (Typ)  Time Delay Accuracy: ±50 % (-40 °C to +125 °C, CT pin capacitor ≥ 1 nF) Special Characteristics  Detection Voltage Accuracy: ±2.5 % (VDET=2.6 V to 3.1 V) Features      Package AEC-Q100 Qualified (Note 1) Nano Energy Delay Time Setting Controlled by External Capacitor Nch Open Drain Output Type Miniature Surface-mount Package SSON004R1010: (Note 1) Grade 1 W(Typ) x D(Typ) x H(Max) 1.00 mm x 1.00 mm x 0.60 mm Application All automotive devices that requires voltage detection Typical Application Circuit VDD1 VDD2 RL Microcontroller CVDD BD52xxNVX-2C CCT RST (Noise-reduction Capacitor) CL GND Figure 1. Open Drain Output Type BD52xxNVX-2C Series Pin Configuration Pin Description SSON004R1010 CT 4 VOUT 3 VOUT 3 CT 4 PIN No. 1 2 3 Pin 1 Mark EXP-PAD 4 1 GND 2 VDD TOP VIEW 2 VDD 1 GND - BOTTOM VIEW SSON004R1010 PIN NAME Function GND GND VDD Power supply voltage VOUT Output pin Capacitor connection pin for CT output delay time setting Same potential with substrate voltage (VDD), it is EXP-PAD recommended to connect to VDD or can be left open Nano Energy is a combination of technologies which realizes ultra low quiescent current operation. ○Product structure:Silicon monolithic integrated circuit www.rohm.com © 2018 ROHM Co., Ltd. All rights reserved. TSZ22111 • 14 • 001 ○This product has no designed protection against radioactive rays 1/19 TSZ02201-0GIG2G600050-1-2 31.Jul.2018 Rev.002 BD52xxNVX-2C Series Block Diagram VDD VOUT Delay Delay Circuit Vref T (Note) (Note) (Note) GND (Note) Parasitic Diode CT Figure 2. BD52xxNVX-2C Series www.rohm.com © 2018 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 2/19 TSZ02201-0GIG2G600050-1-2 31.Jul.2018 Rev.002 BD52xxNVX-2C Series Ordering Information B D 5 2 x x N V X - 2 C T L Detection Voltage Package Product Rank 26 : 2.6 V NVX : SSON004R1010 C : for Automotive ↓ 0.1 V step 31 : 3.1 V Packing and Forming Specification TL : Embossed tape and reel Lineup Output Type Detection Voltage 3.1 V 3.0 V 2.9 V 2.8 V 2.7 V 2.6 V Open Drain Part Number Marking 6l 5l 4l 3l 2l 1l BD5231NVX BD5230NVX BD5229NVX BD5228NVX BD5227NVX BD5226NVX Marking Diagram SSON004R1010 (TOP VIEW) LOT Number Part Number Marking Pin 1 Mark www.rohm.com © 2018 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 3/19 TSZ02201-0GIG2G600050-1-2 31.Jul.2018 Rev.002 BD52xxNVX-2C Series Absolute Maximum Ratings (Ta=25 °C) Parameter Power Supply Voltage Output Voltage Nch Open Drain Output Output Current Maximum Junction Temperature Storage Temperature Range Symbol VDD - GND VOUT IO Tjmax Tstg Limit -0.3 to +7 GND-0.3 to +7 70 +150 -55 to +150 Unit V V mA °C °C Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over the absolute maximum ratings. Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by increasing board size and copper area so as not to exceed the maximum junction temperature rating. Thermal Resistance(Note 1) Parameter Symbol Thermal Resistance (Typ) Unit 1s(Note 3) 2s2p(Note 4) θJA 450.2 97.1 °C/W ΨJT 99 22 °C/W SSON004R1010 Junction to Ambient Junction to Top Characterization Parameter (Note 2) (Note 1) Based on JESD51-2A(Still-Air). (Note 2) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside surface of the component package. (Note 3) Using a PCB board based on JESD51-3. (Note 4) Using a PCB board based on JESD51-5, 7. Layer Number of Measurement Board Single Material Board Size FR-4 114.3 mm x 76.2 mm x 1.57 mmt Top Copper Pattern Thickness Footprints and Traces 70 μm Layer Number of Measurement Board 4 Layers Material Board Size FR-4 114.3 mm x 76.2 mm x 1.6 mmt Top Thermal Via(Note 5) Pitch Diameter 1.20 mm Φ0.30 mm 2 Internal Layers Bottom Copper Pattern Thickness Copper Pattern Thickness Copper Pattern Thickness Footprints and Traces 70 μm 74.2 mm x 74.2 mm 35 μm 74.2 mm x 74.2 mm 70 μm (Note 5) This thermal via connects with the copper pattern of all layers. Recommended Operating Conditions Parameter Operating Temperature www.rohm.com © 2018 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 Symbol Topr 4/19 Min -40 Typ +25 Max +125 Unit °C TSZ02201-0GIG2G600050-1-2 31.Jul.2018 Rev.002 BD52xxNVX-2C Series Electrical Characteristics (Unless otherwise specified Ta=-40 °C to +125 °C, VDD=0.8 V to 6.0 V) Parameter Symbol Detection Voltage VDET Hysteresis Voltage ∆ VDET Circuit Current when ON Circuit Current when OFF Minimum Operating Voltage IDD1 IDD2 VOPL “Low” Output Voltage(Nch) VOL Output Leak Current Ileak Delay Time(L→H) tPLH Condition VDET=2.6 V to 3.1 V, VDD=H→L, RL=100 kΩ (Note 2) VDD=L→H→L, RL=100 kΩ VDD=VDET-0.2 V VDD=VDET+0.5 V VOL≤0.4 V, RL=100 kΩ (Note 2) VDD=1.2 V, ISINK=1.0 mA, VDET=2.6 V to 3.1 V VDD=2.4 V, ISINK=2.0 mA, VDET=2.6 V to 3.1 V VDD=VDS=6 V VOUT=GND→50 %, CCT=0.01 μF (Note 3) (Note 4) Min VDET(T) ×0.975 Limit Typ VDET(T) (Note 1) Max VDET(T) ×1.025 Unit V VDET ×0.035 0.80 VDET ×0.05 0.23 0.27 - VDET ×0.065 1.50 1.60 - - - 0.4 - - 0.4 - - 1.0 µA 27.7 55.5 83.2 ms V µA µA V V (Note 1) VDET(T): Standard Detection Voltage (2.6 V to 3.1 V, 0.1 V step) (Note 2) RL: Pull-up resistor connected between VOUT and power supply (Note 3) tPLH: VDD=(VDET(T)–0.5 V) → (VDET(T)+0.5 V) for VDET=2.6 V to 3.1 V (Note 4) CT delay capacitor range: open to 4.7 µF www.rohm.com © 2018 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 5/19 TSZ02201-0GIG2G600050-1-2 31.Jul.2018 Rev.002 BD52xxNVX-2C Series Typical Performance Curves 0.6 1.0 BD5229NVX-2C BD5229NVX-2C 0.9 0.5 Circuit Current : IDD[µA] Circuit Current : IDD[µA] 0.8 Ta=+125 °C 0.7 0.6 Ta=+105 °C 0.5 Ta=+25 °C 0.4 0.3 0.2 0.4 0.3 VDD=VDET-0.2 V 0.2 0.1 Ta=-40 °C 0.1 0.0 0.0 0 1 2 3 4 5 Power Supply Voltage : VDD[V] -40 -25 -10 5 20 35 50 65 80 95 110 125 Temperature : Ta[°C] 6 Figure 4. Circuit Current vs Temperature Figure 3. Circuit Current vs Power Supply Voltage 6.0 3.10 BD5229NVX-2C 3.05 Detection Voltage : VDET[V] 5.0 Detection Voltage : VDET[V] VDD=VDET+0.5 V 4.0 3.0 2.0 1.0 BD5229NVX-2C 3.00 2.95 2.90 2.85 2.80 2.75 0.0 2.70 2.4 2.6 2.8 3.0 3.2 Power Supply Voltage : VDD[V] 3.4 -40 -25 -10 5 20 35 50 65 80 95 110 125 Temperature : Ta[°C] Figure 5. Detection Voltage vs Power Supply Voltage www.rohm.com © 2018 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 Figure 6. Detection Voltage vs Temperature 6/19 TSZ02201-0GIG2G600050-1-2 31.Jul.2018 Rev.002 BD52xxNVX-2C Series Typical Performance Curves - continued 6.0 6.0 BD5229NVX-2C BD5229NVX-2C 5.0 5.0 4.0 Output Voltage : VOUT[V] Output Voltage : VOUT[V] Ta=+125 °C Ta=+105 °C Ta=+25 °C 3.0 Ta=-40 °C 2.0 4.0 3.0 Ta=+125 °C 2.0 Ta=+105 °C 1.0 1.0 0.0 0.0 Ta=+25 °C Ta=-40 °C 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Power Supply Voltage : VDD[V] 0.0 4.0 Figure 7. I/O Characteristics (VOUT Pull-up to 5 V, RL=100 kΩ) 4.0 1.0 BD5229NVX-2C Minimum Operating Voltage : VOPL[V] Minimum Operating Voltage : VOPL[V] 1.0 1.5 2.0 2.5 3.0 3.5 Power Supply Voltage : VDD[V] Figure 8. I/O Characteristics (VOUT Pull-up to VDD, RL=100 kΩ) 1.0 0.9 0.5 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.9 BD5229NVX-2C CC 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.0 -40 -25 -10 5 -40 -25 -10 20 35 50 65 80 95 110 125 Temperature : Ta[°C] 20 35 50 65 80 95 110 125 Temperature : Ta[°C] Figure 10. Minimum Operating Voltage vs Temperature (VOUT Pull-up to VDD, RL=100 kΩ) Figure 9. Minimum Operating Voltage vs Temperature (VOUT Pull-up to 5 V, RL=100 kΩ) www.rohm.com © 2018 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 5 7/19 TSZ02201-0GIG2G600050-1-2 31.Jul.2018 Rev.002 BD52xxNVX-2C Series Typical Performance Curves - continued 100 100 BD5229NVX-2C 80 70 60 50 40 30 20 10 80 70 60 50 40 30 20 10 0 0 -40 -25 -10 5 20 35 50 65 80 95 110 125 Temperature : Ta[°C] -40 -25 -10 5 20 35 50 65 80 95 110 125 Temperature : Ta [°C] Figure 12. Output Delay Time (H→L) vs Temperature Figure 11. Output Delay Time (L→H) vs Temperature (CCT=10 nF) 100 100,000 BD5229NVX-2C 90 Ta=-40 °C 10,000 Delay Time (H→L) : tPHL[µs] Delay Time (L→H) : tPLH[ms] BD5229NVX-2C 90 Delay Time (H→L) : tPHL[µs] Delay Time (L→H) : tPLH[ms] 90 Ta=+25 °C 1,000 100 Ta=+105 °C 10 Ta=+125 °C 80 70 0.01 0.1 1 CT Pin Capacitance : CCT[µF] 10 Figure 13. Output Delay Time (L→H) vs CT Pin Capacitance www.rohm.com © 2018 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 8/19 Ta=-40 °C 60 50 Ta=+25 °C 40 30 20 10 1 0.001 BD5229NVX-2C 0 0.001 Ta=+105 °C Ta=+125 °C 0.01 0.1 1 CT Pin Capacitance : CCT[µF] 10 Figure 14. Output Delay Time (H→L) vs CT Pin Capacitance TSZ02201-0GIG2G600050-1-2 31.Jul.2018 Rev.002 BD52xxNVX-2C Series Typical Performance Curves - continued 70 140 60 120 VDD=2.0 V "Low" Output Current : IOL[mA] "Low" Output Current : IOL[mA] BD5229NVX-2C 50 VDD=1.8 V 40 30 VDD=1.2 V 20 10 VDD=0.8 V Ta=-40 °C 100 Ta=+25 °C 80 60 Ta=+105 °C 40 Ta=+125 °C 20 BD5229NVX-2C 0 0 0.0 0.5 1.0 1.5 2.0 Drain-Source Voltage : VDS[V] 0.0 2.5 Figure 15. “Low” Output Current vs Drain-Source Voltage www.rohm.com © 2018 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Power Supply Voltage : VDD[V] 4.0 Figure 16. “Low” Output Current vs Power Supply Voltage (VDS=0.5 V) 9/19 TSZ02201-0GIG2G600050-1-2 31.Jul.2018 Rev.002 BD52xxNVX-2C Series Application Information Operation Description For the open drain type (Figure 17), the detection and release voltage are used as threshold voltages. When the voltage applied to the VDD reaches the applicable threshold voltage, the VOUT level switches from either “H”→“L” or from “L”→“H”. BD52xxNVX-2C series have delay time function, which set tPLH (output “L”→”H”) using an external capacitor connected in CT pin (CCT). Because the BD52xxNVX-2C series uses an open drain output type, it is necessary to connect a pull up resistor to V DD or another power supply. [In this case, the output (VOUT) “H” voltage becomes VDD or the voltage of the other power supply]. VDD VOUT Vref Delay Circuit GND CT Figure 17. (BD52xxNVX-2C type internal block diagram) Setting of Detector Delay Time Delay time L→H (tPLH) is the time when VOUT rises to 1/2 of VDD after VDD rises up and beyond the release voltage (VDET+∆VDET). Delay time L→H (tPLH) is determined by CT capacitor and can be calculated from the following formula. When CT capacitor ≥ 1nF, tCTO has less effect and tPLH computation is shown on Example No.2. The result has ±50 % tolerance within the operating temperature range of -40 °C to +125 °C. Formula: (Ta=25 °C) 𝑡𝑃𝐿𝐻 = 𝐶𝐶𝑇 × 𝐷𝑒𝑙𝑎𝑦 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 + 𝑡𝐶𝑇𝑂 [s] where: CCT is the CT pin external capacitor Delay Coefficient is equal to 5.55 x 106 tCTO is the delay time when CT=open (Note 1) Temperature Ta = -40 °C to +125 °C Min 15 µs Delay Time (tCTO) Typ Max 50 µs 150 µs (Note 1) tCTO is design guarantee only Example No.1: CT capacitor = 100 pF 𝑡𝑃𝐿𝐻_𝑚𝑖𝑛 = (100 × 10−12 × 5.55 × 106 ) × 0.5 + 15 × 10−6 = 292 µ𝑠 𝑡𝑃𝐿𝐻_𝑡𝑦𝑝 = (100 × 10−12 × 5.55 × 106 ) × 1.0 + 50 × 10−6 = 605 µ𝑠 𝑡𝑃𝐿𝐻_𝑚𝑎𝑥 = (100 × 10−12 × 5.55 × 106 ) × 1.5 + 150 × 10−6 = 983 µ𝑠 Example No.2: CT capacitor = 1 nF 𝑡𝑃𝐿𝐻_𝑡𝑦𝑝 = 1 × 10−9 × 5.55 × 106 = 5.55 𝑚𝑠 www.rohm.com © 2018 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 10/19 TSZ02201-0GIG2G600050-1-2 31.Jul.2018 Rev.002 BD52xxNVX-2C Series Application Information - continued Timing Waveform The following shows the relationship between the input voltage VDD and the output voltage VOUT when the power supply voltage VDD is sweep up and sweep down. VDD RL VDD Delay Circuit Vref VOUT GND CT CCT Figure 18. BD52xxNVX-2C Set-up VDD VDET+ΔVDET Hysteresis Voltage (ΔVDET) VDET VOPL:
BD5227NVX-2CTL 价格&库存

很抱歉,暂时无法提供与“BD5227NVX-2CTL”相匹配的价格&库存,您可以联系我们找货

免费人工找货
BD5227NVX-2CTL
    •  国内价格
    • 1+1.98000
    • 2+1.90080
    • 4+1.82457

    库存:100

    BD5227NVX-2CTL
      •  国内价格 香港价格
      • 1+8.393591+1.01430
      • 10+4.8901810+0.59094
      • 50+3.0736050+0.37142
      • 100+2.66000100+0.32144
      • 500+2.23829500+0.27048
      • 1000+2.157201000+0.26068
      • 2000+2.100432000+0.25382
      • 4000+2.011224000+0.24304

      库存:50

      BD5227NVX-2CTL
        •  国内价格
        • 5+3.13258
        • 50+2.30544
        • 100+2.17345
        • 200+2.16465
        • 500+1.88307

        库存:540