0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BU90R102-Z

BU90R102-Z

  • 厂商:

    ROHM(罗姆)

  • 封装:

    LQFP144

  • 描述:

    IC RECEIVER 0/10 144HQFPVM

  • 数据手册
  • 价格&库存
BU90R102-Z 数据手册
Datasheet LVDS Interface LSI 67bit LVDS Receiver BU90R102 Key Specifications General Description The BU90R102 receiver operates from 8MHz to 160MHz wide clock range. The BU90R102 converts the 10 Lane (2Channel) LVDS serial data streams back into 67bit of LVCMOS parallel data. Data is transmitted seven times (7X) stream and reduce the cable number by 3(1/3) or less. I/O Voltage range is 2.3 to 3.6V, so it is available for many products. Flexible Input /Output mode is suitable for a variety of application Interface. Features ■The maximum data rate is 1120Mbps/Lane ■It enables to receive the 60bit of RGB data, 7bit of Timing and Control data ■Support clock frequency from 8MHz up to 160MHz ■Flexible Input /Output mode 1. Single-in / Single-out 2. Single-in / Dual-out 3. Dual-in / Single-out 4. Dual-in / Dual-out ■Supply Voltage Range ■Operating Frequency ■Operating Temperature Range Package 2.30 to 3.60 V 8 to 160 MHz -40 to +85 ℃ W(Typ) x D(Typ) x H(Max) HQFP144VM 20.0mm × 20.0mm × 1.6mm Applications ■Security camera, Digital camera ■Tablet ■Flat panel display ■Power down mode ■Clock edge selectable ■Support spread spectrum clock generator input Block Diagram Figure 1. Block Diagram 〇Product structure : Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111 • 14 • 001 〇This product has no designed protection against radioactive rays 1/26 TSZ02201-0L2L0H500280-1-2 02.Oct.2014 Rev.001 Datasheet BU90R102 Contents General Description ....................................................................................................................................................1 Key Specifications ......................................................................................................................................................1 Package .......................................................................................................................................................................1 Applications ................................................................................................................................................................1 Features .....................................................................................................................................................................1 Block Diagram .............................................................................................................................................................1 Figure 1. Block Diagram .........................................................................................................................................1 Pin Configuration ........................................................................................................................................................3 Figure 2. Pin Configuration ....................................................................................................................................3 Pin Descriptions .........................................................................................................................................................4 Absolute Maximum Ratings .....................................................................................................................................6 Recommended Operating Conditions ......................................................................................................................6 Figure 3. Differential input CLK .............................................................................................................................6 DC Characteristic ........................................................................................................................................................7 Figure 4. LVDS Receiver DC Specifications .........................................................................................................7 AC Characteristic ........................................................................................................................................................8 Supply Current ............................................................................................................................................................9 Figure 5. Test Pattern ............................................................................................................................................9 AC Timing Diagrams.................................................................................................................................................10 Figure 6. LVCMOS Output Load and Transition Time ......................................................................................10 Figure 7. CLKOUT Period and High/Low Time .................................................................................................10 Figure 8. CLKOUT Position and Setup/Hold Timing ........................................................................................10 Figure 9. CLKOUT Position and Setup/Hold Timing for Double Edge Output Mode .................................. 11 Figure 10. LVDS Input Data Position ................................................................................................................. 11 Figure 11. Phase Locked Loop Set Time ..........................................................................................................12 Figure 12. RCLK+/- to CLKOUT Delay ...............................................................................................................12 Figure 13. RC1 (DE) Input Timing (Single-in / Dual-out mode) .......................................................................13 Output Data Mapping................................................................................................................................................14 LVDS Input Data Mapping ........................................................................................................................................16 Figure 14. LVDS Input Data Mapping MODE1=H (Single-in Mode) .................................................................16 Figure 15. LVDS Input Data Mapping MODE1=L (Dual-in Mode) ....................................................................16 Typical Application Circuit .......................................................................................................................................21 Figure 16. Typical Application Circuit (24bit Dual-in/Dual-out mode) ............................................................21 Operational Notes .....................................................................................................................................................22 Ordering Information ................................................................................................................................................24 Marking Diagram .......................................................................................................................................................24 Physical Dimension, Tray Information ...................................................................................................................25 Revision History .......................................................................................................................................................26 www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 2/26 TSZ02201-0L2L0H500280-1-2 02.Oct.2014 Rev.001 Datasheet BU90R102 Pin Configuration Figure 2. Pin Configuration (Top View) www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 3/26 TSZ02201-0L2L0H500280-1-2 02.Oct.2014 Rev.001 Datasheet BU90R102 Pin Descriptions Pin name Pin No. I/O RA1+, RA1- 111,110 LVDS Input RB1+, RB1- 113,112 LVDS Input RC1+, RC1- 117,116 LVDS Input RD1+, RD1- 123,122 LVDS Input RE1+, RE1- 125,124 LVDS Input RCLK+, RCLK- 119,118 LVDS Input RA2+,RA2- 129,128 LVDS Input RB2+,RB2- 131,130 LVDS Input RC2+,RC2- 135,134 LVDS Input RD2+,RD2- 141,140 LVDS Input RE2+,RE2- 143,142 LVDS Input R19~R10 74-72,69-63 Output G19~G10 86-82,79-75 Output B19~B10 100,99,96-90,87 Output R29~R20 25-23,20-14 Output G29~G20 40,37-31, 27,26 Output B29~B20 52-48,45-41 Output CONT11,CONT12 104,105 Output CONT21,CONT22 55,56 Output DE 103 Output Data Enable Output VSYNC 102 Output VSYNC Output HSYNC 101 Output HSYNC Output CLKOUT 60 Output LVCMOS CLK Output PDWN 4 Input MODE1,MODE0 6,5 www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 Descriptions LVDS Data input (Channel1) +: positive input of differential pair -: negative input of differential pair LVDS CLK input LVDS Data input (Channel2) +: positive input of differential pair -: negative input of differential pair (These pins are disabled when Single Link mode) LVCMOS Data Output LVCMOS Data Output LVCMOS Data Output Power Down H: Normal operation L: Power down Input 4/26 MODE1 MODE0 Mode H H Single Link(Single-in/Single-out) H L Single Link(Single-in/Dual-out) L H Dual Link(Dual-in/Single-out) L L Dual Link(Dual-in/Dual-out) TSZ02201-0L2L0H500280-1-2 02.Oct.2014 Rev.001 Datasheet BU90R102 Pin Descriptions (Continued) Pin name Pin No. I/O Descriptions Output Clock Delay Timing Select. tDOUT=Output Data Rate DK 7 MODE〔1:0〕 DK LL HH HL L M H L M H Input LH R/F 8 Input OE 9 Input MODE2 10 Input OFFSET 〔nsec〕 0 -(6/28)tDOUT +(6/28)tDOUT 0 -(7/28)tDOUT +(7/28)tDOUT Output Clock Triggering Edge Select. H:Rising edge L:Falling edge Output Enable. H: Output Enable. L: Output Disable. DDR function enable This function depends on the setting of MODE. MODE=LH (Dual-in/Single-out MODE) H:DDR (Double Edge Output)function ON L:DDR (Double Edge Output) function OFF MODE=other Must be tied to GND. MAP Reserved 11 Input LVDS mapping table select (Refer the Table 9~12) H:Mapping Mode1 L:Mapping Mode2 3 Input Must be tied to VDD. 12,21,28,29,38, 46,53,57,61,70,80, 88,97,106 13,22,30,39,47, 54,58,59,62,71,81, 89,98,145 114,120,126, 132,138 109,115,121,127, 133,136,137,139, 144 VDD GND LVDD LGND Power Power Supply for Internal digital core and Output Driver. Ground Ground for Internal digital core and Output Driver. Power Power Supply for LVDS core. Ground Ground for LVDS core. PVDD 2,107 Power Power Supply for PLL core. PGND 1,108 Ground Ground for PLL core. Table 1. Output Settings PDWN OE Data Outputs CLKOUT L L Hi-Z Hi-Z L H All Low H L Hi-Z Hi-Z H H Data Out CLK Out www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 Fixed Low 5/26 TSZ02201-0L2L0H500280-1-2 02.Oct.2014 Rev.001 Datasheet BU90R102 Absolute Maximum Ratings Rating Parameter Symbol Units Min Max Supply Voltage VDD -0.3 +4.0 V Input Voltage VIN -0.3 VDD+0.3 V Output Voltage VOUT -0.3 VDD+0.3 V Storage Temperature Range Tstg -55 +125 ℃ Junction Temperature Tj Power Pd (Note1) Dissipation ℃ +125 4.16 (Note1) W Package Power when IC mounting on the PCB board. 3 The size of PCB board:114.3 × 76.2 × 1.6 (mm ) The material of PCB board:The FR4 glass epoxy board (3% or less copper foil area) Recommended Operating Conditions Parameter Units Conditions 3.6 V VDD,LVDD, PVDD +25 +85 ℃ - 8 - 160 MHz - Output 8 - 160 MHz - Single Edge Output (MODE2=L) LVDS Input 20 - 80 MHz - Output 40 - 160 MHz - Double Edge Output (MODE2=H) LVDS Input 20 - 80 MHz - Output 20 - 80 MHz - MODE=HL Single-in/Dual-out LVDS Input 8 - 160 MHz - Output 4 - 80 MHz - MODE=HH Single-in/Single-out LVDS Input 8 - 160 MHz - Output 8 - 160 MHz - ns - ns - Supply Voltage Operating Temperature Range MODE=LL Dual-in/Dual-out CLK frequency Rating Symbol MODE=LH Dual-in/Single-out Min Typ Max VDD 2.3 3.3 Ta -40 LVDS Input tRCIP 7 tRCIP 2 7 2 Differential input CLK High Time (tRCIH) (Figure 3) Differential input CLK Low Time (tRCIL) (Figure 3) tRCIH Vdiff = 0V RCLK+ (Differential) - tRCIP 7 tRCIP 5 7 5 tRCIL Vdiff = 0V Vdiff = 0V tRCIP Figure 3. Differential input CLK www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 6/26 TSZ02201-0L2L0H500280-1-2 02.Oct.2014 Rev.001 Datasheet BU90R102 DC Characteristics Table 2. LVCMOS DC Specifications ( VDD=2.3~3.6V, Ta=-40~+85℃ ) Limits Symbol Parameter Min Typ Max Units VIH High Level Input Voltage VDDx0.7 - VDD V VIL Low Level Input Voltage GND - VDDx0.3 V Conditions PDWN, MODE[2:0] R/F, OE, MAP PIN VIH3 High Level Input Voltage 3 VDDx0.8 - VDD V VIM3 Middle Level Input Voltage 3 VDDx0.4 - VDDx0.6 V VIL3 Low Level Input Voltage 3 GND VDDx0.2 V VOH High Level Output Voltage VDD -0.5 - VDD V IO = -8mA VOL Low Level Output Voltage GND - 0.4 V IO = 8mA -10 - +10 uA 0 ≤VIN ≤VDD IIL Input Leakage Current 3-Level Inputs (DK Pin) Table 3. LVDS Receiver DC Specifications ( VDD=2.3~3.6V, Ta=-40~+85℃ ) Symbol VTH VTL IINL Parameter Differential Input High Threshold Differential Input Low Threshold Differential Input Leakage Current Limits Units Conditions Min Typ Max - - +100 mV VOC( Note2) =1.2V -100 - - mV VOC( Note2) =1.2V -30 - +30 µA VIN=2.4V / 0V VDD=3.6V VOC Common mode Voltage 0.8 1.2 1.6 V VID =200mV |VID| Differential Input Voltage 100 - 600 mV - (Note2) Common mode Voltage Figure 4. LVDS Receiver DC Specifications www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 7/26 TSZ02201-0L2L0H500280-1-2 02.Oct.2014 Rev.001 Datasheet BU90R102 AC characteristics Table 4. Switching Characteristics ( VDD=2.3~3.6V, Ta=-40~+85℃ ) Limits Parameter Symbol Units Min Typ Max 6.25 - 250 ns tRCP CLKOUT Period (Figure 7) tRCH CLKOUT High Time (Figure 7) - 0.5tRCP - ns tRCL CLKOUT Low Time (Figure 7) - 0.5tRCP - ns tDOUT LVCMOS Data Out Period (Figure 8,9) 6.25 - 250 ns tRS LVCMOS Data Setup to CLKOUT (Figure 8,9) 0.45tRCP-0.45 - - ns tRH LVCMOS Data Hold to CLKOUT (Figure 8,9) 0.45tRCP-0.45 - - ns tTLH LVCMOS Low to High Transition Time (Figure 6) - 0.7 1.0 ns tTHL LVCMOS High to Low Transition Time (Figure 6) - 0.7 1.0 ns tRCIP=65MHz 0 - 650 ps tRCIP=85MHz 0 - 450 ps tRCIP=108MHz 0 - 250 ps tRCIP=135MHz 0 - 170 ps tRCIP=160MHz 0 - 150 ps - tsk 0.0 + tsk ns tRCIP - tsk 7 tRCIP 2 - tsk 7 tRCIP 3 - tsk 7 tRCIP 4 - tsk 7 tRCIP 5 - tsk 7 tRCIP 6 - tsk 7 tRCIP 7 tRCIP 2 7 tRCIP 3 7 tRCIP 4 7 tRCIP 5 7 tRCIP 6 7 tRCIP + tsk 7 tRCIP 2 + tsk 7 tRCIP 3 + tsk 7 tRCIP 4 + tsk 7 tRCIP 5 + tsk 7 tRCIP 6 + tsk 7 - - 10.0 ms 82 - 180 ns 6.25 - 125.0 ns DE input period (Figure 13) 4tRCIP tRCIP*(2n) n=integer - ns DE input High time (Figure 13) 2tRCIP - - ns DE input Low time (Figure 13) 2tRCIP - - ns tsk Receiver Skew Margin (Figure 10) tRIP1 Input Data Position 0 (Figure 10) tRIP0 Input Data Position 1 (Figure 10) tRIP6 Input Data Position 2 (Figure 10) tRIP5 Input Data Position 3 (Figure 10) tRIP4 Input Data Position 4 (Figure 10) tRIP3 Input Data Position 5 (Figure 10) tRIP2 Input Data Position 6 (Figure 10) tRPLL Phase Locked Loop Set Time (Figure 11) tRCD RCLK+/- to CLKOUT Delay (Figure 12) MODE=LL DK=L, 75MHz tRCIP Input CLK Period (Figure 10) tDEINT tDEH MODE=HL (Single-in/Dual-out Mode) tDEL www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 8/26 ns ns ns ns ns ns TSZ02201-0L2L0H500280-1-2 02.Oct.2014 Rev.001 Datasheet BU90R102 Supply Current Limits Symbol Parameter Conditions Units CLKOUT=65MHz MODE=HH Single-in/Single-out CLKOUT=85MHz CLKOUT=135MHz MODE2=L CLKOUT=160MHz CLKOUT=32.5MHz MODE=HL Single-in/Dual-out CLKOUT=42.5MHz CLKOUT=67.5MHz MODE2=L CLKOUT=80MHz CLKOUT=65MHz IRCCW Receiver Supply Current ( Worst Case Pattern ) Figure 5 MODE=LH Dual-in/ Single out CLKOUT=85MHz CLKOUT=135MHz CLKOUT=150MHz CL=8pF MODE2=L DDR Output Off CLKOUT=160MHz CLKOUT=32.5MHz MODE=LH Dual-in/ Single out CLKOUT=42.5MHz CLKOUT=67.5MHz MODE2=H DDR Output On CLKOUT=75MHz CLKOUT=80MHz CLKOUT=65MHz MODE=LL Dual-in/ Dual-out CLKOUT=85MHz CLKOUT=135MHz MODE2=L CLKOUT=160MHz Typ Max - 134 mA - 165 mA - 244 mA - 284 mA - 110 mA - 134 mA - 190 mA - 230 mA - 113 mA - 137 mA - 190 mA - 221 mA - 230 mA - 110 mA - 134 mA - 187 mA - 217 mA - 228 mA - 218 mA - 272 mA - 408 mA - 460 mA Figure 5. Test Pattern www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 9/26 TSZ02201-0L2L0H500280-1-2 02.Oct.2014 Rev.001 Datasheet BU90R102 AC Timing Diagrams LVCMOS Output CL =8pF LVCMOS Output Load Figure 6. LVCMOS Output Load and Transition Time Figure 7. CLKOUT Period and High/Low Time t 6 DOUT 28 t 7 DOUT 28 t 6 DOUT 28 t 7 DOUT 28 Figure 8. CLKOUT Position and Setup/Hold Timing www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 10/26 TSZ02201-0L2L0H500280-1-2 02.Oct.2014 Rev.001 Datasheet BU90R102 AC Timing Diagrams (Continued) t 7 DOUT 28 t 7 DOUT 28 t 7 DOUT 28 t 7 DOUT 28 Figure 9. CLKOUT Position and Setup/Hold Timing for Double Edge Output Mode Figure 10. LVDS Input Data Position www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 11/26 TSZ02201-0L2L0H500280-1-2 02.Oct.2014 Rev.001 Datasheet BU90R102 AC Timing Diagrams (Continued) Figure 11. Phase Locked Loop Set Time Figure 12. RCLK+/- to CLKOUT Delay www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 12/26 TSZ02201-0L2L0H500280-1-2 02.Oct.2014 Rev.001 Datasheet BU90R102 Table 5. Input DE signal of all Input/Output modes In Out MODE1 MODE0 Input DE Signal Single Single H H Optional Single Dual H L Require (Figure 13) Dual Single L H Optional Dual Dual L L Optional Figure 13. RC1 (DE) Input Timing (Single-in / Dual-out mode) www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 13/26 TSZ02201-0L2L0H500280-1-2 02.Oct.2014 Rev.001 Datasheet BU90R102 Output Data Mapping Table 6. Output Color Data naming rule X Y Z Description X=R - - Red Color Data X=G - - Green Color Data X=B - - Blue Color Data - Y=None - Single Pixel - Y=O - 1st Pixel Data Dual Pixel - Y=E - - - Z=0-9 2nd Pixel Data 0: LSB(Least Significant Bit) 9: MSB(Most Significant Bit) Bit number Table 7. LVCMOS Output Data Mapping (Single-out mode, MODE0=H) Data Signals Receiver Output Pin Names 30-bit 24-bit 18-bit 30-bit 24-bit 18-bit R0 - - R10 - - R1 - - R11 - - R2 R0 - R12 R12 - R3 R1 - R13 R13 - R4 R2 R0 R14 R14 R14 R5 R3 R1 R15 R15 R15 R6 R4 R2 R16 R16 R16 R7 R5 R3 R17 R17 R17 R8 R6 R4 R18 R18 R18 R9 R7 R5 R19 R19 R19 G0 - - G10 - - G1 - - G11 - - G2 G0 - G12 G12 - G3 G1 - G13 G13 - G4 G2 G0 G14 G14 G14 G5 G3 G1 G15 G15 G15 G6 G4 G2 G16 G16 G16 G7 G5 G3 G17 G17 G17 G8 G6 G4 G18 G18 G18 G9 G7 G5 G19 G19 G19 B0 - - B10 - - B1 - - B11 - - B2 B0 - B12 B12 - B3 B1 - B13 B13 - B4 B2 B0 B14 B14 B14 B5 B3 B1 B15 B15 B15 B6 B4 B2 B16 B16 B16 B7 B5 B3 B17 B17 B17 B8 B6 B4 B18 B18 B18 B9 B7 B5 B19 B19 B19 www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 14/26 TSZ02201-0L2L0H500280-1-2 02.Oct.2014 Rev.001 Datasheet BU90R102 Output Data Mapping (Continued) Table 8. LVCMOS Output Data Mapping (Dual-Out mode, MODE0=L) 1st Pixel Data 2nd Pixel Data Receiver output Pin Names Data Signals Receiver output Pin Names Data Signals 30-bit 24bit 18-bit 30-bit 24bit 18-bit 30-bit 24bit 18-bit 30-bit 24bit 18-bit RE0 - - R10 - - RO0 - - R20 - - RE1 - - R11 - - RO1 - - R21 - - RE2 RE0 - R12 R12 - RO2 RO0 - R22 R22 - RE3 RE1 - R13 R13 - RO3 RO1 - R23 R23 - RE4 RE2 RE0 R14 R14 R14 RO4 RO2 RO0 R24 R24 R24 RE5 RE3 RE1 R15 R15 R15 RO5 RO3 RO1 R25 R25 R25 RE6 RE4 RE2 R16 R16 R16 RO6 RO4 RO2 R26 R26 R26 RE7 RE5 RE3 R17 R17 R17 RO7 RO5 RO3 R27 R27 R27 RE8 RE6 RE4 R18 R18 R18 RO8 RO6 RO4 R28 R28 R28 RE9 RE7 RE5 R19 R19 R19 RO9 RO7 RO5 R29 R29 R29 GE0 - - G10 - - GO0 - - G20 - - GE1 - - G11 - - GO1 - - G21 - - GE2 GE0 - G12 G12 - GO2 GO0 - G22 G22 - GE3 GE1 - G13 G13 - GO3 GO1 - G23 G23 - GE4 GE2 GE0 G14 G14 G14 GO4 GO2 GO0 G24 G24 G24 GE5 GE3 GE1 G15 G15 G15 GO5 GO3 GO1 G25 G25 G25 GE6 GE4 GE2 G16 G16 G16 GO6 GO4 GO2 G26 G26 G26 GE7 GE5 GE3 G17 G17 G17 GO7 GO5 GO3 G27 G27 G27 GE8 GE6 GE4 G18 G18 G18 GO8 GO6 GO4 G28 G28 G28 GE9 GE7 GE5 G19 G19 G19 GO9 GO7 GO5 G29 G29 G29 BE0 - - B10 - - BO0 - - B20 - - BE1 - - B11 - - BO1 - - B21 - - BE2 BE0 - B12 B12 - BO2 BO0 - B22 B22 - BE3 BE1 - B13 B13 - BO3 BO1 - B23 B23 - BE4 BE2 BE0 B14 B14 B14 BO4 BO2 BO0 B24 B24 B24 BE5 BE3 BE1 B15 B15 B15 BO5 BO3 BO1 B25 B25 B25 BE6 BE4 BE2 B16 B16 B16 BO6 BO4 BO2 B26 B26 B26 BE7 BE5 BE3 B17 B17 B17 BO7 BO5 BO3 B27 B27 B27 BE8 BE6 BE4 B18 B18 B18 BO8 BO6 BO4 B28 B28 B28 BE9 BE7 BE5 B19 B19 B19 BO9 BO7 BO5 B29 B29 B29 www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 15/26 TSZ02201-0L2L0H500280-1-2 02.Oct.2014 Rev.001 Datasheet BU90R102 LVDS Input Data Mapping Previous Cycle (2nd Pixel Data) Current Cycle (1st Pixel Data) RCLK+ RCLK + Rx1 Rx 1 +/+/ x = A , B ,C ,D , E Rx11(n-1) Rx10(n-1) Rx16(n) Rx15(n) Current Cycle (1st Pixel Data) Rx14(n) Rx13(n) Rx12 (n) Rx11 (n) Rx10(n) Rx6 (n+1) Next Cycle (2nd Pixel Data) RCLK+ RCLK + Rx1 Rx 1 +/+/ x = A , B ,C ,D , E Rx11(n) Rx10(n) Rx16(n+1) Rx15(n+1) Rx14(n+1) Rx13(n+1) Rx12 (n+1) Rx11 (n+1) Rx10(n+1) Rx6 (n+2) Figure 14. LVDS Input Data Mapping MODE1=H (Single-in Mode) Previous C ycle C urrent C ycle RCLK+ R x 1 +/ x = A , B ,C , D , E R x2 x 2 +/ x = A , B ,C ,D ,E Rx11(n-1) Rx10(n-1) Rx16(n) Rx15(n) Rx14(n) Rx13(n) R x12 (n) Rx11 (n) Rx10(n) R x16 (n+1) Rx21(n-1) Rx20(n-1) Rx26(n) Rx25(n) Rx24(n) Rx23(n) R x22 (n) Rx21 (n) Rx20(n) R x26 (n+1) Figure 15. LVDS Input Data Mapping MODE1=L (Dual-in Mode) www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 16/26 TSZ02201-0L2L0H500280-1-2 02.Oct.2014 Rev.001 Datasheet BU90R102 LVDS Input Data Mapping (Continued) Table 9. LVDS Input Data Mapping (Single-in/Single-out mode, MODE=HH) LVDS Input Data Mapping Mode1 (Output Pin Name) Mapping Mode2 (Output Pin Name) RA10 R14 R12 RA11 R15 R13 RA12 R16 R14 RA13 R17 R15 RA14 R18 R16 RA15 R19 R17 RA16 G14 G12 RB10 G15 G13 RB11 G16 G14 RB12 G17 G15 RB13 G18 G16 RB14 G19 G17 RB15 B14 B12 RB16 B15 B13 RC10 B16 B14 RC11 B17 B15 RC12 B18 B16 RC13 B19 B17 RC14 HSYNC HSYNC RC15 VSYNC VSYNC RC16 DE DE RD10 R12 R18 RD11 R13 R19 RD12 G12 G18 RD13 G13 G19 RD14 B12 B18 RD15 B13 B19 RD16 CONT11 CONT11 RE10 R10 R10 RE11 R11 R11 RE12 G10 G10 RE13 G11 G11 RE14 B10 B10 RE15 B11 B11 RE16 CONT12 CONT12 www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 17/26 TSZ02201-0L2L0H500280-1-2 02.Oct.2014 Rev.001 Datasheet BU90R102 LVDS Input Data Mapping (Continued) Table 10. LVDS Input Data Mapping (Single-in/Dual-out mode, MODE=HL) 1st Pixel Data 2nd Pixel Data LVDS Input Data (1st Pixel Data) Mapping Mode1 (Output Pin Name) Mapping Mode2 (Input Pin Name) LVDS Input Data (1st Pixel Data) Mapping Mode1 (Output Pin Name) Mapping Mode2 (Input Pin Name) RA10(n) R14 R12 RA10(n+1) R24 R22 RA11(n) R15 R13 RA11(n+1) R25 R23 RA12(n) R16 R14 RA12(n+1) R26 R24 RA13(n) R17 R15 RA13(n+1) R27 R25 RA14(n) R18 R16 RA14(n+1) R28 R26 RA15(n) R19 R17 RA15(n+1) R29 R27 RA16(n) G14 G12 RA16(n+1) G24 G22 RB10(n) G15 G13 RB10(n+1) G25 G23 RB11(n) G16 G14 RB11(n+1) G26 G24 RB12(n) G17 G15 RB12(n+1) G27 G25 RB13(n) G18 G16 RB13(n+1) G28 G26 RB14(n) G19 G17 RB14(n+1) G29 G27 RB15(n) B14 B12 RB15(n+1) B24 B22 RB16(n) B15 B13 RB16(n+1) B25 B23 RC10(n) B16 B14 RC10(n+1) B26 B24 RC11(n) B17 B15 RC11(n+1) B27 B25 RC12(n) B18 B16 RC12(n+1) B28 B26 RC13(n) B19 B17 RC13(n+1) B29 B27 RC14(n) HSYNC HSYNC RC14(n+1) HSYNC HSYNC RC15(n) VSYNC VSYNC RC15(n+1) VSYNC VSYNC RC16(n) DE DE RC16(n+1) DE DE RD10(n) R12 R18 RD10(n+1) R22 R28 RD11(n) R13 R19 RD11(n+1) R23 R29 RD12(n) G12 G18 RD12(n+1) G22 G28 RD13(n) G13 G19 RD13(n+1) G23 G29 RD14(n) B12 B18 RD14(n+1) B22 B28 RD15(n) B13 B19 RD15(n+1) B23 B29 RD16(n) CONT11 CONT11 RD16(n+1) CONT21 CONT21 RE10(n) R10 R10 RE10(n+1) R20 R20 RE11(n) R11 R11 RE11(n+1) R21 R21 RE12(n) G10 G10 RE12(n+1) G20 G20 RE13(n) G11 G11 RE13(n+1) G21 G21 RE14(n) B10 B10 RE14(n+1) B20 B20 RE15(n) B11 B11 RE15(n+1) B21 B21 RE16(n) CONT12 CONT12 RE16(n+1) CONT22 CONT22 www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 18/26 TSZ02201-0L2L0H500280-1-2 02.Oct.2014 Rev.001 Datasheet BU90R102 LVDS Input Data Mapping (Continued) Table 11. LVDS Input Data Mapping (Dual-in/Single-out mode DDR On or Off, MODE = LH, MODE2 = H or L) 1st Pixel Data 2nd Pixel Data LVDS Input Data (1st Pixel Data) Mapping Mode1 (Output Pin Name) Mapping Mode2 (Output Pin Name) LVDS Input Data (1st Pixel Data) Mapping Mode1 (Output Pin Name) Mapping Mode2 (Output Pin Name) RA10 R14(n) R12(n) RA20 R14(n+1) R12(n+1) RA11 R15(n) R13(n) RA21 R15(n+1) R13(n+1) RA12 R16(n) R14(n) RA22 R16(n+1) R14(n+1) RA13 R17(n) R15(n) RA23 R17(n+1) R15(n+1) RA14 R18(n) R16(n) RA24 R18(n+1) R16(n+1) RA15 R19(n) R17(n) RA25 R19(n+1) R17(n+1) RA16 G14(n) G12(n) RA26 G14(n+1) G12(n+1) RB10 G15(n) G13(n) RB20 G15(n+1) G13(n+1) RB11 G16(n) G14(n) RB21 G16(n+1) G14(n+1) RB12 G17(n) G15(n) RB22 G17(n+1) G15(n+1) RB13 G18(n) G16(n) RB23 G18(n+1) G16(n+1) RB14 G19(n) G17(n) RB24 G19(n+1) G17(n+1) RB15 B14(n) B12(n) RB25 B14(n+1) B12(n+1) RB16 B15(n) B13(n) RB26 B15(n+1) B13(n+1) RC10 B16(n) B14(n) RC20 B16(n+1) B14(n+1) RC11 B17(n) B15(n) RC21 B17(n+1) B15(n+1) RC12 B18(n) B16(n) RC22 B18(n+1) B16(n+1) RC13 B19(n) B17(n) RC23 B19(n+1) B17(n+1) RC14 HSYNC(n) HSYNC(n) RC24 HSYNC(n+1) HSYNC(n+1) RC15 VSYNC(n) VSYNC(n) RC25 VSYNC(n+1) VSYNC(n+1) RC16 DE(n) DE(n) RC26 DE(n+1) DE(n+1) RD10 R12(n) R18(n) RD20 R12(n+1) R18(n+1) RD11 R13(n) R19(n) RD21 R13(n+1) R19(n+1) RD12 G12(n) G18(n) RD22 G12(n+1) G18(n+1) RD13 G13(n) G19(n) RD23 G13(n+1) G19(n+1) RD14 B12(n) B18(n) RD24 B12(n+1) B18(n+1) RD15 B13(n) B19(n) RD25 B13(n+1) B19(n+1) RD16 CONT11(n) CONT11(n) RD26 CONT11(n+1) CONT11(n+1) RE10 R10(n) R10(n) RE20 R10(n+1) R10(n+1) RE11 R11(n) R11(n) RE21 R11(n+1) R11(n+1) RE12 G10(n) G10(n) RE22 G10(n+1) G10(n+1) RE13 G11(n) G11(n) RE23 G11(n+1) G11(n+1) RE14 B10(n) B10(n) RE24 B10(n+1) B10(n+1) RE15 B11(n) B11(n) RE25 B11(n+1) B11(n+1) RE16 CONT12(n) CONT12(n) RE26 CONT12(n+1) CONT12(n+1) www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 19/26 TSZ02201-0L2L0H500280-1-2 02.Oct.2014 Rev.001 Datasheet BU90R102 LVDS Input Data Mapping (Continued) Table 12. LVDS Input Data Mapping (Dual-in/Dual-out mode, MODE = LL) 1st Pixel Data 2nd Pixel Data LVDS Input Data (1st Pixel Data) Mapping Mode1 (Output Pin Name) Mapping Mode2 (Output Pin Name) LVDS Input Data (1st Pixel Data) Mapping Mode1 (Output Pin Name) Mapping Mode2 (Output Pin Name) RA10 R14 R12 RA20 R24 R22 RA11 R15 R13 RA21 R25 R23 RA12 R16 R14 RA22 R26 R24 RA13 R17 R15 RA23 R27 R25 RA14 R18 R16 RA24 R28 R26 RA15 R19 R17 RA25 R29 R27 RA16 G14 G12 RA26 G24 G22 RB10 G15 G13 RB20 G25 G23 RB11 G16 G14 RB21 G26 G24 RB12 G17 G15 RB22 G27 G25 RB13 G18 G16 RB23 G28 G26 RB14 G19 G17 RB24 G29 G27 RB15 B14 B12 RB25 B24 B22 RB16 B15 B13 RB26 B25 B23 RC10 B16 B14 RC20 B26 B24 RC11 B17 B15 RC21 B27 B25 RC12 B18 B16 RC22 B28 B26 RC13 B19 B17 RC23 B29 B27 RC14 HSYNC HSYNC RC24 RC15 VSYNC VSYNC RC25 RC16 DE DE RC26 RD10 R12 R18 RD20 R22 R28 RD11 R13 R19 RD21 R23 R29 RD12 G12 G18 RD22 G22 G28 RD13 G13 G19 RD23 G23 G29 RD14 B12 B18 RD24 B22 B28 RD15 B13 B19 RD25 B23 B29 RD16 CONT11 CONT11 RD26 CONT21 CONT21 RE10 R10 R10 RE20 R20 R20 RE11 R11 R11 RE21 R21 R21 RE12 G10 G10 RE22 G20 G20 RE13 G11 G11 RE23 G21 G21 RE14 B10 B10 RE24 B20 B20 RE15 B11 B11 RE25 B21 B21 RE16 CONT12 CONT12 RE26 CONT22 CONT22 www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 20/26 N/A TSZ02201-0L2L0H500280-1-2 02.Oct.2014 Rev.001 Datasheet BU90R102 Typical Application Circuit (24bit・ ・Dual-in/Dual-out mode) [Example] BU90T82: LVCMOS Data Input (24bit) / rising edge LVDS 350mV swing output / VESA mapping / Dual-out BU90R102: LVDS 350mV swing input / VESA mapping / Dual-in LVCMOS Data Input (48bit) / Dual-out / falling edge * 100Ω resistance FPC Cable R10 TA1- RA1- R10 R[1] R11 TA1+ RA1+ R11 R[2] R12 R[3] R13 TB1- RB1- R13 R[4] R14 TB1+ RB1+ R14 R[5] R15 R[6] R16 TC1- R[7] R17 TC1+ R12 100Ω R15 100Ω R16 RC1- R17 RC1+ R18 G[0] G10 G[1] G11 TD1- G[2] G12 TD1+ G[3] G13 G[4] G14 TCLK1- G[5] G15 TCLK1+ G[6] G16 G[7] G17 B[0] B10 B[1] B11 B[2] B12 100Ω RD 1- R19 RD 1+ G10 G11 100Ω RCLK1- G12 RCLK1+ G13 G14 FPC cable connector BU 90T 90 T 82 G15 BU 90R 90 R 102 RE1- G16 RE1+ G17 G18 G19 B[3] B13 B[4] B14 TA2- B[5] B15 TA2+ 100Ω B10 RA2- B11 RA2+ B12 B[6] B16 B[7] B17 TB2- VSYNC VSYNC TB2+ HSYNC HSYNC DE 100Ω FPC cable connector 24Bit 24 Bit GPU R[0] 100Ω RB2- B13 RB2+ B14 B15 TC2- DE 100Ω B16 RC2- B17 TC2+ RC2+ TD2- RD 2- B19 RD 2+ CONT11 B18 100Ω TD2+ TCLK2- RE2- R20 TCLK2+ RE2+ R21 PWDN RF RS OE DDRN MODE 6B8B MAP FLIP CONT12 R22 R23 R24 VDDIO R25 4.7k 4.7k 4.7k 4.7k 4.7k 4.7k 4.7k 4.7k 2.5V R26 R27 10k 0.1μ F 0.1μ F R28 0.01μ F R29 G20 VDD G21 G22 1.8V G23 G24 PCB (Transmitter) 0.1μ F 0.01μ F G25 G26 G27 G28 G29 B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 CONT11 CONT12 VSYNC DE MAP MODE2 OE R/F DK MODE1 MODE0 PDWN HSYNC VDD 4.7k 3.3V 4.7k 4.7k 4.7k 4.7k 4.7k 4.7k 10k 0.1μF 0.01μ F 0.1μ F PCB (Receiver) Figure 16. Typical Application Circuit (24bit Dual-in/Dual-out mode) www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 21/26 TSZ02201-0L2L0H500280-1-2 02.Oct.2014 Rev.001 Datasheet BU90R102 Operational Notes 1. Reverse Connection of Power Supply Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply pins. 2. Power Supply Lines Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic capacitors. 3. Ground Voltage Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition. 4. Ground Wiring Pattern When using both small-signal and large-current ground traces, the two ground traces should be routed separately but connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground caused by large currents. Also ensure that the ground traces of external components do not cause variations on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance. 5. Thermal Consideration Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in deterioration of the properties of the chip. In case of exceeding this absolute maximum rating, increase the board size and copper area to prevent exceeding the Pd rating. 6. Recommended Operating Conditions These conditions represent a range within which the expected characteristics of the IC can be approximately obtained. The electrical characteristics are guaranteed under the conditions of each parameter. 7. Inrush Current When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of connections. 8. Operation Under Strong Electromagnetic Field Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction. 9. Testing on Application Boards When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should always be turned off completely before connecting or removing it from the test setup during the inspection process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage. 10. Inter-pin Short and Mounting Errors Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin. Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge deposited in between pins during assembly to name a few. 11. Unused Input Pins Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power supply or ground line. www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 22/26 TSZ02201-0L2L0H500280-1-2 02.Oct.2014 Rev.001 Datasheet BU90R102 Operational Notes – continued 12. Unused Input Pins Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power supply or ground line. www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 23/26 TSZ02201-0L2L0H500280-1-2 02.Oct.2014 Rev.001 Datasheet BU90R102 Ordering Information B U 9 0 R 1 0 2 - Part No. Marking Diagrams HQFP144VM (TOP VIEW) Part Number Marking BU90R102 LOT Number 1PIN MARK www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 24/26 TSZ02201-0L2L0H500280-1-2 02.Oct.2014 Rev.001 Datasheet BU90R102 Physical Dimension, Tray Information Package Name www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 HQFP144VM 25/26 TSZ02201-0L2L0H500280-1-2 02.Oct.2014 Rev.001 Datasheet BU90R102 Revision History Date Revision 02.Oct.2014 001 Changes New Release www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 26/26 TSZ02201-0L2L0H500280-1-2 02.Oct.2014 Rev.001 Datasheet Notice Precaution on using ROHM Products 1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you (Note 1) , transport intend to use our Products in devices requiring extremely high reliability (such as medical equipment equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific Applications. (Note1) Medical Equipment Classification of the Specific Applications JAPAN USA EU CHINA CLASSⅢ CLASSⅡb CLASSⅢ CLASSⅢ CLASSⅣ CLASSⅢ 2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures: [a] Installation of protection circuits or other protective devices to improve system safety [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure 3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary: [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items [f] Sealing or coating our Products with resin or other coating materials [g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering [h] Use of the Products in places subject to dew condensation 4. The Products are not subject to radiation-proof design. 5. Please verify and confirm characteristics of the final or mounted products in using the Products. 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability. 7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual ambient temperature. 8. Confirm that operation temperature is within the specified range described in the product specification. 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document. Precaution for Mounting / Circuit board design 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability. 2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products, please consult with the ROHM representative in advance. For details, please refer to ROHM Mounting specification Notice-PGA-E © 2015 ROHM Co., Ltd. All rights reserved. Rev.001 Datasheet Precautions Regarding Application Examples and External Circuits 1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics. 2. You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information. Precaution for Electrostatic This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control). Precaution for Storage / Transportation 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where: [a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 [b] the temperature or humidity exceeds those recommended by ROHM [c] the Products are exposed to direct sunshine or condensation [d] the Products are exposed to high Electrostatic 2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period. 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton. 4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period. Precaution for Product Label QR code printed on ROHM Products label is for ROHM’s internal use only. Precaution for Disposition When disposing Products please dispose them properly using an authorized industry waste company. Precaution for Foreign Exchange and Foreign Trade act Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign trade act, please consult with ROHM in case of export. Precaution Regarding Intellectual Property Rights 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data. 2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the Products with other articles such as components, circuits, systems or external equipment (including software). 3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to manufacture or sell products containing the Products, subject to the terms and conditions herein. Other Precaution 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM. 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM. 3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons. 4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties. Notice-PGA-E © 2015 ROHM Co., Ltd. All rights reserved. Rev.001 Datasheet General Precaution 1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents. ROHM shall n ot be in an y way responsible or liabl e for fa ilure, malfunction or acci dent arising from the use of a ny ROHM’s Products against warning, caution or note contained in this document. 2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s representative. 3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or liable for an y damages, expenses or losses incurred b y you or third parties resulting from inaccur acy or errors of or concerning such information. Notice – WE © 2015 ROHM Co., Ltd. All rights reserved. Rev.001
BU90R102-Z 价格&库存

很抱歉,暂时无法提供与“BU90R102-Z”相匹配的价格&库存,您可以联系我们找货

免费人工找货