0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SPC564A70L7COCY

SPC564A70L7COCY

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    LQFP176

  • 描述:

    IC MCU 32BIT 2MB FLASH 176LQFP

  • 数据手册
  • 价格&库存
SPC564A70L7COCY 数据手册
SPC564A70B4, SPC564A70L7 32-bit Power Architecture® based MCU for automotive powertrain applications Datasheet − preliminary data Features ■ ■ ■ ■ ■ 150 MHz e200z4 Power Architecture® core – Variable length instruction encoding (VLE) – Superscalar architecture with 2 execution units – Up to 2 integer or floating point instructions per cycle – Up to 4 multiply and accumulate operations per cycle Memory organization – 2 MB on-chip flash memory with ECC and read-while-write (RWW) – 128 KB on-chip SRAM with standby functionality (32 KB) and ECC – 8 KB instruction cache (with line locking), configurable as 2- or 4-way – 14 + 3 KB eTPU code and data RAM – 4 × 4 crossbar switch (XBAR) – 24-entry MMU Fail Safe Protection – 16-entry Memory Protection Unit (MPU) – CRC unit with 3 submodules – Junction temperature sensor Interrupt – Configurable interrupt controller (INTC) with non-maskable interrupt (NMI) – 64-channel eDMA Serial channels – 3 eSCI modules – 3 DSPI modules (2 of which support downstream Micro Second Channel [MSC]) – 3 FlexCAN modules with 64 message buffers each Table 1. PBGA324 (23 mm x 23 mm) LQFP176 (24 mm x 24 mm) – 1 FlexRay module (V2.1) up to 10 Mbit/s w/dual or single channel, 128 message objects, ECC ■ 1 eMIOS (24 unified channels) ■ 1 eTPU2 (second generation eTPU) – 32 standard channels – 1 reaction module (6 channels with 3 outputs per channel) ■ 2 enhanced queued analog-to-digital converters (eQADCs) – Forty 12-bit input channels – 688 ns minimum conversion time ■ On-chip CAN/SCI Bootstrap loader with Boot Assist Module (BAM) ■ Nexus: Class 3+ for core; Class 1 for eTPU ■ JTAG (5-pin) ■ Development Trigger Semaphore (DTS) ■ Clock generation – On-chip 4–40 MHz main oscillator – On-chip FMPLL (frequency-modulated phase-locked loop) ■ Up to 112 general purpose I/O lines ■ Power reduction modes: slow, stop, and standby ■ Flexible supply scheme – 5 V single supply with external ballast – Multiple external supply: 5 V, 3.3 V , and 1.2 V ■ Designed for LQFP176, LBGA208, PBGA324 Device summary Memory Flash size 2MB September 2013 Part number Package LQFP176 Package LBGA208 Package PBGA324 SPC564A70L7 - SPC564A70B4 Doc ID 18078 Rev 4 This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice. 1/133 www.st.com 1 Contents SPC564A70B4, SPC564A70L7 Contents 1 2/133 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1 Document overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Device feature summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5 Feature details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.5.1 e200z4 core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.5.2 Crossbar switch (XBAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.5.3 Enhanced direct memory access (eDMA) . . . . . . . . . . . . . . . . . . . . . . . 16 1.5.4 Interrupt controller (INTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.5.5 Memory protection unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.5.6 Frequency-modulated phase-locked loop (FMPLL) . . . . . . . . . . . . . . . . 18 1.5.7 System integration unit (SIU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.5.8 Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.5.9 Static random access memory (SRAM) . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.5.10 Boot assist module (BAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.5.11 Enhanced modular input/output system (eMIOS) . . . . . . . . . . . . . . . . . 21 1.5.12 Second generation enhanced time processing unit (eTPU2) . . . . . . . . 22 1.5.13 Reaction module (REACM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.5.14 Enhanced queued analog-to-digital converter (eQADC) . . . . . . . . . . . . 24 1.5.15 Deserial serial peripheral interface (DSPI) . . . . . . . . . . . . . . . . . . . . . . 26 1.5.16 Enhanced serial communications interface (eSCI) . . . . . . . . . . . . . . . . 27 1.5.17 Controller area network (FlexCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.5.18 FlexRay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.5.19 System timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.5.20 Software watchdog timer (SWT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.5.21 Cyclic redundancy check (CRC) module . . . . . . . . . . . . . . . . . . . . . . . . 30 1.5.22 Error correction status module (ECSM) . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.5.23 Peripheral bridge (PBRIDGE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.5.24 Calibration bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.5.25 Power management controller (PMC) . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.5.26 Nexus port controller (NPC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.5.27 JTAG controller (JTAGC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.5.28 Development trigger semaphore (DTS) . . . . . . . . . . . . . . . . . . . . . . . . . 32 Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 2 3 Contents Pinout and signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.1 LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2 LBGA208 ballmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.3 PBGA324 ballmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.4 Signal summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.5 Signal details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.1 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.2 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.3 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.3.1 General notes for specifications at maximum junction temperature . . . 73 3.4 EMI (electromagnetic interference) characteristics . . . . . . . . . . . . . . . . . 76 3.5 Electrostatic discharge (ESD) characteristics . . . . . . . . . . . . . . . . . . . . . 76 3.6 Power management control (PMC) and power on reset (POR) electrical specifications 77 3.6.1 Regulator example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.6.2 Recommended power transistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.7 Power up/down sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.8 DC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.9 I/O pad current specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.9.1 I/O pad VRC33 current specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.9.2 LVDS pad specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.10 Oscillator and PLLMRFM electrical characteristics . . . . . . . . . . . . . . . . . 90 3.11 Temperature sensor electrical characteristics . . . . . . . . . . . . . . . . . . . . . 92 3.12 eQADC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.13 Configuring SRAM wait states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.14 Platform flash controller electrical characteristics . . . . . . . . . . . . . . . . . . 96 3.15 Flash memory electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 96 3.16 AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.16.1 3.17 Pad AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 AC timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 3.17.1 Reset and configuration pin timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 3.17.2 IEEE 1149.1 interface timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 3.17.3 Nexus timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Doc ID 18078 Rev 4 3/133 Contents SPC564A70B4, SPC564A70L7 3.17.4 Calibration bus interface timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 3.17.5 External interrupt timing (IRQ pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 3.17.6 eTPU timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 3.17.7 eMIOS timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 3.17.8 DSPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 3.17.9 eQADC SSI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 3.17.10 FlexCAN system clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 4 Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 4.1 ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 4.2 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 4.2.1 LQFP176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 4.2.2 BGA208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 4.2.3 PBGA324 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 5 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 6 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 4/133 Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 SPC564A70 device feature summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 SPC564A70 series block summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 SPC564A70 signal properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Pad types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Signal details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Power/ground segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Parameter classifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Thermal characteristics for 176-pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Thermal characteristics for 208-pin LBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Thermal characteristics for 324-pin PBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 EMI testing specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 ESD ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 PMC operating conditions and external regulators supply voltage . . . . . . . . . . . . . . . . . . . 77 PMC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 SPC564A70 External network specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Transistor recommended operating characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Power sequence pin states—Fast type pads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Power sequence pin states—Medium, slow and multi-voltage type pads . . . . . . . . . . . . . 81 DC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 I/O pad average IDDE specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 I/O pad VRC33 average IDDE specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 VRC33 pad average DC current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 DSPI LVDS pad specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 PLLMRFM electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Temperature sensor electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 eQADC conversion specifications (operating) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 eQADC single ended conversion specifications (operating). . . . . . . . . . . . . . . . . . . . . . . . 93 eQADC differential ended conversion specifications (operating) . . . . . . . . . . . . . . . . . . . . 94 Cutoff frequency for additional SRAM wait state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 APC, RWSC, WWSC settings vs. frequency of operation . . . . . . . . . . . . . . . . . . . . . . . . . 96 Flash program and erase specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Flash EEPROM module life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Pad AC specifications (VDDE = 4.75 V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Pad AC specifications (VDDE = 3.0 V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Reset and configuration pin timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 JTAG pin AC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Nexus debug port timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Nexus debug port operating frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Calibration bus interface maximum operating frequency . . . . . . . . . . . . . . . . . . . . . . . . . 110 Calibration bus operation timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 External interrupt timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 eTPU timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 eMIOS timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 DSPI channel frequency support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 DSPI timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 eQADC SSI timing characteristics (pads at 3.3 V or at 5.0 V) . . . . . . . . . . . . . . . . . . . . . 121 Doc ID 18078 Rev 4 5/133 List of tables Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. 6/133 SPC564A70B4, SPC564A70L7 FlexCAN engine system clock divider threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 FlexCAN engine system clock divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 LQFP176 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 LBGA208 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 PBGA324 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. SPC564A70 series block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 176-pin LQFP pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 208-pin LBGA package ballmap (viewed from above) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 324-pin PBGA package ballmap (northwest, viewed from above) . . . . . . . . . . . . . . . . . . . 37 324-pin PBGA package ballmap (southwest, viewed from above) . . . . . . . . . . . . . . . . . . . 38 324-pin PBGA package ballmap (northeast, viewed from above) . . . . . . . . . . . . . . . . . . . 39 324-pin PBGA package ballmap (southeast, viewed from above) . . . . . . . . . . . . . . . . . . . 40 Core voltage regulator controller external components preferred configuration . . . . . . . . . 80 Pad output delay—Fast pads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Pad output delay—Slew rate controlled fast, medium, and slow pads . . . . . . . . . . . . . . . 101 Reset and configuration pin timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 JTAG test clock input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 JTAG test access port timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 JTAG JCOMP timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 JTAG boundary scan timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Nexus output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Nexus event trigger and test clock timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Nexus TDI, TMS, TDO timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 CLKOUT timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Synchronous output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Synchronous input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 ALE signal timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 External interrupt timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 DSPI classic SPI timing (master, CPHA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 DSPI classic SPI timing (master, CPHA = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 DSPI classic SPI timing (slave, CPHA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 DSPI classic SPI timing (slave, CPHA = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 DSPI modified transfer format timing (master, CPHA = 0) . . . . . . . . . . . . . . . . . . . . . . . . 119 DSPI modified transfer format timing (master, CPHA = 1) . . . . . . . . . . . . . . . . . . . . . . . . 120 DSPI modified transfer format timing (slave, CPHA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . 120 DSPI modified transfer format timing (slave, CPHA = 1) . . . . . . . . . . . . . . . . . . . . . . . . . 121 DSPI PCS strobe (PCSS) timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 eQADC SSI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 LQFP176 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 LBGA208 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 PBGA324 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Product code structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Doc ID 18078 Rev 4 7/133 Introduction SPC564A70B4, SPC564A70L7 1 Introduction 1.1 Document overview This document provides electrical specifications, pin assignments, and package diagrams for the SPC564A70 series of microcontroller units (MCUs). It also describes the device features and highlights important electrical and physical characteristics. For functional characteristics, refer to the device reference manual. 1.2 Description This microcontroller is a 32-bit system-on-chip (SoC) device intended for use in mid-range engine control and automotive transmission control applications. It is compatible with devices in ST’s SPC56xx family and offers performance and capability above that of the SPC563M devices. The microcontroller’s e200z4 host processor core is built on the Power Architecture technology and designed specifically for embedded applications. In addition to the Power Architecture technology, this core supports instructions for digital signal processing (DSP). The device has two levels of memory hierarchy consisting of 8 KB of instruction cache, backed by a 128 KB on-chip SRAM and a 2 MB internal flash memory. For development, the device includes a calibration bus that is accessible only when using the STMicroelectronics calibration tool. 1.3 Device feature summary Table 2 summarizes the SPC564A70 features and compares them to those of the SPC564A80. Table 2. SPC564A70 device feature summary Feature SPC564A70 SPC564A80 Process 90 nm Core e200z4 SIMD Yes VLE Yes Cache 8 KB instruction Non-Maskable Interrupt (NMI) NMI and Critical Interrupt MMU 24-entry MPU 16-entry 4×4 Crossbar switch Core performance 0–150 MHz Windowing software watchdog 8/133 5×4 Yes Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 Table 2. Introduction SPC564A70 device feature summary (continued) Feature SPC564A70 Core Nexus SPC564A80 Class 3+ SRAM 128 KB 192 KB Flash 2 MB 4 MB 4 × 128-bit 4 × 256-bit None 16-bit (incl. 32-bit muxed) Flash fetch accelerator External bus Calibration bus 16-bit (incl. 32-bit muxed) DMA 64 channels DMA Nexus None Serial 3 eSCI_A Yes (MSC uplink) eSCI_B Yes (MSC uplink) eSCI_C Yes CAN 3 CAN_A 64 message buffers CAN_B 64 message buffers CAN_C 64 message buffers SPI 3 Micro Second Channel (MSC) bus downlink Yes DSPI_A No DSPI_B Yes (with LVDS) DSPI_C Yes (with LVDS) DSPI_D Yes FlexRay Yes 5 PIT channels 4 STM channels 1 Software Watchdog System timers eMIOS 24 channels eTPU 32-channel eTPU2 Code memory 14 KB Data memory 3 KB Reaction module 6 channels 485 channels(1) Interrupt controller ADC 40 channels Doc ID 18078 Rev 4 9/133 Introduction Table 2. SPC564A70B4, SPC564A70L7 SPC564A70 device feature summary (continued) Feature SPC564A70 SPC564A80 ADC_0 Yes ADC_1 Yes Temperature sensor Yes Variable gain amplifier Yes Decimation filter 2 Sensor diagnostics Yes CRC Yes FMPLL Yes VRC Yes Supplies 5 V, 3.3 V(2) Low-power modes Stop mode Slow mode LQFP176(3) LQFP176(3) PBGA324 496-pin CSP(4) Packages PBGA324 Known Good Die (KGD) 496-pin CSP(4) 1. 197 interrupt vectors are reserved. 2. 5 V single supply only for LQFP176 3. Pinout compatible with STMicroelectronics’ SPC563M64 devices 4. For ST calibration tool only 1.4 Block diagram Figure 1 shows a top-level block diagram of the SPC564A70 series. 10/133 Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 Introduction Debug Power Architecture e200z4 Interrupt Controller JTAG SPE Nexus IEEE-ISTO 5001-2010 VLE MMU 8 KB I-cache M4 M0 FlexRay Calibration Bus Interface 64-channel eDMA M6 M1 Crossbar Switch S0 S2 2 MB Flash S1 MPU S7 Analog PLL 128 KB SRAM Voltage Regulator RCOSC Standby Regulator with Switch XOSC ECSM Temp Sens ADC ADC DSPI x 3 eSCI x 3 FlexCAN x 3 SIU SWT PIT STM PMC BAM CRC FMPLL 3 KB Data eTPU2 RAM 32 14 KB Code Channel RAM DTS eMIOS 24 Channel REACM 6 ch I/O Bridge ADCi DEC x2 AMux VGA LEGEND ADC ADCi AMux BAM CRC DEC DTS DSPI ECSM eDMA eMIOS eSCI eTPU2 FlexCAN FMPLL – Analog to Digital Converter – ADC interface – Analog Multiplexer – Boot Assist Module – Cyclic Redundancy Check unit – Decimation Filter – Development Trigger Semaphore – Deserial/Serial Peripheral Interface – Error Correction Status Module – Enhanced Direct Memory Access – Enhanced Modular Input Output System – Enhanced Serial Communications Interface – Second gen. Enhanced Time Processing Unit – Controller Area Network – Frequency-Modulated Phase-Locked Loop Figure 1. JTAG MMU MPU PMC PIT RCOSC REACM SIU SPE SRAM STM SWT VGA VLE XOSC – IEEE 1149.1 Test Controller – Memory Management Unit – Memory Protection Unit – Power Management Controller – Periodic Interrupt Timer – Low-speed RC Oscillator – Reaction Module – System Integration Unit – Signal Processing Extension – Static RAM – System Timer Module – Software Watchdog Timer – Variable Gain Amplifier – Variable Length (instruction) Encoding – XTAL Oscillator SPC564A70 series block diagram Doc ID 18078 Rev 4 11/133 Introduction SPC564A70B4, SPC564A70L7 Table 3 summarizes the functions of the blocks present on the SPC564A70 series microcontrollers. Table 3. SPC564A70 series block summary Block Function Boot assist module (BAM) Block of read-only memory containing executable code that searches for user-supplied boot code and, if none is found, executes the BAM boot code resident in device ROM Calibration bus interface Transfers data across the crossbar switch to/from peripherals attached to the calibration tool connector Controller area network (FlexCAN) Supports the standard CAN communications protocol Crossbar switch (XBAR) Internal busmaster Cyclic redundancy check (CRC) CRC checksum generator Deserial serial peripheral interface (DSPI) Provides a synchronous serial interface for communication with external devices e200z4 core Executes programs and interrupt handlers Enhanced direct memory access (eDMA) Performs complex data movements with minimal intervention from the core. Enhanced modular input-output system (eMIOS) Provides the functionality to generate or measure events Enhanced queued analog-to-digital converter (eQADC) Provides accurate and fast conversions for a wide range of applications Enhanced serial communication interface (eSCI) Provides asynchronous serial communication capability with peripheral devices and other microcontroller units Enhanced time processor unit (eTPU2) Second-generation co-processor processes real-time input events, performs output waveform generation, and accesses shared data without host intervention Error Correction Status Module (ECSM) The Error Correction Status Module supports a number of miscellaneous control functions for the platform, and includes registers for capturing information on platform memory errors if errorcorrecting codes (ECC) are implemented Flash memory Provides storage for program code, constants, and variables FlexRay Provides high-speed distributed control for advanced automotive applications Frequency-modulated phase-locked loop (FMPLL) Generates high-speed system clocks and supports programmable frequency modulation Interrupt controller (INTC) Provides priority-based preemptive scheduling of interrupt requests JTAG controller Provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode Memory protection unit (MPU) Provides hardware access control for all memory references generated Nexus port controller (NPC) Provides real-time development support capabilities in compliance with the IEEE-ISTO 5001-2010 standard Periodic interrupt timer (PIT) Produces periodic interrupts and triggers 12/133 Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 Table 3. Introduction SPC564A70 series block summary (continued) Block Function Reaction Module (REACM) Works in conjunction with the eQADC and eTPU2 to increase system performance by removing the CPU from the current control loop. System Integration Unit (SIU) Controls MCU reset configuration, pad configuration, external interrupt, general purpose I/O (GPIO), internal peripheral multiplexing, and the system reset operation. Static random-access memory (SRAM) Provides storage for program code, constants, and variables System timers Includes periodic interrupt timer with real-time interrupt; output compare timer and system watchdog timer System watchdog timer (SWT) Provides protection from runaway code Temperature sensor Provides the temperature of the device as an analog value ● ● ● ● ● ● 150 MHz e200z4 Power Architecture® core – Variable length instruction encoding (VLE) – Superscalar architecture with 2 execution units – Up to 2 integer or floating point instructions per cycle – Up to 4 multiply and accumulate operations per cycle Memory organization – 2 MB on-chip flash memory with ECC and read-while-write (RWW) – 128 KB on-chip SRAM with standby functionality (32 KB) and ECC – 8 KB instruction cache (with line locking), configurable as 2- or 4-way – 14 + 3 KB eTPU code and data RAM – 4 × 4 crossbar switch (XBAR) – 24-entry MMU Fail Safe Protection – 16-entry Memory Protection Unit (MPU) – CRC unit with 3 submodules – Junction temperature sensor Interrupt – Configurable interrupt controller (INTC) with non-maskable interrupt (NMI) – 64-channel eDMA Serial channels – 3 eSCI modules – 3 DSPI modules (2 of which support downstream Micro Second Channel [MSC]) – 3 FlexCAN modules with 64 message buffers each – 1 FlexRay module (V2.1) up to 10 Mbit/s w/dual or single channel, 128 message objects, ECC 1 eMIOS – ● 24 unified channels 1 eTPU2 (second generation eTPU) – 32 standard channels Doc ID 18078 Rev 4 13/133 Introduction SPC564A70B4, SPC564A70L7 – ● 2 enhanced queued analog-to-digital converters (eQADCs) – Forty 12-bit input channels (multiplexed on 2 ADCs); expandable to 56 channels with external multiplexers – 6 command queues – Trigger and DMA support – 688 ns minimum conversion time ● On-chip CAN/SCI Bootstrap loader with Boot Assist Module (BAM) ● Nexus: Class 3+ for core; Class 1 for eTPU ● JTAG (5-pin) ● Development Trigger Semaphore (DTS) – ● ● 14/133 1 reaction module (6 channels with 3 outputs per channel) EVTO pin for communication with external tool Clock generation – On-chip 4–40 MHz main oscillator – On-chip FMPLL (frequency-modulated phase-locked loop) Up to 112 general purpose I/O lines – Individually programmable as input, output or special function – Programmable threshold (hysteresis) ● Power reduction modes: slow, stop, and standby ● Flexible supply scheme – 5 V single supply with external ballast – Multiple external supply: 5 V, 3.3 V, and 1.2 V Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 1.5 Feature details 1.5.1 e200z4 core Introduction SPC564A70 devices have a high performance e200z4 core processor: ● 32-bit Power Architecture technology programmer’s model ● Variable Length Encoding (VLE) enhancements ● Dual issue, 32-bit Power Architecture technology compliant CPU ● 8 KB, 2/4-way set associative instruction cache ● Thirty-two 64-bit general purpose registers (GPRs) ● Memory Management Unit (MMU) with 24-entry fully-associative translation look-aside buffer (TLB) ● Harvard Architecture: Separate instruction bus and load/store bus ● Vectored interrupt support ● Non-maskable interrupt input ● Critical Interrupt input ● New ‘Wait for Interrupt’ instruction, to be used with new low power modes ● Reservation instructions for implementing read-modify-write accesses ● Signal processing extension (SPE) APU ● Single Precision Floating point (scalar and vector) ● Nexus Class 3+ debug ● Process ID manipulation for the MMU using an external tool ● In-order execution and retirement ● Precise exception handling ● Branch processing unit – Dedicated branch address calculation adder – Branch target prefetching using 8-entry BTB ● Supports independent instruction and data accesses to different memory subsystems, such as SRAM and flash memory via independent Instruction and Data BIUs ● Load/store unit – 2-cycle load latency – Fully pipelined – Big and Little endian support – Misaligned access support ● Signal Processing Extension (SPE1.1) APU supporting SIMD fixed-point operations using the 64-bit General Purpose Register file ● Embedded Floating-Point (EFP2) APU supporting scalar and vector SIMD singleprecision floating-point operations, using the 64-bit General Purpose Register file ● Power management ● – Low power design – extensive clock gating – Power saving modes: wait – Dynamic power management of execution units, cache and MMU Testability Doc ID 18078 Rev 4 15/133 Introduction ● 1.5.2 SPC564A70B4, SPC564A70L7 – Synthesizeable, MuxD scan design – ABIST/MBIST for arrays – Built-in Parallel Signature Unit Calibration support allowing an external tool to modify address mapping Crossbar switch (XBAR) The XBAR multiport crossbar switch supports simultaneous connections between four master ports and four slave ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus width. The crossbar allows three concurrent transactions to occur from the master ports to any slave port but each master must access a different slave. If a slave port is simultaneously requested by more than one master port, arbitration logic selects the higher priority master and grants it ownership of the slave port. All other masters requesting that slave port are stalled until the higher priority master completes its transactions. Requesting masters are treated with equal priority and are granted access to a slave port in round-robin fashion, based upon the ID of the last master to be granted access. The crossbar provides the following features: ● ● ● 1.5.3 4 master ports – CPU instruction bus – CPU data bus – eDMA – FlexRay 4 slave ports – Flash – Calibration bus interface – SRAM – Peripheral bridge 32-bit internal address, 64-bit internal data paths Enhanced direct memory access (eDMA) The enhanced direct memory access (eDMA) controller is a second-generation module capable of performing complex data movements via 64 programmable channels, with minimal intervention from the host processor. The hardware micro-architecture includes a DMA engine which performs source and destination address calculations, and the actual data movement operations, along with an SRAM-based memory containing the transfer control descriptors (TCD) for the channels. This implementation minimizes overall block size. The eDMA module provides the following features: 16/133 ● All data movement via dual-address transfers: read from source, write to destination ● Programmable source and destination addresses, transfer size, plus support for enhanced addressing modes ● Transfer control descriptor organized to support two-deep, nested transfer operations ● An inner data transfer loop defined by a “minor” byte transfer count ● An outer data transfer loop defined by a “major” iteration count Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 ● 1.5.4 Introduction Channel activation via one of three methods: – Explicit software initiation – Initiation via a channel-to-channel linking mechanism for continuous transfers – Peripheral-paced hardware requests (one per channel) ● Support for fixed-priority and round-robin channel arbitration ● Channel completion reported via optional interrupt requests ● 1 interrupt per channel, optionally asserted at completion of major iteration count ● Error termination interrupts optionally enabled ● Support for scatter/gather DMA processing ● Ability to suspend channel transfers by a higher priority channel Interrupt controller (INTC) The INTC provides priority-based preemptive scheduling of interrupt requests, suitable for statically scheduled hard real-time systems. For high priority interrupt requests, the time from the assertion of the interrupt request from the peripheral to when the processor is executing the interrupt service routine (ISR) has been minimized. The INTC provides a unique vector for each interrupt request source for quick determination of which ISR needs to be executed. It also provides an ample number of priorities so that lower priority ISRs do not delay the execution of higher priority ISRs. To allow the appropriate priorities for each source of interrupt request, the priority of each interrupt request is software configurable. When multiple tasks share a resource, coherent accesses to that resource need to be supported. The INTC supports the priority ceiling protocol for coherent accesses. By providing a modifiable priority mask, the priority can be raised temporarily so that all tasks which share the resource cannot preempt each other. The INTC provides the following features: ● 9-bit vector addresses ● Unique vector for each interrupt request source ● Hardware connection to processor or read from register ● Each interrupt source can assigned a specific priority by software ● Preemptive prioritized interrupt requests to processor ● ISR at a higher priority preempts executing ISRs or tasks at lower priorities ● Automatic pushing or popping of preempted priority to or from a LIFO ● Ability to modify the ISR or task priority to implement the priority ceiling protocol for accessing shared resources ● Low latency—3 clocks from receipt of interrupt request from peripheral to interrupt request to processor This device also includes a non-maskable interrupt (NMI) pin that bypasses the INTC and multiplexing logic. 1.5.5 Memory protection unit (MPU) The Memory Protection Unit (MPU) provides hardware access control for all memory references generated in a device. Using preprogrammed region descriptors, which define memory spaces and their associated access rights, the MPU concurrently monitors all Doc ID 18078 Rev 4 17/133 Introduction SPC564A70B4, SPC564A70L7 system bus transactions and evaluates the appropriateness of each transfer. Memory references with sufficient access control rights are allowed to complete; references that are not mapped to any region descriptor or have insufficient rights are terminated with a protection error response. The MPU has these major features: ● ● 1.5.6 Support for 16 memory region descriptors, each 128 bits in size – Specification of start and end addresses provide granularity for region sizes from 32 bytes to 4 GB – MPU is invalid at reset, thus no access restrictions are enforced – 2 types of access control definitions: processor core bus master supports the traditional {read, write, execute} permissions with independent definitions for supervisor and user mode accesses; the remaining non-core bus masters (eDMA, FlexRay) support {read, write} attributes – Automatic hardware maintenance of the region descriptor valid bit removes issues associated with maintaining a coherent image of the descriptor – Alternate memory view of the access control word for each descriptor provides an efficient mechanism to dynamically alter the access rights of a descriptor only – For overlapping region descriptors, priority is given to permission granting over access denying as this approach provides more flexibility to system software Support for two XBAR slave port connections (SRAM and PBRIDGE) – For each connected XBAR slave port (SRAM and PBRIDGE), MPU hardware monitors every port access using the preprogrammed memory region descriptors – An access protection error is detected if a memory reference does not hit in any memory region or the reference is flagged as illegal in all memory regions where it does hit. In the event of an access error, the XBAR reference is terminated with an error response and the MPU inhibits the bus cycle being sent to the targeted slave device – 64-bit error registers, one for each XBAR slave port, capture the last faulting address, attributes, and detail information Frequency-modulated phase-locked loop (FMPLL) The FMPLL allows the user to generate high speed system clocks from a 4 MHz to 40 MHz crystal oscillator or external clock generator. Further, the FMPLL supports programmable frequency modulation of the system clock. The PLL multiplication factor, output clock divider ratio are all software configurable. The PLL has the following major features: ● Input clock frequency from 4 MHz to 40 MHz ● Reduced frequency divider (RFD) for reduced frequency operation without forcing the PLL to relock ● 3 modes of operation ● 18/133 – Bypass mode with PLL off – Bypass mode with PLL running (default mode out of reset) – PLL normal mode Each of the 3 modes may be run with a crystal oscillator or an external clock reference Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 ● 1.5.7 Introduction Programmable frequency modulation – Modulation enabled/disabled through software – Triangle wave modulation up to 100 kHz modulation frequency – Programmable modulation depth (0% to 2% modulation depth) – Programmable modulation frequency dependent on reference frequency ● Lock detect circuitry reports when the PLL has achieved frequency lock and continuously monitors lock status to report loss of lock conditions ● Clock Quality Module – Detects the quality of the crystal clock and causes interrupt request or system reset if error is detected – Detects the quality of the PLL output clock; if error detected, causes system reset or switches system clock to crystal clock and causes interrupt request ● Programmable interrupt request or system reset on loss of lock ● Self-clocked mode (SCM) operation System integration unit (SIU) The SPC564A70 SIU controls MCU reset configuration, pad configuration, external interrupt, general purpose I/O (GPIO), internal peripheral multiplexing, and the system reset operation. The reset configuration block contains the external pin boot configuration logic. The pad configuration block controls the static electrical characteristics of I/O pins. The GPIO block provides uniform and discrete input/output control of the I/O pins of the MCU. The reset controller performs reset monitoring of internal and external reset sources, and drives the RSTOUT pin. Communication between the SIU and the e200z4 CPU core is via the crossbar switch. The SIU provides the following features: ● ● ● ● System configuration – MCU reset configuration via external pins – Pad configuration control for each pad – Pad configuration control for virtual I/O via DSPI serialization System reset monitoring and generation – Power-on reset support – Reset status register provides last reset source to software – Glitch detection on reset input – Software controlled reset assertion External interrupt – Rising or falling edge event detection – Programmable digital filter for glitch rejection – Critical Interrupt request – Non-Maskable Interrupt request GPIO – Centralized control of I/O and bus pins – Virtual GPIO via DSPI serialization (requires external deserialization device) – Dedicated input and output registers for setting each GPIO and Virtual GPIO pin Doc ID 18078 Rev 4 19/133 Introduction ● 1.5.8 SPC564A70B4, SPC564A70L7 Internal multiplexing – Allows serial and parallel chaining of DSPIs – Allows flexible selection of eQADC trigger inputs – Allows selection of interrupt requests between external pins and DSPI – From a set of eTPU output channels, allows selection of source signals for decimation filter integrators Flash memory The SPC564A70 provides 2 MB of programmable, non-volatile, flash memory. The nonvolatile memory (NVM) can be used to store instructions or data, or both. The flash module includes a Fetch Accelerator that optimizes the performance of the flash array to match the CPU architecture. The flash module interfaces the system bus to a dedicated flash memory array controller. For CPU ‘loads’, DMA transfers and CPU instruction fetch, it supports a 64bit data bus width at the system bus port, and 128-bit read data interfaces to flash memory. The module contains a prefetch controller which prefetches sequential lines of data from the flash array into the buffers. Prefetch buffer hits allow no-wait responses. The flash memory provides the following features: ● Supports a 64-bit data bus for instruction fetch, CPU loads and DMA access. Byte, halfword, word and doubleword reads are supported. Only aligned word and doubleword writes are supported. ● Fetch Accelerator – 20/133 Architected to optimize the performance of the flash – Configurable read buffering and line prefetch support – 4-entry 128-bit wide line read buffer – Prefetch controller ● Hardware and software configurable read and write access protections on a per-master basis ● Interface to the flash array controller pipelined with a depth of one, allowing overlapped accesses to proceed in parallel for pipelined flash array designs ● Configurable access timing usable in a wide range of system frequencies ● Multiple-mapping support and mapping-based block access timing (0–31 additional cycles) usable for emulation of other memory types ● Software programmable block program/erase restriction control ● Erase of selected block(s) ● Read page size of 128 bits (4 words) ● ECC with single-bit correction, double-bit detection ● Program page size of 128 bits (4 words) to accelerate programming ● ECC single-bit error corrections are visible to software ● Minimum program size is 2 consecutive 32-bit words, aligned on a 0-modulo-8 byte address, due to ECC ● Embedded hardware program and erase algorithm ● Erase suspend, program suspend and erase-suspended program ● Shadow information stored in non-volatile shadow block ● Independent program/erase of the shadow block Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 1.5.9 Introduction Static random access memory (SRAM) The SRAM provides 128 KB of general purpose system SRAM. The first 32 KB block of the SRAM is powered by its own power supply pin only during standby operation. The SRAM controller includes these features: 1.5.10 ● 128 KB data RAM implemented as eight 16 KB (2048 × 78 bits) blocks ● Each 16 KB block has 2 rows repairable (RAMs with internal repair feature) ● Supports read/write accesses mapped to the SRAM memory from any master ● 32 KB block powered by separate supply for standby operation ● Byte, halfword, word and doubleword addressable ● ECC performs single bit correction, double bit detection Boot assist module (BAM) The BAM is a block of read-only memory that is programmed once by ST and is identical for all SPC564A70 MCUs. The BAM program is executed every time the MCU is powered on or reset in normal mode. The BAM supports different modes of booting. They are: ● Booting from internal flash memory ● Serial boot loading (boot code is downloaded into RAM via eSCI or the FlexCAN and then executed) The BAM also reads the reset configuration half word (RCHW) from internal flash memory and configures the SPC564A70 hardware accordingly. The BAM provides the following features: 1.5.11 ● Sets up MMU to cover all resources and mapping of all physical addresses to logical addresses with minimum address translation ● Sets up MMU to allow user boot code to execute as either Power Architecture technology code (default) or as VLE code ● Location and detection of user boot code ● Automatic switch to serial boot mode if internal flash is blank or invalid ● Supports user programmable 64-bit password protection for serial boot mode ● Supports serial bootloading via FlexCAN bus and eSCI using standard protocol ● Supports serial bootloading via FlexCAN bus and eSCI with auto baud rate sensing ● Supports serial bootloading of either Power Architecture technology code (default) or VLE code ● Supports booting from calibration bus interface ● Supports censorship protection for internal flash memory ● Provides an option to enable the core watchdog timer ● Provides an option to disable the system watchdog timer Enhanced modular input/output system (eMIOS) The eMIOS timer module provides the capability to generate or measure events in hardware. Doc ID 18078 Rev 4 21/133 Introduction SPC564A70B4, SPC564A70L7 The eMIOS module features include: ● Twenty-four 24-bit wide channels ● 3 channels’ internal timebases sharable between channels ● 1 timebase from eTPU2 can be imported and used by the channels ● Global enable feature for all eMIOS and eTPU timebases ● Dedicated pin for each channel (not available on all package types) ● Each channel (0–23) supports the following functions: ● 1.5.12 – General Purpose Input/Output (GPIO) – Single Action Input Capture (SAIC) – Single Action Output Compare (SAOC) – Output Pulse Width Modulation Buffered (OPWMB) – Input Period Measurement (IPM) – Input Pulse Width Measurement (IPWM) – Double Action Output Compare (DOAC) – Modulus Counter Buffered (MCB) – Output Pulse Width & Frequency Modulation Buffered (OPWFMB) Each channel has its own pin (not available on all package types) Second generation enhanced time processing unit (eTPU2) The eTPU2 is an enhanced co-processor designed for timing control. Operating in parallel with the host CPU, the eTPU2 processes instructions and real-time input events, performs output waveform generation, and accesses shared data without host intervention. Consequently, for each timer event, the host CPU setup and service times are minimized or eliminated. A powerful timer subsystem is formed by combining the eTPU2 with its own instruction and data RAM. High-level assembler/compiler and documentation allows customers to develop their own functions on the eTPU2. SPC564A70 devices feature the second generation of the eTPU, called eTPU2. Enhancements of the eTPU2 over the standard eTPU include: 22/133 ● The Timer Counter (TCR1), channel logic and digital filters (both channel and the external timer clock input [TCRCLK]) now have an option to run at full system clock speed or system clock / 2. ● Channels support unordered transitions: transition 2 can now be detected before transition 1. Related to this enhancement, the transition detection latches (TDL1 and TDL2) can now be independently negated by microcode. ● A new User Programmable Channel Mode has been added: the blocking, enabling, service request and capture characteristics of this channel mode can be programmed via microcode. ● Microinstructions now provide an option to issue Interrupt and Data Transfer requests selected by channel. They can also be requested simultaneously at the same instruction. ● Channel Flags 0 and 1 can now be tested for branching, in addition to selecting the entry point. ● Channel digital filters can be bypassed. Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 Introduction The eTPU2 includes these distinctive features: ● ● ● ● 32 channels; each channel associated with one input and one output signal – Enhanced input digital filters on the input pins for improved noise immunity – Identical, orthogonal channels: each channel can perform any time function. Each time function can be assigned to more than one channel at a given time, so each signal can have any functionality. – Each channel has an event mechanism which supports single and double action functionality in various combinations. It includes two 24-bit capture registers, two 24-bit match registers, 24-bit greater-equal and equal-only comparators. – Input and output signal states visible from the host 2 independent 24-bit time bases for channel synchronization: – First time base clocked by system clock with programmable prescale division from 2 to 512 (in steps of 2), or by output of second time base prescaler – Second time base counter can work as a continuous angle counter, enabling angle based applications to match angle instead of time – Both time bases can be exported to the eMIOS timer module – Both time bases visible from the host Event-triggered microengine: – Fixed-length instruction execution in two-system-clock microcycle – 14 KB of code memory (SCM) – 3 KB of parameter (data) RAM (SPRAM) – Parallel execution of data memory, ALU, channel control and flow control subinstructions in selected combinations – 32-bit microengine registers and 24-bit wide ALU, with 1 microcycle addition and subtraction, absolute value, bitwise logical operations on 24-bit, 16-bit, or byte operands, single-bit manipulation, shift operations, sign extension and conditional execution – Additional 24-bit Multiply/MAC/Divide unit which supports all signed/unsigned Multiply/MAC combinations, and unsigned 24-bit divide. The MAC/Divide unit works in parallel with the regular microcode commands. Resource sharing features support channel use of common channel registers, memory and microengine time: – Hardware scheduler works as a “task management” unit, dispatching event service routines by predefined, host-configured priority – Automatic channel context switch when a “task switch” occurs, that is, one function thread ends and another begins to service a request from other channel: channel-specific registers, flags and parameter base address are automatically loaded for the next serviced channel – SPRAM shared between host CPU and eTPU2, supporting communication either between channels and host or inter-channel – Hardware implementation of 4 semaphores support coherent parameter sharing between both eTPU engines – Dual-parameter coherency hardware support allows atomic access to 2 parameters by host Doc ID 18078 Rev 4 23/133 Introduction ● 1.5.13 SPC564A70B4, SPC564A70L7 Test and development support features: – Nexus Class 1 debug, supporting single-step execution, arbitrary microinstruction execution, hardware breakpoints and watchpoints on several conditions – Software breakpoints – SCM continuous signature-check built-in self test MISC (multiple input signature calculator), runs concurrently with eTPU2 normal operation Reaction module (REACM) The REACM provides the ability to modulate output signals to manage closed loop control without CPU assistance. It works in conjunction with the eQADC and eTPU2 to increase system performance by removing the CPU from the current control loop. The REACM has the following features: ● 6 reaction channels with peak and hold control blocks ● Each channel output is a bus of 3 signals, providing ability to control 3 inputs. ● Each channel can implement a peak and hold waveform, making it possible to implement up to six independent peak and hold control channels Target applications include solenoid control for direct injection systems and valve control in automatic transmissions. 1.5.14 Enhanced queued analog-to-digital converter (eQADC) The eQADC block provides accurate and fast conversions for a wide range of applications. The eQADC provides a parallel interface to two on-chip analog-to-digital converters (ADC), and a single master to single slave serial interface to an off-chip external device. Both onchip ADCs have access to all the analog channels. The eQADC prioritizes and transfers commands from six command conversion command ‘queues’ to the on-chip ADCs or to the external device. The block can also receive data from the on-chip ADCs or from an off-chip external device into the six result queues, in parallel, independently of the command queues. The six command queues are prioritized with Queue_0 having the highest priority and Queue_5 the lowest. Queue_0 also has the added ability to bypass all buffering and queuing and abort a currently running conversion on either ADC and start a Queue_0 conversion. This means that Queue_0 will always have a deterministic time from trigger to start of conversion, irrespective of what tasks the ADCs were performing when the trigger occurred. The eQADC supports software and external hardware triggers from other blocks to initiate transfers of commands from the queues to the on-chip ADCs or to the external device. It also monitors the fullness of command queues and result queues, and accordingly generates DMA or interrupt requests to control data movement between the queues and the system memory, which is external to the eQADC. The ADCs also support features designed to allow the direct connection of high impedance acoustic sensors that might be used in a system for detecting engine knock. These features include differential inputs; integrated variable gain amplifiers for increasing the dynamic range; programmable pull-up and pull-down resistors for biasing and sensor diagnostics. The eQADC also integrates a programmable decimation filter capable of taking in ADC conversion results at a high rate, passing them through a hardware low pass filter, then down-sampling the output of the filter and feeding the lower sample rate results to the result FIFOs. This allows the ADCs to sample the sensor at a rate high enough to avoid aliasing of 24/133 Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 Introduction out-of-band noise; while providing a reduced sample rate output to minimize the amount DSP processing bandwidth required to fully process the digitized waveform. The eQADC provides the following features: ● Dual on-chip ADCs – 2 × 12-bit ADC resolution – Programmable resolution for increased conversion speed (12-bit, 10-bit, 8-bit) 12-bit conversion time – 938 ns (1 M sample/s) 10-bit conversion time – 813 ns (1.2 M sample/s) 8-bit conversion time – 688 ns (1.4M sample/s) – Up to 10-bit accuracy at 500K sample/s and 8-bit accuracy at 1M sample/s – Differential conversions – Single-ended signal range from 0 to 5 V – Sample times of 2 (default), 8, 64, or 128 ADC clock cycles – Provides time stamp information when requested – Allows time stamp information relative to eTPU clock sources, such as an angle clock – Parallel interface to eQADC command FIFOs (CFIFOs) and result FIFOs (RFIFOs) – Supports both right-justified unsigned and signed formats for conversion results ● 40 single-ended input channels, expandable to 56 channels with external multiplexers (supports 4 external 8-to-1 muxes) ● 8 channels can be used as 4 pairs of differential analog input channels ● Differential channels include variable gain amplifier for improved dynamic range (×1, ×2, ×4) ● Differential channels include programmable pull-up and pull-down resistors for biasing and sensor diagnostics (200 kΩ, 100 kΩ, 5 kΩ) ● Additional internal channels for monitoring voltages (such as core voltage, I/O voltage, LVI voltages, etc.) inside the device ● An internal bandgap reference to allow absolute voltage measurements ● Silicon die temperature sensor ● – Provides temperature of silicon as an analog value – Read using an internal ADC analog channel – May be read with either ADC 2 decimation filters – Programmable decimation factor (1 to 16) – Selectable IIR or FIR filter – Up to 4th order IIR or 8th order FIR – Programmable coefficients – Saturated or non-saturated modes – Programmable Rounding (Convergent; Two’s Complement; Truncated) Doc ID 18078 Rev 4 25/133 Introduction ● ● ● 1.5.15 SPC564A70B4, SPC564A70L7 – Prefill mode to precondition the filter before the sample window opens – Supports Multiple Cascading Decimation Filters to implement more complex filter designs – Optional Absolute Integrators on the output of Decimation Filters Full duplex synchronous serial interface (SSI) to an external device – Free-running clock for use by an external device – Supports a 26-bit message length Priority based queues – Supports 6 queues with fixed priority. When commands of distinct queues are bound for the same ADC, the higher priority queue is always served first – Queue_0 can bypass all prioritization, buffering and abort current conversions to start a Queue_0 conversion a deterministic time after the queue trigger – Supports software and hardware trigger modes to arm a particular queue – Generates interrupt when command coherency is not achieved External hardware triggers – Supports rising edge, falling edge, high level and low level triggers – Supports configurable digital filter Deserial serial peripheral interface (DSPI) The DSPI block provides a synchronous serial interface for communication between the SPC564A70 MCU and external devices. The DSPI supports pin count reduction through serialization and deserialization of eTPU and eMIOS channels and memory-mapped registers. The channels and register content are transmitted using a SPI-like protocol. This SPI-like protocol is completely configurable for baud rate, polarity and phase, frame length, chip select assertion, etc. Each bit in the frame may be configured to serialize either eTPU channels, eMIOS channels or GPIO signals. The DSPI can be configured to serialize data to an external device that implements the Microsecond Bus protocol. There are three identical DSPI blocks on the SPC564A70 MCU. The DSPI pins support 5 V logic levels or Low Voltage Differential Signalling (LVDS) to improve high speed operation. DSPI module features include: 26/133 ● Selectable LVDS pads working at 40 MHz for SOUT and SCK pins for DSPI_B and DSPI_C ● Support for downstream Micro Second Channel (MSC) with Timed Serial Bus (TSB) configuration on DSPI_B and DSPI_C ● 3 sources of serialized data: eTPU_A, eMIOS output channels, and memory-mapped register in the DSPI ● 4 destinations for deserialized data: eTPU_A and eMIOS input channels, SIU external Interrupt input request, memory-mapped register in the DSPI ● 32-bit DSI and TSB modes require 32 PCR registers, 32 GPO and GPI registers in the SIU to select either GPIO, eTPU or eMIOS bits for serialization ● The DSPI module can generate and check parity in a serial frame Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 1.5.16 Introduction Enhanced serial communications interface (eSCI) Three eSCI modules provide asynchronous serial communications with peripheral devices and other MCUs, and include support to interface to Local Interconnect Network (LIN) slave devices. Each eSCI block provides the following features: ● Full-duplex operation ● Standard mark/space non-return-to-zero (NRZ) format ● 13-bit baud rate selection ● Programmable 8-bit or 9-bit data format ● Programmable 12-bit or 13-bit data format for Timed Serial Bus (TSB) configuration to support the Microsecond bus standard ● Automatic parity generation ● LIN support – Compatible with LIN slaves from revisions 1.x and 2.0 of the LIN standard – Autonomous transmission of entire frames – Configurable to support all revisions of the LIN standard – Automatic parity bit generation – Double stop bit after bit error – 10- or 13-bit break support ● Separately enabled transmitter and receiver ● Programmable transmitter output parity ● 2 receiver wake-up methods: – Idle line wake-up – Address mark wake-up ● Interrupt-driven operation with flags ● Receiver framing error detection ● Hardware parity checking ● 1/16 bit-time noise detection ● DMA support for both transmit and receive data – 1.5.17 Global error bit stored with receive data in system RAM to allow post processing of errors Controller area network (FlexCAN) The SPC564A70 MCU includes three FlexCAN blocks. The FlexCAN module is a communication controller implementing the CAN protocol according to Bosch Specification version 2.0B. The CAN protocol was designed to be used primarily as a vehicle serial data bus, meeting the specific requirements of this field: real-time processing, reliable operation in the EMI environment of a vehicle, cost-effectiveness and required bandwidth. Each FlexCAN module contains 64 message buffers. The FlexCAN modules provide the following features: ● Full Implementation of the CAN protocol specification, Version 2.0B – Standard data and remote frames – Extended data and remote frames Doc ID 18078 Rev 4 27/133 Introduction 28/133 SPC564A70B4, SPC564A70L7 – Zero to eight bytes data length – Programmable bit rate up to 1 Mbit/s ● Content-related addressing ● 64 message buffers of 0 to 8 bytes data length ● Individual Rx Mask Register per message buffer ● Each message buffer configurable as Rx or Tx, all supporting standard and extended messages ● Includes 1088 bytes of embedded memory for message buffer storage ● Includes 256-byte memory for storing individual Rx mask registers ● Full-featured Rx FIFO with storage capacity for 6 frames and internal pointer handling ● Powerful Rx FIFO ID filtering, capable of matching incoming IDs against 8 extended, 16 standard or 32 partial (8 bits) IDs, with individual masking capability ● Selectable backwards compatibility with previous FlexCAN versions ● Programmable clock source to the CAN Protocol Interface, either system clock or oscillator clock ● Listen only mode capability ● Programmable loop-back mode supporting self-test operation ● 3 programmable Mask Registers ● Programmable transmit-first scheme: lowest ID, lowest buffer number or highest priority ● Time Stamp based on 16-bit free-running timer ● Global network time, synchronized by a specific message ● Maskable interrupts ● Warning interrupts when the Rx and Tx Error Counters reach 96 ● Independent of the transmission medium (an external transceiver is assumed) ● Multi-master concept ● High immunity to EMI ● Short latency time due to an arbitration scheme for high-priority messages ● Low power mode, with programmable wakeup on bus activity Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 1.5.18 Introduction FlexRay The SPC564A70 includes one dual-channel FlexRay module that implements the FlexRay Communications System Protocol Specification, Version 2.1 Rev A. Features include: ● Single channel support ● FlexRay bus data rates of 10 Mbit/s, 8 Mbit/s, 5 Mbit/s, and 2.5 Mbit/s supported ● 128 message buffers, each configurable as: ● ● 1.5.19 – Receive message buffer – Single-buffered transmit message buffer – Double-buffered transmit message buffer (combines two single-buffered message buffers) 2 independent receive FIFOs – 1 receive FIFO per channel – Up to 255 entries for each FIFO ECC support System timers The system timers include two distinct types of system timer: ● Periodic interrupts/triggers using the Periodic Interrupt Timer (PIT) ● Operating system task monitors using the System Timer Module (STM) Periodic interrupt timer (PIT) The PIT provides five independent timer channels, capable of producing periodic interrupts and periodic triggers. The PIT has no external input or output pins and is intended to provide system ‘tick’ signals to the operating system, as well as periodic triggers for eQADC queues. Of the five channels in the PIT, four are clocked by the system clock and one is clocked by the crystal clock. This one channel is also referred to as Real-Time Interrupt (RTI) and is used to wake up the device from low power stop mode. The following features are implemented in the PIT: ● 5 independent timer channels ● Each channel includes 32-bit wide down counter with automatic reload ● 4 channels clocked from system clock ● 1 channel clocked from crystal clock (wake-up timer) ● Wake-up timer remains active when System STOP mode is entered; used to restart system clock after predefined time-out period ● Each channel optionally able to generate an interrupt request or a trigger event (to trigger eQADC queues) when timer reaches zero System timer module (STM) The STM is designed to implement the software task monitor as defined by AUTOSAR(a). It consists of a single 32-bit counter, clocked by the system clock, and four independent timer a. AUTOSAR: AUTomotive Open System ARchitecture (see www.autosar.org) Doc ID 18078 Rev 4 29/133 Introduction SPC564A70B4, SPC564A70L7 comparators. These comparators produce a CPU interrupt when the timer exceeds the programmed value. The following features are implemented in the STM: 1.5.20 ● One 32-bit up counter with 8-bit prescaler ● Four 32-bit compare channels ● Independent interrupt source for each channel ● Counter can be stopped in debug mode Software watchdog timer (SWT) The SWT is a second watchdog module to complement the standard Power Architecture watchdog integrated in the CPU core. The SWT is a 32-bit modulus counter, clocked by the system clock or the crystal clock, that can provide a system reset or interrupt request when the correct software key is not written within the required time window. The following features are implemented: 1.5.21 ● 32-bit modulus counter ● Clocked by system clock or crystal clock ● Optional programmable watchdog window mode ● Can optionally cause system reset or interrupt request on timeout ● Reset by writing a software key to memory mapped register ● Enabled out of reset ● Configuration is protected by a software key or a write-once register Cyclic redundancy check (CRC) module The CRC computing unit is dedicated to the computation of CRC off-loading the CPU. The CRC module features: ● Support for CRC-16-CCITT (x25 protocol): – ● Support for CRC-32 (Ethernet protocol): – ● 1.5.22 x16 + x12 + x5 + 1 x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1 Zero wait states for each write/read operations to the CRC_CFG and CRC_INP registers at the maximum frequency Error correction status module (ECSM) The ECSM provides a myriad of miscellaneous control functions regarding program-visible information about the platform configuration and revision levels, a reset status register, a software watchdog timer, wakeup control for exiting sleep modes, and information on platform memory errors reported by error-correcting codes and/or generic access error information for certain processor cores. 30/133 Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 Introduction The Error Correction Status Module supports a number of miscellaneous control functions for the platform. The ECSM includes these features: ● Registers for capturing information on platform memory errors if error-correcting codes (ECC) are implemented ● For test purposes, optional registers to specify the generation of double-bit memory errors are enabled on the SPC564A70. The sources of the ECC errors are: 1.5.23 ● Flash memory ● SRAM ● Peripheral RAM (FlexRay, CAN, eTPU2 parameter RAM) Peripheral bridge (PBRIDGE) The PBRIDGE implements the following features: 1.5.24 ● Duplicated periphery ● Master access privilege level per peripheral (per master: read access enable; write access enable) ● Write buffering for peripherals ● Checker applied on PBRIDGE output toward periphery ● Byte endianess swap capability Calibration bus interface The calibration bus interface controls data transfer across the crossbar switch to/from memories or peripherals attached to the calibration tool connector in the calibration address space. The calibration bus interface is only available in the calibration tool. Features include: 1.5.25 ● 3.3 V ± 10% I/O (3.0 V to 3.6 V) ● Memory controller supports various memory types ● 16-bit data bus, up to 22-bit address bus ● Pin muxing supports 32-bit muxed bus ● Selectable drive strength ● Configurable bus speed modes ● Bus monitor ● Configurable wait states Power management controller (PMC) The PMC contains circuitry to generate the internal 3.3 V supply and to control the regulation of 1.2 V supply with an external NPN ballast transistor. It also contains low voltage inhibit (LVI) and power-on reset (POR) circuits for the 1.2 V supply, the 3.3 V supply, the 3.3 V/5 V supply of the closest I/O segment (VDDEH1), and the 5 V supply of the regulators (VDDREG). Doc ID 18078 Rev 4 31/133 Introduction 1.5.26 SPC564A70B4, SPC564A70L7 Nexus port controller (NPC) The NPC block provides real-time Nexus Class3+ development support capabilities for the SPC564A70 Power Architecture technology-based MCU in compliance with the IEEE-ISTO 5001-2010 standard. MDO port widths of 4 pins and 12 pins are available in all packages. 1.5.27 JTAG controller (JTAGC) The JTAG controller (JTAGC) block provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode. Testing is performed via a boundary scan technique, as defined in the IEEE 1149.1-2001 standard. All data input to and output from the JTAGC block is communicated in serial format. The JTAGC block is compliant with the IEEE 1149.1-2001 standard and supports the following features: ● IEEE 1149.1-2001 Test Access Port (TAP) interface 4 pins (TDI, TMS, TCK, and TDO) ● A 5-bit instruction register that supports the following IEEE 1149.1-2001 defined instructions: – ● ● 1.5.28 BYPASS, IDCODE, EXTEST, SAMPLE, SAMPLE/PRELOAD, HIGHZ, CLAMP A 5-bit instruction register that supports the additional following public instructions: – ACCESS_AUX_TAP_NPC – ACCESS_AUX_TAP_ONCE – ACCESS_AUX_TAP_eTPU – ACCESS_CENSOR 3 test data registers to support JTAG Boundary Scan mode – Bypass register – Boundary scan register – Device identification register ● A TAP controller state machine that controls the operation of the data registers, instruction register and associated circuitry ● Censorship Inhibit Register – 64-bit Censorship password register – If the external tool writes a 64-bit password that matches the Serial Boot password stored in the internal flash shadow row, Censorship is disabled until the next system reset. Development trigger semaphore (DTS) SPC564A70 devices include a system development feature, the Development Trigger Semaphore (DTS) module, that enables user software to signal to an external tool—by driving a persistent (affected only by reset or an external tool) signal on an external device pin—that data is available. The DTS includes a register of semaphores (32-bits) and an identification register. There are a variety of ways this module can be used, including as a component of an external real-time data acquisition system. 32/133 Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 2 Pinout and signal description Pinout and signal description This section contains the pinouts for all production packages for the SPC564A70 device. For pin signal descriptions, please refer to Table 4 Note: Any pins labeled “NC” are to be left unconnected. Any connection to an external circuit or voltage may cause unpredictable device behavior or damage. Doc ID 18078 Rev 4 33/133 Pinout and signal description LQFP176 pinout 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 VDD AN[37] AN[36] AN[21] AN[0] (DAN0+) AN[1] (DAN0-) AN[2] (DAN1+) AN[3] (DAN1-) AN[4] (DAN2+) AN[5] (DAN2-) AN[6] (DAN3+) AN[7] (DAN3-) REFBYPC VRH VRL AN[22] AN[23] AN[24] AN[25] AN[27] AN[28] AN[30] AN[31] AN[32] AN[33] AN[34] AN[35] VDD AN[12] / MA[0] / ETPUA19_O / SDS AN[13] / MA[1] / ETPUA21_O / SDO AN[14] / MA[2] / ETPUA27_O / SDI AN[15] / FCK / ETPUA29_O GPIO[207] / ETRIG1 GPIO[206] / ETRIG0 DSPI_A_PCS[3] / DSPI_D_SIN / GPIO[99] DSPI_A_PCS[2] / DSPI_D_SCK / GPIO[98] VSS MDO9 / ETPUA25_O / GPIO[80] VDDEH7B MDO8 / ETPUA21_O / GPIO[79] MDO7 / ETPUA19_O / GPIO[78] MDO6 / ETPUA13_O / GPIO[77] MDO10 / ETPUA27_O / GPIO[81] VSS 2.1 SPC564A70B4, SPC564A70L7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 176-pin LQFP signal details: pin 21: ETPUA31 / DSPI_C_PCS[4] / ETPUA13_O / GPIO[145] pin 22: ETPUA30 / DSPI_C_PCS[3] / ETPUA11_O / GPIO[144] pin 23: ETPUA29 / DSPI_C_PCS[2] / RCH5_C / GPIO[143] pin 24: ETPUA28 / DSPI_C_PCS[1] / RCH5_B / GPIO[142] pin 25: ETPUA27 / IRQ[15] / DSPI_C_SOUT_LVDS+ / DSPI_B_SOUT / GPIO[141] pin 26: ETPUA26 / IRQ[14] / DSPI_C_SOUT_LVDS- / GPIO[140] pin 27: ETPUA25 / IRQ[13] / DSPI_C_SCK_LVDS+ / GPIO[139] pin 28: ETPUA24 / IRQ[12] / DSPI_C_SCK_LVDS- / GPIO[138] pin 30: ETPUA23 / IRQ[11] / ETPUA21_O / FR_A_TX_EN / GPIO[137] pin 32: ETPUA22 / IRQ[10] / ETPUA17_O / GPIO[136] pin 34: ETPUA21 / IRQ[9] / RCH0_C / FR_A_RX / GPIO[135] pin 35: ETPUA20 / IRQ[8] / RCH0_B / FR_A_TX / GPIO[134] pin 36: ETPUA19 / DSPI_D_PCS[4] / RCH5_A / GPIO[133] pin 37: ETPUA18 / DSPI_D_PCS[3] / RCH4_A / GPIO[132] pin 38: ETPUA17 / DSPI_D_PCS[2] / RCH3_A / GPIO[131] pin 39: ETPUA16 / DSPI_D_PCS[1] / RCH2_A / GPIO[130] pin 40: ETPUA15 / DSPI_B_PCS[5] / RCH1_A / GPIO[129] pin 42: ETPUA14 / DSPI_B_PCS[4] / ETPUA9_O / RCH0_A / GPIO[128] VDD ETPUA13 / DSPI_B_PCS[3] / GPIO[127] ETPUA12 / DSPI_B_PCS[1] / RCH4_C / GPIO[126] ETPUA11 / ETPUA23_O / RCH4_B / GPIO[125] ETPUA10 / ETPUA22_O / RCH1_C / GPIO[124] ETPUA9 / ETPUA21_O / RCH1_B / GPIO[123] ETPUA8 / ETPUA20_O / DSPI_B_SOUT_LVDS+ / GPIO[122] ETPUA7 / ETPUA19_O / DSPI_B_SOUT_LVDS- / ETPUA6_O / GPIO[121] ETPUA6 / ETPUA18_O / DSPI_B_SCK_LVDS+ / FR_B_RX / GPIO[120] ETPUA5 / ETPUA17_O / DSPI_B_SCK_LVDS- / FR_B_TX_EN / GPIO[119] VDDEH4A ETPUA4 / ETPUA16_O / FR_B_TX / GPIO[118] VSS ETPUA3 / ETPUA15_O / GPIO[117] ETPUA2 / ETPUA14_O / GPIO[116] ETPUA1 / ETPUA13_O / GPIO[115] ETPUA0 / ETPUA12_O / ETPUA19_O / GPIO[114] VDD EMIOS0 / ETPUA0 / ETPUA25_O / GPIO[179] EMIOS1 / ETPUA1_O / GPIO[180] EMIOS2 / ETPUA2_O / RCH2_B / GPIO[181] EMIOS3 / ETPUA3_O / GPIO[182] EMIOS4 / ETPUA4_O / RCH2_C / GPIO[183] EMIOS6 / ETPUA6_O / GPIO[185] EMIOS7 / ETPUA7_O / GPIO[186] EMIOS8 / ETPUA8_O / SCI_B_TX / GPIO[187] EMIOS9 / ETPUA9_O / SCI_B_RX / GPIO[188] VSS EMIOS10 / DSPI_B_PCS[3] / RCH3_B / GPIO[189] VDDEH4B EMIOS11 / DSPI_D_PCS[4] / RCH3_C / GPIO[190] EMIOS12 / DSPI_C_SOUT / ETPUA27_O / GPIO[191] EMIOS13 / DSPI_D_SOUT / GPIO[192] EMIOS14 / IRQ[0] / ETPUA29_O / GPIO[193] EMIOS15 / IRQ[1] / GPIO[194] EMIOS23 / ETPUB7_O / GPIO[202] CAN_A_TX / SCI_A_TX / GPIO[83] CAN_A_RX / SCI_A_RX / GPIO[84] PLLREF / IRQ[4] / ETRIG[2] / GPIO[208] SCI_B_RX / DSPI_D_PCS[5] / GPIO[92] BOOTCFG1 / IRQ[3] / ETRIG[3] / GPIO[212] WKPCFG / NMI / DSPI_B_SOUT / GPIO[213] SCI_B_TX / DSPI_D_PCS[1] / GPIO[91] CAN_B_TX / DSPI_C_PCS[3] / SCI_C_TX / GPIO[85] 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 AN[18] AN[17] AN[16] AN[11] / ANZ AN[9] / ANX VDDA VSSA AN[39] AN[8] / ANW VDDREG VRCCTL VSTBY VRC33 MCKO VSS NC MDO[0] MDO[1] MDO[2] MDO[3] (see signal details, pin 21) (see signal details, pin 22) (see signal details, pin 23) (see signal details, pin 24) (see signal details, pin 25) (see signal details, pin 26) (see signal details, pin 27) (see signal details, pin 28) VSS (see signal details, pin 30) VDDEH1A (see signal details, pin 32) VDD (see signal details, pin 34) (see signal details, pin 35) (see signal details, pin 36) (see signal details, pin 37) (see signal details, pin 38) (see signal details, pin 39) (see signal details, pin 40) VDDEH1B (see signal details, pin 42) VSS NC Note: Pin 96 (VSS) should be tied low. Figure 2. 34/133 176-pin LQFP pinout (top view) Doc ID 18078 Rev 4 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 VDD TMS TDI MDO5 / ETPUA4_O / GPIO[76] TCK VSS MDO4 / ETPUA2_O / GPIO[75] VDDEH7A MDO11 / ETPUA29_O / GPIO[82] TDO GPIO[219] JCOMP EVTO NC MSEO[0] MSEO[1] EVTI VSS DSPI_B_PCS[3] / DSPI_C_SIN / GPIO[108] DSPI_B_SOUT / DSPI_C_PCS[5] / GPIO[104] DSPI_B_SIN / DSPI_C_PCS[2] / GPIO[103] DSPI_B_PCS[0] / DSPI_D_PCS[2] / GPIO[105] VDDEH6B DSPI_B_PCS[1] / DSPI_D_PCS[0] / GPIO[106] VSS DSPI_B_PCS[2] / DSPI_C_SOUT / GPIO[107] DSPI_B_SCK / DSPI_C_PCS[1] / GPIO[102] DSPI_B_PCS[4] / DSPI_C_SCK / GPIO[109] DSPI_B_PCS[5] / DSPI_C_PCS[0] / GPIO[110] VDDF RSTOUT CAN_C_TX / DSPI_D_PCS[3] / GPIO[87] SCI_A_TX / EMIOS13 / GPIO[89] SCI_A_RX / EMIOS15 / GPIO[90] CAN_C_RX / DSPI_D_PCS[4] / GPIO[88] RESET VSS VDDEH6A VSS XTAL EXTAL VDDPLL VSS CAN_B_RX / DSPI_C_PCS[4] / SCI_C_RX / GPIO[86] LBGA208 ballmap(b) Figure 3. 208-pin LBGA package ballmap (viewed from above) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A VSS AN9 AN11 VDDA1 VSSA1 AN1 AN5 VRH VRL AN27 VSSA0 AN12-SDS MDO2 MDO0 VRC33 VSS A B VDD VSS AN8 AN21 AN0 AN4 REFBYPC AN22 AN25 AN28 VDDA0 AN13-SDO MDO3 MDO1 VSS VDD B C VSTBY VDD VSS AN17 AN34 AN16 AN3 AN7 AN23 AN32 AN33 AN14-SDI AN15-FCK VSS MSEO0 TCK C D VRC33 AN39 VDD VSS AN18 AN2 AN6 AN24 AN30 AN31 AN35 VDDEH7 VSS TMS EVTO NC D E ETPUA30 ETPUA31 AN37 VDD NC TDI EVTI MSEO1 E F ETPUA29 ETPUA26 AN36 VDDEH6A B TDO MCKO JCOMP F ETPUA28 Doc ID 18078 Rev 4 G ETPUA24 ETPUA27 ETPUA25 ETPUA21 VSS VSS VSS VSS DSPI_B_ SOUT DSPI_B_ DSPI_B_SI DSPI_B_ PCS[3] N PCS[0] G H ETPUA23 ETPUA22 ETPUA17 ETPUA18 VSS VSS VSS VSS GPIO[99] DSPI_B_ PCS[4] J ETPUA19 ETPUA14 ETPUA13 VSS VSS VSS VSS DSPI_B_ PCS[5] VSS VSS VSS VSS ETPUA20 DSPI_B_ PCS[2] DSPI_B_ PCS[1] H SCI_A_TX GPIO[98] DSPI_B_ SCK J CAN_C_T SCI_A_RX RSTOUT X VDDREG K RESET L ETPUA15 ETPUA7 VDDEH1A B L ETPUA12 ETPUA11 ETPUA6 TCRCLKA SCI_B_TX M ETPUA10 ETPUA9 ETPUA1 ETPUA5 SCI_B_RX PLLREF BOOTCFG 1 VSS M N ETPUA8 ETPUA4 ETPUA0 VSS VDD VRC33 EMIOS2 EMIOS10 MDO7_ VDDEH4A EMIOS12 ETPUA19_ B O VSS VRCCTL NC EXTAL N P ETPUA3 ETPUA2 VSS VDD GPIO[207] NC EMIOS6 EMIOS8 MDO11_ MDO4_ MDO8_ CAN_A_T ETPUA29_ ETPUA2_ ETPUA21_ X O O O VDD VSS NC XTAL P b. LBGA208 is available upon specific request. Please contact your ST sales office for details. VRC33 CAN_C_R WKPCFG X SPC564A70B4, SPC564A70L7 K ETPUA16 Pinout and signal description 35/133 2.2 NC VSS VDD GPIO[206] EMIOS4 T VSS VDD NC EMIOS0 EMIOS1 EMIOS3 EMIOS9 EMIOS11 MDO9_ GPIO[219] ETPUA25_ EMIOS13 O MDO10_ CAN_A_R CAN_B_R EMIOS14 ETPUA27_ EMIOS23 X X O VDD VSS VDDPLL R MDO5_ MDO6_ CAN_B_T ETPUA4_ ETPUA13_ X O O ENGCLK VDD VSS T EMIOS15 VDDE12 Pinout and signal description 36/133 R Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 PBGA324 ballmap Doc ID 18078 Rev 4 1 2 3 4 5 6 7 8 9 10 11 A VSS VDD VSTBY AN37 AN11 VDDA VSSA AN1 AN5 VRH VRL B VRC33 VSS VDD AN36 AN39 AN19 AN16 AN0 AN4 REFBYPC AN23 C ETPUA30 ETPUA31 VSS VDD AN38 AN17 AN20 AN21 AN3 AN7 AN22 D ETPUA28 ETPUA29 ETPUA26 VSS VDD AN8 AN9 AN10 AN18 AN2 AN6 E ETPUA24 ETPUA27 ETPUA25 ETPUA21 F ETPUA23 ETPUA22 ETPUA17 ETPUA18 G ETPUA20 ETPUA19 ETPUA14 ETPUA13 H ETPUA16 ETPUA15 ETPUA10 VDDEH1AB J ETPUA12 ETPUA11 ETPUA6 ETPUA9 VSS VSS VSS K ETPUA8 ETPUA7 ETPUA2 ETPUA5 VSS VSS VSS L ETPUA4 ETPUA3 ETPUA0 ETPUA1 VSS VSS VSS Figure 4. SPC564A70B4, SPC564A70L7 2.3 324-pin PBGA package ballmap (northwest, viewed from above) Pinout and signal description 37/133 Doc ID 18078 Rev 4 NC TCRCLKA NC NC NC NC VSS N NC NC NC NC VSS VSS NC P GPIO[12] GPIO[13] NC VRC33 VSS VSS NC R GPIO[14] GPIO[15] VDDE-EH NC T GPIO[16] GPIO[17] NC NC U NC NC NC NC V NC NC NC NC W NC VDDE-EH NC VSS VDD NC VRC33 NC NC NC NC Y NC NC VSS VDD NC NC NC NC GPIO[207] NC NC AA NC VSS VDD NC NC NC GPIO[206] NC NC NC EMIOS3 AB VSS VDD NC NC NC NC NC NC NC EMIOS0 EMIOS1 1 2 3 4 5 6 7 8 9 10 11 Figure 5. Pinout and signal description 38/133 M 324-pin PBGA package ballmap (southwest, viewed from above) SPC564A70B4, SPC564A70L7 13 14 15 16 17 18 19 20 21 22 AN27 AN28 AN35 VSSA AN12_SDS MDO11_ ETPUA29_O MDO10_ ETPUA27_O MDO8_ ETPUA21_O VDD VRC33 VSS A AN26 AN31 AN32 VSSA AN13_SDO MDO9_ ETPUA25_O MDO7_ ETPUA19_O MDO4_ ETPUA2_O MDO0 VSS NC2 B AN25 AN30 AN33 VDDA AN14_SDI MDO5_ ETPUA4_O MDO2 MDO1 VSS NC2 VDD C AN24 AN29 AN34 VDDEH7 AN15_FCK MDO6_ ETPUA13_O MDO3 VSS NC2 TCK TDI D NC2 TMS TDO NC E NC2 JCOMP EVTI EVTO F RDY MCKO MSEO0 MSEO1 G VDDEH6AB GPIO[203] GPIO[204] DSPI_B_SIN H VSS VSS NC2 DSPI_B_ SOUT DSPI_B_ PCS[3] DSPI_B_ PCS[0] DSPI_B_ PCS[1] J VSS VSS VSS GPIO[99] DSPI_B_ PCS[4] DSPI_B_SCK DSPI_B_ PCS[2] K VSS VSS VSS DSPI_B_ PCS[5] DSPI_A_ SOUT DSPI_A_SIN DSPI_A_SCK L Figure 6. SPC564A70B4, SPC564A70L7 Doc ID 18078 Rev 4 12 324-pin PBGA package ballmap (northeast, viewed from above) Pinout and signal description 39/133 VSS VSS DSPI_A_ PCS[1] DSPI_A_ PCS[0] GPIO[98] VDDREG M VSS VSS VSS DSPI_A_ PCS[4] SCI_A_TX DSPI_A_ PCS[5] NC N VSS VSS VSS CAN_C_TX SCI_A_RX RSTOUT RSTCFG P WKPCFG CAN_C_RX SCI_B_TX RESET R SCI_B_RX BOOTCFG1 VSS VSS T VDDEH6AB PLLCFG1 BOOTCFG0 EXTAL U VDD VRCCTL PLLREF XTAL V Doc ID 18078 Rev 4 EMIOS2 EMIOS8 VDDEH4AB EMIOS12 EMIOS21 VDDE12 SCI_C_TX VSS VDD NC VDDPLL W EMIOS6 EMIOS10 EMIOS15 EMIOS17 EMIOS22 CAN_A_TX VDDE12 SCI_C_RX VSS VDD VRC33 Y EMIOS5 EMIOS9 EMIOS13 EMIOS16 EMIOS19 EMIOS23 CAN_A_RX VDDE12 CLKOUT VSS VDD AA EMIOS4 EMIOS7 EMIOS11 EMIOS14 EMIOS18 EMIOS20 CAN_B_TX CAN_B_RX VDDE12 ENGCLK VSS AB 12 13 14 15 16 17 18 19 20 21 22 Figure 7. Pinout and signal description 40/133 VSS 324-pin PBGA package ballmap (southeast, viewed from above) SPC564A70B4, SPC564A70L7 Signal summary Table 4. SPC564A70 signal properties Name(1) Function(2) P/A/ G(3) PCR PA field PCR (5) (4) I/O type Voltage(6) / Pad type(7) Status(8) Package pin No. During reset After reset 176 208(9) 324 GPIO Doc ID 18078 Rev 4 FlexRay transmit data channel A GPIO A1 G 010 000 12 O I/O VDDE-EH / Medium — / Up — / Up — — P1 FR_A_TX_EN GPIO[13] FlexRay ch. A tx data enable GPIO A1 G 010 000 13 O I/O VDDE-EH / Medium — / Up — / Up — — P2 FR_A_RX GPIO[14] FlexRay receive data ch. A GPIO A1 G 010 000 14 I I/O VDDE-EH / Medium — / Up — / Up — — R1 FR_B_TX GPIO[15] FlexRay transmit data ch. B GPIO A1 G 010 000 15 O I/O VDDE-EH / Medium — / Up — / Up — — R2 FR_B_TX_EN GPIO[16] FlexRay tx data enable for ch. B GPIO A1 G 010 000 16 O I/O VDDE-EH / Medium — / Up — / Up — — T1 FR_B_RX GPIO[17] FlexRay receive data channel B GPIO A1 G 010 000 17 I I/O VDDE-EH / Medium — / Up — / Up — — T2 GPIO[206] ETRIG0 GPIO / eQADC Trigger Input G 00 206 I/O(10) VDDEH7 / Slow(11) — / Up — / Up 143 R4 AA7 GPIO[207] ETRIG1 GPIO / eQADC Trigger Input G 00 207 I/O(10) VDDEH7 / Slow — / Up — / Up 144 P5 Y9 GPIO[219] GPIO G 000 I/O VDDEH7 / MultV — / Up — / Up 122 T6 — 219 (12) Reset / Configuration 41/133 RESET External Reset Input P — — I VDDEH6 / Slow RESET / Up RESET / Up 97 L16 R22 RSTOUT External Reset Output P 01 230 O VDDEH6 / Slow RSTOUT / Down RSTOUT / Down 102 K15 P21 PLLREF IRQ[4] ETRIG2 GPIO[208] FMPLL Mode Selection External Interrupt Request eQADC Trigger Input GPIO P A1 A2 G 001 010 100 000 208 I I I I/O VDDEH6 / Slow — / Up PLLREF / Up 83 M14 V21 Pinout and signal description FR_A_TX GPIO[12] SPC564A70B4, SPC564A70L7 2.4 Name SPC564A70 signal properties (continued) (1) (2) Function P/A/G (3) PCR PA field PCR (5) (4) Doc ID 18078 Rev 4 PLLCFG1(13) IRQ[5] DSPI_D_SOUT GPIO[209] — External interrupt request DSPI D data output GPIO — A1 A2 G — 010 100 000 RSTCFG GPIO[210] RSTCFG GPIO P G BOOTCFG[0] IRQ[2] GPIO[211] Boot Config. Input External Interrupt Request GPIO BOOTCFG[1] IRQ[3] ETRIG3 GPIO[212] WKPCFG NMI DSPI_B_SOUT GPIO[213] I/O type Voltage(6) / Pad type(7) Status(8) Package pin No. During reset After reset 176 208(9) 324 209 — I O I/O VDDEH6 / Medium — / Up — / Up — — U20 01 00 210 I I/O VDDEH6 / Slow — / Down — — — P22 P A1 G 01 10 00 211 I I I/O VDDEH6 / Slow — / Down BOOTCFG[0] / Down — — U21 Boot Config. Input External Interrupt Request eQADC Trigger Input GPIO P A1 A2 G 001 010 100 000 212 I I I I/O VDDEH6 / Slow — / Down BOOTCFG[1] / Down 85 M15 T20 Weak Pull Config. Input Non-Maskable Interrupt DSPI B data output GPIO P A1 A2 G 001 010 100 000 213 I I O I/O VDDEH6 / Medium — / Up WKPCFG / Up 86 L15 R19 Pinout and signal description 42/133 Table 4. Calibration Bus Calibration chip select P 01 336 O VDDE12 / Fast —/— — — — CAL_CS2 CAL_ADDR[10] CAL_WE[2]/BE[2] Calibration chip select Calibration address bus Calibration write/byte enable P A1 A2 001 010 100 338 O I/O O VDDE12 / Fast —/— — — — CAL_CS3 CAL_ADDR[11] CAL_WE[3]/BE[3] Calibration chip select Calibration address bus Calibration write/byte enable P A1 A2 001 010 100 339 O I/O O VDDE12 / Fast —/— — — — CAL_ADDR[12] CAL_WE[2]/BE[2] Calibration address bus Calibration write/byte enable P A1 01 10 340 I/O O VDDE12 / Fast —/— — — — CAL_ADDR[13] CAL_WE[3]/BE[3] Calibration address bus Calibration write/byte enable P A1 01 10 340 I/O O VDDE12 / Fast —/— — — — CAL_ADDR[14] CAL_DATA[31] Calibration address bus Calibration data bus P A1 01 10 340 I/O I/O VDDE12 / Fast —/— — — — SPC564A70B4, SPC564A70L7 CAL_CS0 Name SPC564A70 signal properties (continued) (1) (2) Function P/A/G (3) PCR PA field PCR (5) (4) type Voltage(6) / Pad type(7) I/O Status(8) During reset Package pin No. After reset 176 208(9) 324 Doc ID 18078 Rev 4 Calibration address bus Calibration address latch enable P A1 01 10 340 I/O O VDDE12 / Fast —/— — — — CAL_ADDR[16] CAL_DATA[16] Calibration address bus Calibration data bus P A1 01 10 345 I/O I/O VDDE12 / Fast —/— — — — CAL_ADDR[17] CAL_DATA[17] Calibration address bus Calibration data bus P A1 01 10 345 I/O I/O VDDE12 / Fast —/— — — — CAL_ADDR[18] CAL_DATA[18] Calibration address bus Calibration data bus P A1 01 10 345 I/O I/O VDDE12 / Fast —/— — — — CAL_ADDR[19] CAL_DATA[19] Calibration address bus Calibration data bus P A1 01 10 345 I/O I/O VDDE12 / Fast —/— — — — CAL_ADDR[20] CAL_DATA[20] Calibration address bus Calibration data bus P A1 01 10 345 I/O I/O VDDE12 / Fast —/— — — — CAL_ADDR[21] CAL_DATA[21] Calibration address bus Calibration data bus P A1 01 10 345 I/O I/O VDDE12 / Fast —/— — — — CAL_ADDR[22] CAL_DATA[22] Calibration address bus Calibration data bus P A1 01 10 345 I/O I/O VDDE12 / Fast —/— — — — CAL_ADDR[23] CAL_DATA[23] Calibration address bus Calibration data bus P A1 01 10 345 I/O I/O VDDE12 / Fast —/— — — — CAL_ADDR[24] CAL_DATA[24] Calibration address bus Calibration data bus P A1 01 10 345 I/O I/O VDDE12 / Fast —/— — — — CAL_ADDR[25] CAL_DATA[25] Calibration address bus Calibration data bus P A1 01 10 345 I/O I/O VDDE12 / Fast —/— — — — CAL_ADDR[26] CAL_DATA[26] Calibration address bus Calibration data bus P A1 01 10 345 I/O I/O VDDE12 / Fast —/— — — — CAL_ADDR[27] CAL_DATA[27] Calibration address bus Calibration data bus P A1 01 10 345 I/O I/O VDDE12 / Fast —/— — — — CAL_ADDR[28] CAL_DATA[28] Calibration address bus Calibration data bus P A1 01 10 345 I/O I/O VDDE12 / Fast —/— — — — CAL_ADDR[29] CAL_DATA[29] Calibration address bus Calibration data bus P A1 01 10 345 I/O I/O VDDE12 / Fast —/— — — — CAL_ADDR[30] CAL_DATA[30] Calibration address bus Calibration data bus P A1 01 10 345 I/O I/O VDDE12 / Fast —/— — — — Pinout and signal description 43/133 CAL_ADDR[15] CAL_ALE SPC564A70B4, SPC564A70L7 Table 4. Name SPC564A70 signal properties (continued) (1) (2) Function P/A/G (3) PCR PA field PCR (5) (4) I/O type Voltage(6) / Pad type(7) Status(8) Package pin No. During reset After reset 176 208(9) 324 Doc ID 18078 Rev 4 Calibration data bus P 01 341 I/O VDDE12 / Fast — / Up — / Up — — — CAL_DATA[1] Calibration data bus P 01 341 I/O VDDE12 / Fast — / Up — / Up — — — CAL_DATA[2] Calibration data bus P 01 341 I/O VDDE12 / Fast — / Up — / Up — — — CAL_DATA[3] Calibration data bus P 01 341 I/O VDDE12 / Fast — / Up — / Up — — — CAL_DATA[4] Calibration data bus P 01 341 I/O VDDE12 / Fast — / Up — / Up — — — CAL_DATA[5] Calibration data bus P 01 341 I/O VDDE12 / Fast — / Up — / Up — — — CAL_DATA[6] Calibration data bus P 01 341 I/O VDDE12 / Fast — / Up — / Up — — — CAL_DATA[7] Calibration data bus P 01 341 I/O VDDE12 / Fast — / Up — / Up — — — CAL_DATA[8] Calibration data bus P 01 341 I/O VDDE12 / Fast — / Up — / Up — — — CAL_DATA[9] Calibration data bus P 01 341 I/O VDDE12 / Fast — / Up — / Up — — — CAL_DATA[10] Calibration data bus P 01 341 I/O VDDE12 / Fast — / Up — / Up — — — CAL_DATA[11] Calibration data bus P 01 341 I/O VDDE12 / Fast — / Up — / Up — — — CAL_DATA[12] Calibration data bus P 01 341 I/O VDDE12 / Fast — / Up — / Up — — — CAL_DATA[13] Calibration data bus P 01 341 I/O VDDE12 / Fast — / Up — / Up — — — CAL_DATA[14] Calibration data bus P 01 341 I/O VDDE12 / Fast — / Up — / Up — — — CAL_DATA[15] Calibration data bus P 01 341 I/O VDDE12 / Fast — / Up — / Up — — — SPC564A70B4, SPC564A70L7 CAL_DATA[0] Pinout and signal description 44/133 Table 4. Name SPC564A70 signal properties (continued) (1) (2) Function P/A/G (3) PCR PA field PCR (5) (4) I/O type Voltage(6) / Pad type(7) Status(8) During reset Package pin No. After reset 176 208(9) 324 Doc ID 18078 Rev 4 Calibration data bus P 01 342 O VDDE12 / Fast —/— — — — CAL_WE[0] Calibration write enable P 01 342 O VDDE12 / Fast —/— — — — CAL_WE[1] Calibration write enable P 01 342 O VDDE12 / Fast —/— — — — CAL_OE Calibration output enable P 01 342 O VDDE12 / Fast —/— — — — CAL_TS CAL_ALE Calibration transfer start Address Latch Enable P A1 01 10 343 O O VDDE12 / Fast —/— — — — CAL_MDO[4] Calibration Nexus Message Data Out P 01 — O VDDE12 / Fast — CAL_MDO[4] / — — — — CAL_MDO[5] Calibration Nexus Message Data Out P 01 — O VDDE12 / Fast — CAL_MDO[5] / — — — — CAL_MDO[6] Calibration Nexus Message Data Out P 01 — O VDDE12 / Fast — CAL_MDO[6] / — — — — CAL_MDO[7] Calibration Nexus Message Data Out P 01 — O VDDE12 / Fast — CAL_MDO[7] / — — — — CAL_MDO[8] Calibration Nexus Message Data Out P 01 — O VDDE12 / Fast — CAL_MDO[8] / — — — — CAL_MDO[9] Calibration Nexus Message Data Out P 01 — O VDDE12 / Fast — CAL_MDO[9] / — — — — CAL_MDO[10] Calibration Nexus Message Data Out P 01 — O VDDE12 / Fast — CAL_MDO[10] / — — — — CAL_MDO[11] Calibration Nexus Message Data Out P 01 — O VDDE12 / Fast — CAL_MDO[11] / — — — — NEXUS(14) 45/133 EVTI Nexus event in P 01 231 I VDDEH7 / MultiV — / Up EVTI / Up 116 E15 F21 EVTO(15) Nexus event out P 01 227 O VDDEH7 / MultiV ABR/Up EVTO / — 120 D15 F22 Pinout and signal description CAL_RD_WR SPC564A70B4, SPC564A70L7 Table 4. Name SPC564A70 signal properties (continued) (1) (2) Function P/A/G (3) PCR PA field PCR (5) (4) 219 ( I/O type Voltage(6) / Pad type(7) Status(8) Package pin No. During reset After reset 176 208(9) 324 Doc ID 18078 Rev 4 O VRC33 / Fast — MCKO / — 14 F15 G20 01 220 O VRC33 / Fast — MDO[0] / — 17 A14 B20 P 01 221 O VRC33 / Fast — MDO[1] / — 18 B14 C19 Nexus message data out P 01 222 O VRC33 / Fast — MDO[2] / — 19 A13 C18 MDO[3] Nexus message data out P 01 223 O VRC33 / Fast — MDO[3] / — 20 B13 D18 MDO[4] ETPUA2_O GPIO[75] Nexus message data out eTPU A channel (output only) GPIO P A1 G 01 10 00 75 O O I/O VDDEH7 / MultiV — —/— 126 P10 B19 MDO[5] ETPUA4_O GPIO[76] Nexus message data out eTPU A channel (output only) GPIO P A1 G 01 10 00 76 O O I/O VDDEH7 / MultiV — —/— 129 T10 C17 MDO[6] ETPUA13_O GPIO[77] Nexus message data out eTPU A channel (output only) GPIO P A1 G 01 10 00 77 O O I/O VDDEH7 / MultiV — —/— 135 T11 D17 MDO[7] ETPUA19_O GPIO[78] Nexus message data out eTPU A channel (output only) GPIO P A1 G 01 10 00 78 O O I/O VDDEH7 / MultiV — —/— 136 N11 B18 MDO[8] ETPUA21_O GPIO[79] Nexus message data out eTPU A channel (output only) GPIO P A1 G 01 10 00 79 O O I/O VDDEH7 / MultiV — —/— 137 P11 A19 MDO[9] ETPUA25_O PIO[80] Nexus message data out eTPU A channel (output only) GPIO P A1 G 01 10 00 80 O O I/O VDDEH7 / MultiV — —/— 139 T7 B17 MDO[10] ETPUA27_O GPIO[81] Nexus message data out eTPU A channel (output only) GPIO P A1 G 01 10 00 81 O O I/O VDDEH7 / MultiV — —/— 134 R10 A18 MDO[11] ETPUA29_O GPIO[82] Nexus message data out eTPU A channel (output only) GPIO[82] P A1 G 01 10 00 82 O O I/O VDDEH7 / MultiV — —/— 124 P9 A17 Nexus message clock out P — MDO[0] Nexus message data out P MDO[1] Nexus message data out MDO[2] SPC564A70B4, SPC564A70L7 12) MCKO Pinout and signal description 46/133 Table 4. Name SPC564A70 signal properties (continued) (1) (2) Function P/A/G (3) PCR PA field PCR (5) I/O type (4) Voltage(6) / Pad type(7) Status(8) Package pin No. During reset After reset 176 208(9) 324 MSEO[0] Nexus message start/end out P 01 224 O VDDEH7 / MultiV — MSEO[0] / — 118 C15 G21 MSEO[1] Nexus message start/end out P 01 225 O VDDEH7 / MultiV — MSEO[1] / — 117 E16 G22 RDY Nexus ready output P 01 226 O VDDEH7 / MultiV — — — — G19 JTAG Doc ID 18078 Rev 4 TCK JTAG test clock input P 01 — I VDDEH7 / MultiV TCK / Down TCK / Down 128 C16 D21 TDI JTAG test data input P 01 232 I VDDEH7 / MultiV TDI / Up TDI / Up 130 E14 D22 TDO JTAG test data output P 01 228 O VDDEH7 / MultiV TDO / Up TDO / Up 123 F14 E21 TMS JTAG test mode select input P 01 — I VDDEH7 / MultiV TMS / Up TMS / Up 131 D14 E20 JCOMP JTAG TAP controller enable P 01 — I VDDEH7 / MultiV JCOMP / Down JCOMP / Down 121 F16 F20 SPC564A70B4, SPC564A70L7 Table 4. FlexCAN FlexCAN A transmit eSCI A transmit GPIO P A1 G 01 10 00 83 O O I/O VDDEH6 / Slow — / Up — / Up 81 P12 Y17 CAN_A_RX SCI_A_RX GPIO[84] FlexCAN A receive eSCI A receive GPIO P A1 G 01 10 00 84 I I I/O VDDEH6 / Slow — / Up — / Up 82 R12 AA18 CAN_B_TX DSPI_C_PCS[3] SCI_C_TX GPIO[85] FlexCAN B transmit DSPI C peripheral chip select eSCI C transmit GPIO P A1 A2 G 001 010 100 000 85 O O O I/O VDDEH6 / Slow — / Up — / Up 88 T12 AB18 CAN_B_RX DSPI_C_PCS[4] SCI_C_RX GPIO[86] FlexCAN B receive DSPI C peripheral chip select eSCI C receive GPIO P A1 A2 G 001 010 100 000 86 I O I I/O VDDEH6 / Slow — / Up — / Up 89 R13 AB19 Pinout and signal description 47/133 CAN_A_TX SCI_A_TX GPIO[83] Name SPC564A70 signal properties (continued) (1) (2) Function P/A/G (3) PCR PA field PCR (5) (4) I/O type Voltage(6) / Pad type(7) Status(8) Package pin No. During reset After reset 176 208(9) 324 CAN_C_TX DSPI_D_PCS[3] GPIO[87] FlexCAN C transmit DSPI D peripheral chip select GPIO P A1 G 01 10 00 87 O O I/O VDDEH6 / Medium — / Up — / Up 101 K13 P19 CAN_C_RX DSPI_D_PCS[4] GPIO[88] FlexCAN C receive DSPI D peripheral chip select GPIO P A1 G 01 10 00 88 I O I/O VDDEH6 / Slow — / Up — / Up 98 L14 R20 N20 eSCI Doc ID 18078 Rev 4 eSCI A transmit eMIOS channel GPIO P A1 G 01 10 00 89 O O I/O VDDEH6 / Medium — / Up — / Up 100 J14 SCI_A_RX EMIOS15(16) GPIO[90] eSCI A receive eMIOS channel GPIO P A1 G 01 10 00 90 I O I/O VDDEH6 / Medium — / Up — / Up 99 K14 P20 SCI_B_TX DSPI_D_PCS[1] GPIO[91] eSCI B transmit DSPI D peripheral chip select GPIO P A1 G 01 10 00 91 O O I/O VDDEH6 / Medium — / Up — / Up 87 L13 R21 SCI_B_RX DSPI_D_PCS[5] GPIO[92] eSCI B receive DSPI D peripheral chip select GPIO P A1 G 01 10 00 92 I O I/O VDDEH6 / Medium — / Up — / Up 84 M13 T19 SCI_C_TX GPIO[244] eSCI C transmit GPIO P G 01 00 244 O I/O VDDEH6 / Medium — / Up — / Up — — W18 SCI_C_RX GPIO[245] eSCI C receive GPIO P G 01 00 245 I I/O VDDEH6 / Medium — / Up — / Up — — Y19 DSPI DSPI_A_SCK(17) DSPI_C_PCS[1] GPIO[93] — DSPI C peripheral chip select GPIO — A1 G — 10 00 93 — O I/O VDDEH7 / Medium — / Up — / Up — — L22 DSPI_A_SIN(17) DSPI_C_PCS[2] GPIO[94] — DSPI C peripheral chip select GPIO — A1 G — 10 00 94 — O I/O VDDEH7 / Medium — / Up — / Up — — L21 DSPI_A_SOUT(17) DSPI_C_PCS[5] GPIO[95] — DSPI C peripheral chip select GPIO — A1 G — 10 00 95 — O I/O VDDEH7 / Medium — / Up — / Up — — L20 SPC564A70B4, SPC564A70L7 SCI_A_TX EMIOS13(16) GPIO[89] Pinout and signal description 48/133 Table 4. Name SPC564A70 signal properties (continued) (1) (2) Function P/A/G (3) PCR PA field PCR (5) (4) I/O type Voltage(6) / Pad type(7) Status(8) Package pin No. During reset After reset 176 208(9) 324 Doc ID 18078 Rev 4 — DSPI C peripheral chip select GPIO — A1 G — 10 00 96 — O I/O VDDEH7 / Medium — / Up — / Up — — M20 DSPI_A_PCS[1](17) DSPI_B_PCS[2] GPIO[97] — DSPI C peripheral chip select GPIO — A1 G — 10 00 97 — O I/O VDDEH7 / Medium — / Up — / Up — — M19 DSPI_A_PCS[2](17) DSPI_D_SCK GPIO[98] — SPI clock pin for DSPI module GPIO — A1 G — 10 00 98 — I/O I/O VDDEH7 / Medium — / Up — / Up 141 J15 M21 DSPI_A_PCS[3](17) DSPI_D_SIN GPIO[99] — DSPI D data input GPIO — A1 G — 10 00 99 — I I/O VDDEH7 / Medium — / Up — / Up 142 H13 K19 DSPI_A_PCS[4](17) DSPI_D_SOUT GPIO[100] — DSPI D data output GPIO — A1 G — 10 00 100 — O I/O VDDEH7 / Medium — / Up — / Up — — N19 DSPI_A_PCS[5](17) DSPI_B_PCS[3] GPIO[101] — DSPI B peripheral chip select GPIO — A1 G — 10 00 101 — O I/O VDDEH7 / Medium — / Up — / Up — — N21 DSPI_B_SCK DSPI_C_PCS[1] GPIO[102] SPI clock pin for DSPI module DSPI B peripheral chip select GPIO P A1 G 01 10 00 102 I/O O I/O VDDEH6 / Medium — / Up — / Up 106 J16 K21 DSPI_B_SIN DSPI_C_PCS[2] GPIO[103] DSPI B data input DSPI C peripheral chip select GPIO P A1 G 01 10 00 103 I O I/O VDDEH6 / Medium — / Up — / Up 112 G15 H22 DSPI_B_SOUT DSPI_C_PCS[5] GPIO[104] DSPI B data output DSPI C peripheral chip select GPIO P A1 G 01 10 00 104 O O I/O VDDEH6 / Medium — / Up — / Up 113 G13 J19 DSPI_B_PCS[0] DSPI_D_PCS[2] GPIO[105] DSPI B peripheral chip select DSPI D peripheral chip select GPIO P A1 G 01 10 00 105 I/O O I/O VDDEH6 / Medium — / Up — / Up 111 G16 J21 DSPI_B_PCS[1] DSPI_D_PCS[0] GPIO[106] DSPI B peripheral chip select DSPI D peripheral chip select GPIO P A1 G 01 10 00 106 O I/O I/O VDDEH6 / Medium — / Up — / Up 109 H16 J22 Pinout and signal description 49/133 DSPI_A_PCS[0](17) DSPI_D_PCS[2] GPIO[96] SPC564A70B4, SPC564A70L7 Table 4. Name SPC564A70 signal properties (continued) (1) (2) Function P/A/G (3) PCR PA field PCR (5) (4) I/O type Voltage(6) / Pad type(7) Status(8) Package pin No. During reset After reset 176 208(9) 324 Doc ID 18078 Rev 4 DSPI_B_PCS[2] DSPI_C_SOUT GPIO[107] DSPI B peripheral chip select DSPI C data output GPIO P A1 G 01 10 00 107 O O I/O VDDEH6 / Medium — / Up — / Up 107 H15 K22 DSPI_B_PCS[3] DSPI_C_SIN GPIO[108] DSPI B peripheral chip select DSPI C data input GPIO P A1 G 01 10 00 108 O I I/O VDDEH6 / Medium — / Up — / Up 114 G14 J20 DSPI_B_PCS[4] DSPI_C_SCK GPIO[109] DSPI B peripheral chip select SPI clock pin for DSPI module GPIO P A1 G 01 10 00 109 O I/O I/O VDDEH6 / Medium — / Up — / Up 105 H14 K20 DSPI_B_PCS[5] DSPI_C_PCS[0] GPIO[110] DSPI B peripheral chip select DSPI C peripheral chip select GPIO P A1 G 01 10 00 110 O I/O I/O VDDEH6 / Medium — / Up — / Up 104 J13 L19 Pinout and signal description 50/133 Table 4. eQADC Single Ended Analog Input Positive Terminal Differential Input P — — I VDDA / Analog Pull-up/down I/— AN[0] / — 172 B5 B8 AN1 DAN0− Single Ended Analog Input Negative Terminal Differential Input P — — I VDDA / Analog Pull-up/down I/— AN[1] / — 171 A6 A8 AN2 DAN1+ Single Ended Analog Input Positive Terminal Differential Input P — — I VDDA / Analog Pull-up/down I/— AN[2] / — 170 D6 D10 AN3 DAN1− Single Ended Analog Input Negative Terminal Differential Input P — — I VDDA / Analog Pull-up/down I/— AN[3] / — 169 C7 C9 AN4 DAN2+ Single Ended Analog Input Positive Terminal Differential Input P — — I VDDA / Analog Pull-up/down I/— AN[4] / — 168 B6 B9 AN5 DAN2− Single Ended Analog Input Negative Terminal Differential Input P — — I VDDA / Analog Pull-up/down I/— AN[5] / — 167 A7 A9 AN6 DAN3+ Single Ended Analog Input Positive Terminal Differential Input P — — I VDDA / Analog Pull-up/down I/— AN[6] / — 166 D7 D11 SPC564A70B4, SPC564A70L7 AN0 DAN0+ Name SPC564A70 signal properties (continued) (1) (2) Function PCR PA field PCR P — — I P/A/G (3) (5) (4) I/O type Voltage(6) / Pad type(7) Status(8) Package pin No. During reset After reset 176 208(9) 324 VDDA / Analog Pull-up/down I/— AN[7] / — 165 C8 C10 Doc ID 18078 Rev 4 Single Ended Analog Input Negative Terminal Differential Input AN8 ANW Single-ended Analog Input Multiplexed Analog Input P 01 — I VDDA / Analog I/— AN[8] / — 9 B3 D6 AN9 ANX Single-ended Analog Input External Multiplexed Analog Input P 01 — I VDDA / Analog I/— AN[9] / — 5 A2 D7 AN10 ANY Single-ended Analog Input Multiplexed Analog Input P 01 — I VDDA / Analog I/— AN[10] / — — — D8 AN11 ANZ Single-ended Analog Input Multiplexed Analog Input P 01 — I VDDA / Analog I/— AN[11] / — 4 A3 A5 AN12 - SDS MA0 ETPUA19_O SDS Single-ended Analog Input MUX Address 0 eTPU A channel (output only) eQADC Serial Data Select P A1 A2 G 001 010 100 000 215 I O O I/O VDDEH7 / Medium I/— AN[12] / — 148 A12 A16 AN13 - SDO MA1 ETPUA21_O SDO Single-ended Analog Input MUX Address 1 eTPU A channel (output only) eQADC Serial Data Out P A1 A2 G 001 010 100 000 216 I O O O VDDEH7 / Medium I/— AN[13] / — 147 B12 B16 AN14 - SDI MA2 ETPUA27_O SDI Single-ended Analog Input MUX Address 2 eTPU A channel (output only) eQADC Serial Data In P A1 A2 G 001 010 100 000 217 I O O I VDDEH7 / Medium I/— AN[14] / — 146 C12 C16 AN15 - FCK FCK ETPUA29_O Single-ended Analog Input eQADC Free Running Clock eTPU A channel (output only) P A1 A2 001 010 100 218 I O O VDDEH7 / Medium I/— AN[15] / — 145 C13 D16 AN16 Single-ended Analog Input P — — I VDDA / Analog I/— AN[16] / — 3 C6 B7 AN17 Single-ended Analog Input P — — I VDDA / Analog I/— AN[17] / — 2 C4 C6 AN18 Single-ended Analog Input P — — I VDDA / Analog I/— AN[18] / — 1 D5 D9 AN19 Single-ended Analog Input P — — I VDDA / Analog I/— AN[19] / — — — B6 Pinout and signal description 51/133 AN7 DAN3− SPC564A70B4, SPC564A70L7 Table 4. Name SPC564A70 signal properties (continued) (1) (2) Function P/A/G (3) PCR PA field PCR (5) (4) I/O type Voltage(6) / Pad type(7) Status(8) Package pin No. During reset After reset 176 208(9) 324 Doc ID 18078 Rev 4 Single-ended Analog Input P — — I VDDA / Analog I/— AN[20] / — — — C7 AN21 Single-ended Analog Input P — — I VDDA / Analog I/— AN[21] / — 173 B4 C8 AN22 Single-ended Analog Input P — — I VDDA / Analog I/— AN[22] / — 161 B8 C11 AN23 Single-ended Analog Input P — — I VDDA / Analog I/— AN[23] / — 160 C9 B11 AN24 Single-ended Analog Input P — — I VDDA / Analog I/— AN[24] / — 159 D8 D12 AN25 Single-ended Analog Input P — — I VDDA / Analog I/— AN[25] / — 158 B9 C12 AN26 Single-ended Analog Input P — — I VDDA / Analog I/— AN[26] / — — — B12 AN27 Single-ended Analog Input P — — I VDDA / Analog I/— AN[27] / — 157 A10 A12 AN28 Single-ended Analog Input P — — I VDDA / Analog I/— AN[28] / — 156 B10 A13 AN29 Single-ended Analog Input P — — I VDDA / Analog I/— AN[29] / — — — D13 AN30 Single-ended Analog Input P — — I VDDA / Analog I/— AN[30] / — 155 D9 C13 AN31 Single-ended Analog Input P — — I VDDA / Analog I/— AN[31] / — 154 D10 B13 AN32 Single-ended Analog Input P — — I VDDA / Analog I/— AN[32] / — 153 C10 B14 AN33 Single-ended Analog Input P — — I VDDA / Analog I/— AN[33] / — 152 C11 C14 AN34 Single-ended Analog Input P — — I VDDA / Analog I/— AN[34] / — 151 C5 D14 AN35 Single-ended Analog Input P — — I VDDA / Analog I/— AN[35] / — 150 D11 A14 SPC564A70B4, SPC564A70L7 AN20 Pinout and signal description 52/133 Table 4. Name SPC564A70 signal properties (continued) (1) (2) Function P/A/G (3) PCR PA field PCR (5) (4) I/O type Voltage(6) / Pad type(7) Status(8) Package pin No. During reset After reset 176 208(9) 324 Doc ID 18078 Rev 4 AN36 Single-ended Analog Input P — — I VDDA / Analog I/— AN[36] / — 174 F4 B4 AN37 Single-ended Analog Input P — — I VDDA / Analog I/— AN[37] / — 175 E3 A4 AN38 Single-ended Analog Input P — — I VDDA / Analog I/— AN[38] / — — — C5 AN39 Single-ended Analog Input P — — I VDDA / Analog I/— AN[39] / — 8 D2 B5 VRH Voltage Reference High P — — I VDDA / — I/— — 163 A8 A10 VRL Voltage Reference Low P — — I VDDA / — I/— — 162 A9 A11 REFBYBC Reference Bypass Capacitor Input P — — I VDDA / Analog I/— — 164 B7 B10 SPC564A70B4, SPC564A70L7 Table 4. eTPU2 eTPU A TCR clock External interrupt request GPIO P A1 G 01 10 00 113 I I I/O VDDEH4 / Slow — / Up — / Up — L4 M2 ETPUA0 ETPUA12_O ETPUA19_O GPIO[114] eTPU A channel eTPU A channel (output only) eTPU A channel (output only) GPIO P A1 A2 G 001 010 100 000 114 I/O O O I/O VDDEH4 / Slow —/ WKPCFG —/ WKPCFG 61 N3 L3 ETPUA1 ETPUA13_O GPIO[115] eTPU A channel eTPU A channel (output only) GPIO P A1 G 01 10 00 115 I/O O I/O VDDEH4 / Slow —/ WKPCFG —/ WKPCFG 60 M3 L4 ETPUA2 ETPUA14_O GPIO[116] eTPU A channel eTPU A channel (output only) GPIO P A1 G 01 10 00 116 I/O O I/O VDDEH4 / Slow —/ WKPCFG —/ WKPCFG 59 P2 K3 ETPUA3 ETPUA15_O GPIO[117] eTPU A channel eTPU A channel (output only) GPIO P A1 G 01 10 00 117 I/O O I/O VDDEH4 / Slow — / WKPCFG GPIO / WKPCFG 58 P1 L2 53/133 Pinout and signal description TCRCLKA IRQ[7] GPIO[113] Name SPC564A70 signal properties (continued) (1) (2) Function P/A/G (3) PCR PA field PCR (5) (4) Doc ID 18078 Rev 4 eTPU A channel eTPU A channel (output only) — FlexRay transmit data channel B GPIO P A1 A2 A3 G 0001 0010 — 1000 0000 ETPUA5 ETPUA17_O DSPI_B_SCK_LVDS− FR_B_TX_EN GPIO[119] eTPU A channel eTPU A channel (output only) LVDS negative DSPI clock FlexRay tx data enable for ch. B GPIO P A1 A2 A3 G 0001 0010 0100 1000 0000 ETPUA6 ETPUA18_O DSPI_B_SCK_LVDS+ FR_B_RX GPIO[120] eTPU A channel eTPU A channel (output only) LVDS positive DSPI clock FlexRay receive data channel B GPIO P A1 A2 A3 G 0001 0010 0100 1000 0000 ETPUA7 ETPUA19_O DSPI_B_SOUT_LVDS− ETPUA6_O GPIO[121] eTPU A channel eTPU A channel (output only) LVDS negative DSPI data out eTPU A channel (output only) GPIO P A1 A2 A3 G 0001 0010 0100 1000 0000 ETPUA8 ETPUA20_O DSPI_B_SOUT_LVDS+ GPIO[122] eTPU A channel eTPU A channel (output only) LVDS positive DSPI data out GPIO P A1 A2 G 001 010 100 000 ETPUA9 ETPUA21_O RCH1_B GPIO[123] eTPU A channel eTPU A channel (output only) Reaction channel 1B GPIO P A1 A2 G ETPUA10 ETPUA22_O RCH1_C GPIO[124] eTPU A channel eTPU A channel (output only) Reaction channel 1C GPIO ETPUA11 ETPUA23_O RCH4_B GPIO[125] eTPU A channel eTPU A channel (output only) Reaction channel 4B GPIO type Voltage(6) / Pad type(7) Status(8) Package pin No. During reset After reset 176 208(9) 324 118 I/O O — O I/O VDDEH4 / Slow —/ WKPCFG —/ WKPCFG 56 N2 L1 119 I/O O O O I/O VDDEH4 / Slow + LVDS —/ WKPCFG —/ WKPCFG 54 M4 K4 120 I/O O O I I/O VDDEH4 / Medium + LVDS —/ WKPCFG —/ WKPCFG 53 L3 J3 121 I/O O O O I/O VDDEH4 / Slow + LVDS —/ WKPCFG —/ WKPCFG 52 K3 K2 122 I/O O O I/O VDDEH4 / Slow + LVDS —/ WKPCFG —/ WKPCFG 51 N1 K1 001 010 100 000 123 I/O O O I/O VDDEH4 / Slow —/ WKPCFG —/ WKPCFG 50 M2 J4 P A1 A2 G 001 010 100 000 124 I/O O O I/O VDDEH1 / Slow —/ WKPCFG —/ WKPCFG 49 M1 H3 P A1 A2 G 001 010 100 000 125 I/O O O I/O VDDEH1 / Slow —/ WKPCFG —/ WKPCFG 48 L2 J2 SPC564A70B4, SPC564A70L7 ETPUA4 ETPUA16_O — FR_B_TX GPIO[118] I/O Pinout and signal description 54/133 Table 4. Name SPC564A70 signal properties (continued) (1) (2) Function P/A/G (3) PCR PA field PCR (5) (4) I/O type Voltage(6) / Pad type(7) Status(8) Package pin No. During reset After reset 176 208(9) 324 Doc ID 18078 Rev 4 VDDEH1 / Medium —/ WKPCFG —/ WKPCFG 47 L1 J1 127 I/O O I/O VDDEH1 / Medium —/ WKPCFG —/ WKPCFG 46 J4 G4 128 I/O O O O I/O VDDEH1 / Medium —/ WKPCFG —/ WKPCFG 42 J3 G3 129 I/O O O I/O VDDEH1 / Medium —/ WKPCFG —/ WKPCFG 40 K2 H2 130 I/O O O I/O VDDEH1 / Slow —/ WKPCFG —/ WKPCFG 39 K1 H1 001 010 100 000 131 I/O O O I/O VDDEH1 / Slow —/ WKPCFG —/ WKPCFG 38 H3 F3 P A1 A2 G 001 010 100 000 132 I/O O O I/O VDDEH1 / Slow —/ WKPCFG —/ WKPCFG 37 H4 F4 P A1 A2 G 001 010 100 000 133 I/O O O I/O VDDEH1 / Slow —/ WKPCFG —/ WKPCFG 36 J2 G2 eTPU A channel DSPI B peripheral chip select Reaction channel 4C GPIO P A1 A2 G 001 010 100 000 ETPUA13 DSPI_B_PCS[3] GPIO[127] eTPU A channel DSPI B peripheral chip select GPIO P A1 G 01 10 00 ETPUA14 DSPI_B_PCS[4] ETPUA9_O RCH0_A GPIO[128] eTPU A channel DSPI B peripheral chip select eTPU A channel (output only) Reaction channel 0A GPIO P A1 A2 A3 G 0001 0010 0100 1000 0000 ETPUA15 DSPI_B_PCS[5] RCH1_A GPIO[129] eTPU A channel DSPI B peripheral chip select Reaction channel 1A GPIO P A1 A2 G 001 010 100 000 ETPUA16 DSPI_D_PCS[1] RCH2_A GPIO[130] eTPU A channel DSPI D peripheral chip select Reaction channel 2A GPIO P A1 A2 G 001 010 100 000 ETPUA17 DSPI_D_PCS[2] RCH3_A GPIO[131] eTPU A channel DSPI D peripheral chip select Reaction channel 3A GPIO P A1 A2 G ETPUA18 DSPI_D_PCS[3] RCH4_A GPIO[132] eTPU A channel DSPI D peripheral chip select Reaction channel 4A GPIO ETPUA19 DSPI_D_PCS[4] RCH5_A GPIO[133] eTPU A channel DSPI D peripheral chip select Reaction channel 5A GPIO 55/133 Pinout and signal description 126 I/O O O I/O ETPUA12 DSPI_B_PCS[1] RCH4_C GPIO[126] SPC564A70B4, SPC564A70L7 Table 4. Name SPC564A70 signal properties (continued) (1) (2) Function P/A/G (3) PCR PA field PCR (5) (4) Doc ID 18078 Rev 4 ETPUA20 IRQ[8] RCH0_B FR_A_TX GPIO[134] eTPU A channel External interrupt request Reaction channel 0B FlexRay transmit data channel A GPIO P A1 A2 A3 G 0001 0010 0100 1000 0000 ETPUA21 IRQ[9] RCH0_C FR_A_RX GPIO[135] eTPU A channel External interrupt request Reaction channel 0C FlexRay receive channel A GPIO P A1 A2 A3 G ETPUA22 IRQ[10] ETPUA17_O GPIO[136] eTPU A channel External interrupt request eTPU A channel (output only) GPIO ETPUA23 IRQ[11] ETPUA21_O FR_A_TX_EN GPIO[137] I/O type Voltage(6) / Pad type(7) Status(8) Package pin No. During reset After reset 176 208(9) 324 VDDEH1 / Slow —/ WKPCFG —/ WKPCFG 35 J1 G1 0001 0010 0100 1000 0000 135 I/O I O I I/O VDDEH1 / Slow —/ WKPCFG —/ WKPCFG 34 G4 E4 P A1 A2 G 001 010 100 000 136 I/O I O I/O VDDEH1 / Slow —/ WKPCFG —/ WKPCFG 32 H2 F2 eTPU A channel External interrupt request eTPU A channel (output only) FlexRay ch. A transmit enable GPIO P A1 A2 A3 G 0001 0010 0100 1000 0000 137 I/O I O O I/O VDDEH1 / Slow —/ WKPCFG —/ WKPCFG 30 H1 F1 ETPUA24 IRQ[12] DSPI_C_SCK_LVDS− GPIO[138] eTPU A channel External interrupt request LVDS negative DSPI clock GPIO P A1 A2 G 001 010 100 000 138 I/O I O I/O VDDEH1 / Slow + LVDS —/ WKPCFG —/ WKPCFG 28 G1 E1 ETPUA25 IRQ[13] DSPI_C_SCK_LVDS+ GPIO[139] eTPU A channel External interrupt request LVDS positive DSPI clock GPIO P A1 A2 G 001 010 100 000 139 I/O I O I/O VDDEH1 / Medium + LVDS —/ WKPCFG —/ WKPCFG 27 G3 E3 ETPUA26 IRQ[14] DSPI_C_SOUT_LVDS− GPIO[140] eTPU A channel External interrupt request LVDS negative DSPI data out GPIO P A1 A2 G 001 010 100 000 140 I/O I O I/O VDDEH1 / Slow + LVDS —/ WKPCFG —/ WKPCFG 26 F3 D3 ETPUA27 IRQ[15] DSPI_C_SOUT_LVDS+ DSPI_B_SOUT GPIO[141] eTPU A channel External interrupt request LVDS positive DSPI data out DSPI B data output GPIO P A1 A2 A3 G 0001 0010 0100 1000 0000 141 I/O I O O I/O VDDEH1 / Slow + LVDS —/ WKPCFG —/ WKPCFG 25 G2 E2 SPC564A70B4, SPC564A70L7 134 I/O I O O I/O Pinout and signal description 56/133 Table 4. Name SPC564A70 signal properties (continued) (1) (2) Function P/A/G (3) PCR PA field PCR (5) (4) I/O type Voltage(6) / Pad type(7) Status(8) Package pin No. During reset After reset 176 208(9) 324 Doc ID 18078 Rev 4 142 I/O O O I/O VDDEH1 / Medium —/ WKPCFG —/ WKPCFG 24 F1 D1 001 010 100 000 143 I/O O O I/O VDDEH1 / Medium —/ WKPCFG —/ WKPCFG 23 F2 D2 P A1 A2 G 001 010 100 000 144 I/O O O I/O VDDEH1 / Medium —/ WKPCFG —/ WKPCFG 22 E1 C1 P A1 A2 G 001 010 100 000 145 I/O O O I/O VDDEH1 / Medium —/ WKPCFG —/ WKPCFG 21 E2 C2 VDDEH4 / Slow — / Up — / Up 63 T4 AB10 ETPUA28 DSPI_C_PCS[1] RCH5_B GPIO[142] eTPU A channel DSPI C peripheral chip select Reaction channel 5B GPIO P A1 A2 G 001 010 100 000 ETPUA29 DSPI_C_PCS[2] RCH5_C GPIO[143] eTPU A channel DSPI C peripheral chip select Reaction channel 5C GPIO P A1 A2 G ETPUA30 DSPI_C_PCS[3] ETPUA11_O GPIO[144] eTPU A channel DSPI C peripheral chip select eTPU A channel (output only) GPIO ETPUA31 DSPI_C_PCS[4] ETPUA13_O GPIO[145] eTPU A channel DSPI C peripheral chip select eTPU A channel (output only) GPIO SPC564A70B4, SPC564A70L7 Table 4. eMIOS eMIOS channel eTPU A channel (output only) eTPU A channel (output only) GPIO P A1 A2 G 001 010 100 000 179 I/O O O I/O EMIOS1 ETPUA1_O GPIO[180] eMIOS channel eTPU A channel (output only) GPIO P A1 G 01 10 00 180 I/O O I/O VDDEH4 / Slow — / Up — / Up 64 T5 AB11 EMIOS2 ETPUA2_O RCH2_B GPIO[181] eMIOS channel eTPU A channel (output only) Reaction channel 2B GPIO P A1 A2 G 001 010 100 000 181 I/O O O I/O VDDEH4 / Slow — / Up — / Up 65 N7 W12 EMIOS3 ETPUA3_O GPIO[182] eMIOS channel eTPU A channel (output only) GPIO P A1 G 01 10 00 182 I/O O I/O VDDEH4 / Slow —/ WKPCFG —/ WKPCFG 66 R6 AA11 EMIOS4 ETPUA4_O RCH2_C GPIO[183] eMIOS channel eTPU A channel (output only) Reaction channel 2C GPIO P A1 A2 G 001 010 100 000 183 I/O O O I/O VDDEH4 / Slow —/ WKPCFG —/ WKPCFG 67 R5 AB12 Pinout and signal description 57/133 EMIOS0 ETPUA0_O ETPUA25_O GPIO[179] Name SPC564A70 signal properties (continued) (1) (2) Function P/A/G (3) PCR PA field PCR (5) (4) I/O type Voltage(6) / Pad type(7) Status(8) Package pin No. During reset After reset 176 208(9) 324 Doc ID 18078 Rev 4 eMIOS channel eTPU A channel (output only) GPIO P A1 G 01 10 00 184 I/O O I/O VDDEH4 / Slow —/ WKPCFG —/ WKPCFG — — AA12 EMIOS6 ETPUA6_O GPIO[185] eMIOS channel eTPU A channel (output only) GPIO P A1 G 01 10 00 185 I/O O I/O VDDEH4 / Slow — / Down — / Down 68 P7 Y12 EMIOS7 ETPUA7_O GPIO[186] eMIOS channel eTPU A channel (output only) GPIO P A1 G 01 10 00 186 I/O O I/O VDDEH4 / Slow — / Down — / Down 69 — AB13 EMIOS8 ETPUA8_O SCI_B_TX GPIO[187] eMIOS channel eTPU A channel (output only) eSCI B transmit GPIO P A1 A2 G 001 010 100 000 187 I/O O O I/O VDDEH4 / Slow — / Up — / Up 70 P8 W13 EMIOS9 ETPUA9_O SCI_B_RX GPIO[188] eMIOS channel eTPU A channel (output only) eSCI B receive GPIO P A1 A2 G 001 010 100 000 188 I/O O I I/O VDDEH4 / Slow — / Up — / Up 71 R7 AA13 EMIOS10 DSPI_D_PCS[3] RCH3_B GPIO[189] eMIOS channel DSPI D peripheral chip select Reaction channel 3B GPIO P A1 A2 G 001 010 100 000 189 I/O O O I/O VDDEH4 / Medium —/ WKPCFG —/ WKPCFG 73 N8 Y13 EMIOS11 DSPI_D_PCS[4] RCH3_C GPIO[190] eMIOS channel DSPI D peripheral chip select Reaction channel 3C GPIO P A1 A2 G 001 010 100 000 190 I/O O O I/O VDDEH4 / Medium —/ WKPCFG —/ WKPCFG 75 R8 AB14 EMIOS12 DSPI_C_SOUT ETPUA27_O GPIO[191] eMIOS channel DSPI C data output eTPU A channel (output only) GPIO P A1 A2 G 001 010 100 000 191 I/O O O I/O VDDEH4 / Medium —/ WKPCFG —/ WKPCFG 76 N10 W15 EMIOS13 DSPI_D_SOUT GPIO[192] eMIOS channel DSPI D data output GPIO P A1 G 01 10 00 192 I/O O I/O VDDEH4 / Medium —/ WKPCFG —/ WKPCFG 77 T8 AA14 SPC564A70B4, SPC564A70L7 EMIOS5 ETPUA5_O GPIO[184] Pinout and signal description 58/133 Table 4. Name SPC564A70 signal properties (continued) (1) (2) Function P/A/G (3) PCR PA field PCR (5) (4) I/O type Voltage(6) / Pad type(7) Status(8) Package pin No. During reset After reset 176 208(9) 324 Doc ID 18078 Rev 4 VDDEH4 / Slow — / Down — / Down 78 R9 AB15 01 10 00 194 I/O I I/O VDDEH4 / Slow — / Down — / Down 79 T9 Y14 P G 01 00 195 I/O I/O VDDEH4 / Slow — / Up — / Up — — AA15 eMIOS channel GPIO P G 01 00 196 I/O I/O VDDEH4 / Slow — / Up — / Up — — Y15 EMIOS18 GPIO[197] eMIOS channel GPIO P G 01 00 197 I/O I/O VDDEH4 / Slow — / Up — / Up — — AB16 EMIOS19 GPIO[198] eMIOS channel GPIO P G 01 00 198 I/O I/O VDDEH4 / Slow —/ WKPCFG —/ WKPCFG — — AA16 EMIOS20 GPIO[199] eMIOS channel GPIO P G 01 00 199 I/O I/O VDDEH4 / Slow —/ WKPCFG —/ WKPCFG — — AB17 EMIOS21 GPIO[200] eMIOS channel GPIO P G 01 00 200 I/O I/O VDDEH4 / Slow —/ WKPCFG —/ WKPCFG — — W16 EMIOS22 GPIO[201] eMIOS channel GPIO P G 01 00 201 I/O I/O VDDEH4 / Slow — / Down — / Down — — Y16 EMIOS23 GPIO[202] eMIOS channel GPIO P G 01 00 202 I/O I/O VDDEH4 / Slow — / Down — / Down 80 R11 AA17 EMIOS14(16) GPIO[203] eMIOS channel GPIO P G 01 00 203 O I/O VDDEH7 / Slow — / Down — / Down — — H20 EMIOS15(16) GPIO[204] eMIOS channel GPIO P G 01 00 204 O I/O VDDEH7 / Slow — / Down — / Down — — H21 eMIOS channel External interrupt request eTPU A channel (output only) GPIO P A1 A2 G 001 010 100 000 EMIOS15 IRQ[1] GPIO[194] eMIOS channel External interrupt request GPIO P A1 G EMIOS16 GPIO[195] eMIOS channel GPIO EMIOS17 GPIO[196] Clock Synthesizer 59/133 XTAL Crystal oscillator output P 01 — O VDDEH6 / Analog — — 93 P16 V22 EXTAL Crystal oscillator input P 01 — I VDDEH6 / Analog — — 92 N16 U22 Pinout and signal description 193 I/O I O I/O EMIOS14 IRQ[0] ETPUA29_O GPIO[193] SPC564A70B4, SPC564A70L7 Table 4. Name SPC564A70 signal properties (continued) (1) (2) Function P/A/G (3) PCR PA field PCR (5) (4) I/O type Voltage(6) / Pad type(7) Status(8) Package pin No. During reset After reset 176 208(9) 324 CLKOUT System clock output P 01 229 O VDDE12 / Fast — CLKOUT — — AA20 ENGCLK Engineering clock output P 01 214 O VDDE12 / Fast — ENGCLK — T14 AB21 Power / Ground VDDREG Voltage regulator supply — — I 5V I/— VDDREG 10 K16 M22 VRCCTL Voltage regulator control output — — O — O/— VRCCTL 11 N14 V20 Internal regulator output — — O 3.3 V Input for external 3.3 V supply — — I 3.3 V VDDA eQADC high reference voltage — — I VSSA eQADC ground/low reference voltage — — VDDPLL FMPLL supply voltage — VSTBY Power supply for standby RAM — VRC33(18) Doc ID 18078 Rev 4 A21, A15, B1, D1, N6, P4, W7, N12 Y22 VRC33 13 5V I/— VDDA 6 A4, B11 A6, C15 I — I/— VSSA 7 A5, A11 A7, A15, B15 — I 1.2 V I/— VDDPLL 91 R16 W22 — I 0.9 V – 6 V I/— VSTBY 12 C1 A3 A2, A20, B3, C4, C22, D5, V19, W5, W20, Y4, Y21, AA3, AA22, AB2 — VDD Core supply for input or decoupling — — I 1.2 V I/— VDD 33, 45, 62, 103, 132, 149, 176 VDDE12 External supply input for calibration bus interfaces — — I 3.0 V – 3.6 V I/— VDDE12 — — VDDE5 External supply input for ENGCLK and CLKOUT — — I 3.0 V – 3.6 V I/— VDDE5 — T13 External supply for EBI interfaces — — I 3.0 V – 5.0 V I/— VDDE-EH VDDEH1A (19) VDDEH1B (19) I/O supply input I/O supply input — — — — I I 3.3 V – 5.0 V 3.3 V – 5.0 V I/— I/— W17, Y18, AA19, AB20 — — R3, W2 (19) 31 — — (19) 41 — — VDDEH1A VDDEH1B SPC564A70B4, SPC564A70L7 I/O / — B1, B16, C2, D3, E4, N5, P4, P13, R3, R14, T2, T15 VDDE-EH Pinout and signal description 60/133 Table 4. Name SPC564A70 signal properties (continued) (1) (2) Function P/A/G (3) PCR PA field PCR (5) (4) VDDEH1AB(19) VDDEH4 (20) I/O supply input I/O supply input — — — — type Voltage(6) / Pad type(7) I 3.3 V – 5.0 V I/O I 3.3 V – 5.0 V (20) I/O supply input — — I 3.3 V – 5.0 V VDDEH4B(20) I/O supply input — — I 3.3 V – 5.0 V VDDEH4AB(20) I/O supply input — — I 3.3 V – 5.0 V VDDEH4A VDDEH6 (21) I/O supply input — — I 3.3 V – 5.0 V Status(8) Package pin No. During reset After reset 176 208(9) 324 I/— VDDEH1AB(19) — K4 H4 I/— (20) — — — I/— (20) VDDEH4A 55 — — I/— VDDEH4B(20) 74 — — I/— VDDEH4AB(20) — N9 W14 — — — I/— VDDEH4 (21) VDDEH6 (21) I/O supply input — — I 3.3 V – 5.0 V I/— VDDEH6A 95 — — VDDEH6B(21) I/O supply input — — I 3.3 V – 5.0 V I/— VDDEH6B(21) 110 — — VDDEH6AB(21) I/O supply input — — I 3.3 V – 5.0 V I/— VDDEH6AB(21) — F13 H19, U19 D15 VDDEH6A Doc ID 18078 Rev 4 (22) (21) I/O supply input — — I 3.3 V – 5.0 V I/— VDDEH7 — D12 (22) I/O supply input — — I 3.3 V – 5.0 V I/— VDDEH7A 125 — — VDDEH7B(22) I/O supply input — — I 3.3 V – 5.0 V I/— VDDEH7B 138 — — VDDEH7 VDDEH7A Ground — — I — I/— VSS 61/133 Pinout and signal description VSS 15, 29, 43, 57, 72, 90, 94, 96, 108, 115, 127, 133, 140 A1, A22, B2, B21, C3, C20, D4, D19, J9, J10, A1, A16, J11, J12, B2, B15, J13, K9, C3, C14, K10, K11, D4, D13, K12, K13, G7, G8, K14, L9, G9, G10, L10, L11, H7, H8, L12, L13, H9, H10, L14, M11, M12, J7, J8, J9, M13, J10, K7, M14, N9, K8, K9, N10, N12, K10, M16, N13, N14, N4, N13, P9, P10, P3, P14, P12, P13, R2, R15, P14, T21, T1, T16 T22, W4, W19, Y3, Y20, AA2, AA21, AB1, AB22 SPC564A70B4, SPC564A70L7 Table 4. Pinout and signal description SPC564A70B4, SPC564A70L7 1. The suffix “_O” identifies an output-only eTPU channel 2. For each pin in the table, each line in the Function column is a separate function of the pin. For all I/O pins the selection of primary pin function or GPIO is done in the SIU except where explicitly noted. See the Signal details table for a description of each signal. 3. The P/A/G column indicates the position a signal occupies in the muxing order for a pin—Primary, Alternate 1, Alternate 2, Alternate 3, or GPIO. S setting the PA field value in the appropriate PCR register in the SIU module. The PA field values are as follows: P - 0b0001, A1 - 0b0010, A2 - 0b0 0b0000. Depending on the register, the PA field size can vary in length. For PA fields having fewer than four bits, remove the appropriate number these values. 4. The Pad Configuration Register (PCR) PA field is used by software to select pin function. 5. Values in the PCR column refer to registers in the System Integration Unit (SIU). The actual register name is “SIU_PCR” suffixed by the PCR num PCR[190] refers to the SIU register named SIU_PCR190. 6. The VDDE and VDDEH supply inputs are broken into segments. Each segment of slow I/O pins (VDDEH) may have a separate supply in the 3.3 V 10%/+5%). Each segment of fast I/O (VDDE) may have a separate supply in the 1.8 V to 3.3 V range (+/− 10%). 7. See Table 5 for details on pad types. 8. The Status During Reset pin is sampled after the internal POR is negated. Prior to exiting POR, the signal has a high impedance. Terminology is O (weak pull up enabled), Down (weak pull down enabled), Low (output driven low), High (output driven high). A dash for the function in this column input and output buffer are turned off. The signal name to the left or right of the slash indicates the pin is enabled. 9. LBGA208 is available upon specific request. Please contact your ST sales office for details. 10. When used as ETRIG, this pin must be configured as an input. For GPIO it can be configured either as an input or output. 11. Maximum frequency is 50 kHz 12. PCR219 controls two different pins: MCKO and GPIO[219]. Please refer to Pad Configuration Register 219 section in SIU chapter of device refere 13. On LQFP176 and LBGA208 packages, this pin is tied low internally. 14. These pins are selected by asserting JCOMP and configuring the NPC. SIU values have no effect on the function of this pin once enabled. 15. The BAM uses this pin to select if auto baud rate is on or off. 16. Output only 17. This signal name is used to support legacy naming. 18. Do not use VRC33 to drive external circuits. 19. VDDEH1A, VDDEH1B and VDDEH1AB are shorted together in all production packages. The separation of the signal names is present to support they should be considered as the same signal in this document. 20. VDDEH4, VDDEH4A, VDDEH4B and VDDEH4AB are shorted together in all production packages. The separation of the signal names is present to however they should be considered as the same signal in this document. 21. VDDEH6, VDDEH6A, VDDEH6B and VDDEH6AB are shorted together in all production packages. The separation of the signal names is present to however they should be considered as the same signal in this document. 22. VDDEH7, VDDEH7A and VDDE7B are shorted together in all production packages. The separation of the signal names is present to support legac should be considered as the same signal in this document. 62/133 Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 Table 5. Pinout and signal description Pad types Pad Type Name I/O Voltage Range Slow pad_ssr_hv 3.0V - 5.5 V Medium pad_msr_hv 3.0 V - 5.5 V Fast pad_fc 3.0 V - 3.6 V MultiV(1),(2) pad_multv_hv 3.0 V - 5.5 V (high swing mode) 3.0 V - 3.6 V (low swing mode) Analog pad_ae_hv 0.0 - 5.5 V LVDS pad_lo_lv — 1. Multivoltage pads are automatically configured in low swing mode when a JTAG or Nexus function is selected, otherwise they are high swing. 2. VDDEH7 supply cannot be below 4.5 V when in low-swing mode. 2.5 Signal details Table 6. Signal details Signal Module or function Description CLKOUT Clock Generation SPC564A70 clock output for the calibration bus interface ENGCLK Clock Generation Clock for external ASIC devices EXTAL Clock Generation Input pin for an external crystal oscillator or an external clock source based on the value driven on the PLLREF pin at reset PLLREF is used to select whether the oscillator operates in xtal mode or external reference mode from reset. PLLREF = 0 selects external reference mode. On the PBGA324 package, PLLREF is bonded to the ball used for PLLCFG[0] for compatibility with previous devices. PLLREF Clock Generation Reset/Configuration For the 176-pin QFP and 208-ball BGA packages: 0: External reference clock is selected 1: XTAL oscillator mode is selected For the 324-ball BGA package: If RSTCFG is 0: 0: External reference clock is selected 1: XTAL oscillator mode is selected If RSTCFG is 1, XTAL oscillator mode is selected. XTAL Clock Generation Crystal oscillator input DSPI_B_SCK_LVDS− DSPI_B_SCK_LVDS+ DSPI LVDS pair used for DSPI_B TSB mode transmission DSPI_B_SOUT_LVDS− DSPI_B_SOUT_LVDS+ DSPI LVDS pair used for DSPI_B TSB mode transmission Doc ID 18078 Rev 4 63/133 Pinout and signal description Table 6. SPC564A70B4, SPC564A70L7 Signal details (continued) Signal Module or function Description DSPI_C_SCK_LVDS− DSPI_C_SCK_LVDS+ DSPI LVDS pair used for DSPI_C TSB mode transmission DSPI_C_SOUT_LVDS− DSPI_C_SOUT_LVDS+ DSPI LVDS pair used for DSPI_C TSB mode transmission DSPI_B_PCS[0] DSPI_C_PCS[0] DSPI_D_PCS[0] DSPI_B – DSPI_D Peripheral chip select when device is in master mode—slave select when used in slave mode DSPI_B_PCS[1:5] DSPI_C_PCS[1:5] DSPI_D_PCS[1:5] DSPI_B – DSPI_D Peripheral chip select when device is in master mode—not used in slave mode DSPI_B_SCK DSPI_C_SCK DSPI_D_SCK DSPI_B – DSPI_D DSPI clock—output when device is in master mode; input when in slave mode DSPI_B_SIN DSPI_C_SIN DSPI_D_SIN DSPI_B – DSPI_D DSPI data in DSPI_B_SOUT DSPI_C_SOUT DSPI_D_SOUT DSPI_B – DSPI_D DSPI data out eMIOS[0:23] eMIOS eMIOS I/O channels AN[0:39] eQADC Single-ended analog inputs for analog-to-digital converter AN[0:7]/DAN+ eQADC Differential analog input pair for analog-to-digital converter with pull-up/pull-down functionality AN[0:7]/DAN− eQADC Differential analog input pair for analog-to-digital converter with pull-up/pull-down functionality FCK eQADC eQADC free running clock for eQADC SSI MA[0:2] eQADC These three control bits are output to enable the selection for an external Analog Mux for expansion channels. REFBYPC eQADC Bypass capacitor input SDI eQADC Serial data in SDO eQADC Serial data out SDS eQADC Serial data select VRH eQADC Voltage reference high input VRL eQADC Voltage reference low input SCI_A_RX SCI_B_RX SCI_C_RX eSCI_A – eSCI_C eSCI receive SCI_A_TX SCI_B_TX SCI_C_TX eSCI_A – eSCI_C eSCI transmit 64/133 Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 Table 6. Pinout and signal description Signal details (continued) Signal Module or function Description ETPU_A[0:31] eTPU eTPU I/O channel RCH0_[A:C] RCH1_[A:C] RCH2_[A:C] RCH3_[A:C] RCH4_[A:C] RCH5_[A:C] eTPU2 Reaction Module eTPU2 reaction channels. Used to control external actuators, e.g., solenoid control for direct injection systems and valve control in automatic transmissions TCRCLKA eTPU2 Input clock for TCR time base CAN_A_TX CAN_B_TX CAN_C_TX FlexCAN_A – FlexCAN_C FlexCAN transmit CAN_A_RX CAN_B_RX CAN_C_RX FlexCAN_A – FlexCAN_C FlexCAN receive FR_A_RX FR_B_RX FlexRay FlexRay receive (Channels A, B) FR_A_TX_EN FR_B_TX_EN FlexRay FlexRay transmit enable (Channels A, B) FR_A_TX FR_B_TX FlexRay FlexRay transmit (Channels A, B) JCOMP JTAG Enables the JTAG TAP controller TCK JTAG Clock input for the on-chip test logic TDI JTAG Serial test instruction and data input for the on-chip test logic TDO JTAG Serial test data output for the on-chip test logic TMS JTAG Controls test mode operations for the on-chip test logic EVTI Nexus EVTI is an input that is read on the negation of RESET to enable or disable the Nexus Debug port. After reset, the EVTI pin is used to initiate program synchronization messages or generate a breakpoint. EVTO Nexus Output that provides timing to a development tool for a single watchpoint or breakpoint occurrence MCKO Nexus MCKO is a free running clock output to the development tools which is used for timing of the MDO and MSEO signals. MDO[0:11] Nexus Trace message output to development tools. This pin also indicates the status of the crystal oscillator clock following a power-on reset, when MDO[0] is driven high until the crystal oscillator clock achieves stability and is then negated. MSEO[0:1] Nexus Output pin—Indicates the start or end of the variable length message on the MDO pins Doc ID 18078 Rev 4 65/133 Pinout and signal description Table 6. SPC564A70B4, SPC564A70L7 Signal details (continued) Signal RDY Module or function Description Nexus Ready Output (RDY)—Indicates to the development tools that data is ready to be read from or written to the Nexus read/write access registers. Nexus Two BOOTCFG signals are implemented in SPC564A70 MCUs. The BAM program uses the BOOTCFG0 bit to determine where to read the reset configuration word, and whether to initiate a FlexCAN or eSCI boot. The BOOTCFG1 pin is sampled during the assertion of the RSTOUT signal, and the value is used to update the RSR and the BAM boot mode. BOOTCFG[0:1] See reference manual section “Reset Configuration Half Word (RCHW)” for details on the RCHW. The table “Boot Modes” in reference manual section “BAM Program Operation” defines the boot modes specified by the BOOTCFG1 pin. SIU – Configuration The following values are for BOOTCFG[0:1}: 00: Boot from internal flash memory 01: FlexCAN/eSCI boot 10: Boot from external memory using calibration bus 11: Reserved Note: For the 176-pin QFP and 208-ball BGA packages BOOTCFG[0] is always 0 since the EBI interface is not available. The WKPCFG pin is applied at the assertion of the internal reset signal (assertion of RSTOUT), and is sampled four clock cycles before the negation of the RSTOUT pin. WKPCFG The value is used to configure whether the eTPU and eMIOS pins are connected to internal weak pull up or weak pull down devices after reset. The value latched on the WKPCFG pin at reset is stored in the Reset Status Register (RSR), and is updated for all reset sources except the Debug Port Reset and Software External Reset. SIU – Configuration 0:Weak pulldown applied to eTPU and eMIOS pins at reset 1:Weak pullup applied to eTPU and eMIOS pins at reset ETRIG[2:3] SIU – eQADC Triggers External signal eTRIGx triggers eQADC CFIFOx GPIO[206] ETRIG0 (Input) SIU – eQADC Triggers External signal eTRIGx triggers eQADC CFIFOx GPIO[207] ETRIG1 (Input) SIU – eQADC Triggers External signal eTRIGx triggers eQADC CFIFOx 66/133 Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 Table 6. Pinout and signal description Signal details (continued) Signal IRQ[0:5] IRQ[7:15] Module or function SIU – External Interrupts Description The IRQ[0:15] pins connect to the SIU IRQ inputs. IMUX Select Register 1 is used to select the IRQ[0:15] pins as inputs to the IRQs. See reference manual section “External IRQ Input Select Register (SIU_EIISR)” for more information. NMI SIU – External Interrupts Non-Maskable Interrupt Configurable general purpose I/O pins. Each GPIO input and output is separately controlled by an 8-bit input (GPDI) or output (GPDO) register. Additionally, each GPIO pin is configured using a dedicated SIU_PCR register. GPIO[12:17] GPIO[75:110] GPIO[113:145] GPIO[179:204] GPIO[206:213] GPIO[219] GPIO[244:245] The GPIO pins are generally multiplexed with other I/O pin functions. SIU – GPIO See the following reference manual sections for more information: – “Pad Configuration Registers (SIU_PCR)” – “GPIO Pin Data Output Registers (SIU_GPDO0_3 – SIU_GPDO412_413)” – “GPIO Pin Data Input Registers (SIU_GPDI0_3 – SIU_GPDI_232)” The RESET pin is an active low input. The RESET pin is asserted by an external device during a power-on or external reset. The internal reset signal asserts only if the RESET pin asserts for 10 clock cycles. Assertion of the RESET pin while the device is in reset causes the reset cycle to start over. RESET SIU – Reset The RESET pin has a glitch detector which detects spikes greater than two clock cycles in duration that fall below the switch point of the input buffer logic of the VDDEH input pins. The switch point lies between the maximum VIL and minimum VIH specifications for the VDDEH input pins. Used to enable or disable the PLLREF and the BOOTCFG[0:1] configuration signals. RSTCFG SIU – Reset 0:Get configuration information from BOOTCFG[0:1] and PLLREF 1:Use default configuration of booting from internal flash with crystal clock source For the 176-pin QFP and 208-ball BGA packages RSTCFG is always 0, so PLLREF and BOOTCFG signals are used. Doc ID 18078 Rev 4 67/133 Pinout and signal description Table 6. SPC564A70B4, SPC564A70L7 Signal details (continued) Signal RSTOUT Table 7. Module or function Description The RSTOUT pin is an active low output that uses a push/pull configuration. The RSTOUT pin is driven to the low state by the MCU for all internal and external reset sources. There is a delay between initiation of the reset and the assertion of the RSTOUT pin. See reference manual section “RSTOUT” for details. SIU – Reset Power/ground segmentation Power segment Voltage VDDE5 3.0 V – 3.6 V VDDE12 3.0 V – 3.6 V VDDE-EH I/O pins powered by segment DATA[0:15], CLKOUT, ENGCLK CAL_CS0, CAL_CS2, CAL_CS3, CAL_ADDR[12:30], CAL_DATA[0:15], CAL_RD_WR, CAL_WE0, CAL_WE1, CAL_OE, CAL_TS 3.0 V – 5.5 V FR_A_TX, FR_A_TX_EN, FR_A_RX, FR_B_TX, FR_B_TX_EN, FR_B_RX VDDEH1 3.3 V – 5.5 V ETPUA[10:31] VDDEH4 3.3 V – 5.5 V EMIOS[0:23], TCRCLKA, ETPUA[0:9] VDDEH6 RESET, RSTOUT, PLLREF, PLLCFG1, RSTCFG, BOOTCFG0, BOOTCFG1, WKPCFG, CAN_A_TX, CAN_A_RX, CAN_B_TX, CAN_B_RX, CAN_C_TX, 3.3 V – 5.5 V CAN_C_RX, SCI_A_TX, SCI_A_RX, SCI_B_TX, SCI_B_RX, SCI_C_TX, SCI_C_RX, DSPI_B_SCK, DSPI_B_SIN, DSPI_B_SOUT, DSPI_B_PCS[0:5], EXTAL, XTAL VDDEH7 3.3 V – 5.5 V EMIOS14, EMIOS15, GPIO[98:99], GPIO[203:204], GPIO[206], GPIO[207], GPIO[219], EVTI, EVTO, MDO[4:11], MSEO0, MSEO1, RDY, TCK, TDI, TDO, TMS, JCOMP, DSPI_A_SCK, DSPI_A_SIN, DSPI_A_SOUT, DSPI_A_PCS[0:1], DSPI_A_PCS[4:5], AN12-SDS, AN13-SDO, AN14-SDI, AN15-FCK VDDA 5.0 V AN[0:11], AN[16:39], VRH, VRL, REFBYBC VRC33 3.3 V MCKO, MDO[0:3] Other power segments VDDREG 5.0 V — VRCCTL — — VDDPLL 1.2 V — VSTBY 0.9 V – 6.0 V — VSS — — 68/133 Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 3 Electrical characteristics Electrical characteristics This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications for the SPC564A70 series of MCUs. The electrical specifications are preliminary and are from previous designs, design simulations, or initial evaluation. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle, however for production silicon these specifications will be met. Finalized specifications will be published after complete characterization and device qualifications have been completed. In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” for Controller Characteristics is included in the Symbol column. In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol “SR” for System Requirement is included in the Symbol column. 3.1 Parameter classification The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the classifications listed in Table 8 are used and the parameters are tagged accordingly in the tables where appropriate. Table 8. Parameter classifications Classification tag Note: Tag description P Those parameters are guaranteed during production testing on each individual device. C Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations. T Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category. D Those parameters are derived mainly from simulations. The classification is shown in the column labeled “C” in the parameter tables where appropriate. Doc ID 18078 Rev 4 69/133 Electrical characteristics SPC564A70B4, SPC564A70L7 3.2 Maximum ratings Table 9. Absolute maximum ratings(1) Value Symbol VDD VFLASH VSTBY Parameter SR 1.2 V core supply voltage(2) SR Flash core voltage (3)(4) SR SRAM standby voltage (5) VDDPLL SR Clock synthesizer voltage VRC33 SR VDDA SR Analog supply voltage(5) VDDE VDDEH VIN VDDREG VRH Conditions (3) Voltage regulator control input voltage(4) Reference to VSSA Unit Min Max –0.3 1.32 V –0.3 3.6 V –0.3 6.0 V –0.3 1.32 V –0.3 3.6 V –0.3 5.5 V SR I/O supply voltage(4)(6) –0.3 3.6 V SR I/O supply voltage(5)(7) –0.3 5.5 V VDDEH powered I/O pads –1.010 VDDEH + 0.3 V(9) VDDE powered I/O pads –1.014 VDDE + 0.3 V(10) VDDA powered I/O pads –1.0 5.5 –0.3 5.5 V –0.3 5.5 V SR DC input voltage(8) SR Voltage regulator supply voltage SR Analog reference high voltage Reference to VRL V VSS – VSSA SR VSS differential voltage –0.1 0.1 V VRH – VRL SR VREF differential voltage –0.3 5.5 V VRL – VSSA SR VRL to VSSA differential voltage –0.3 0.3 V –0.1 0.1 V VSSPLL – VSS SR VSSPLL to VSS differential voltage IMAXD SR Maximum DC digital input current(11) Per pin, applies to all digital pins –3 3 mA IMAXA SR Maximum DC analog input current(12) Per pin, applies to all analog pins — 5(13) mA –40.0 150.0 –55 150 °C — 260 °C — 3 — TJ TSTG SR Maximum operating temperature range — die junction temperature SR Storage temperature range temperature(14) TSDR SR Maximum solder MSL SR Moisture sensitivity level(15) 1. Functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device reliability or cause permanent damage to the device. 2. Allowed 2 V for 10 hours cumulative time, remaining time at 1.2 V + 10% 3. The VFLASH supply is connected to VRC33 in the package substrate. This specification applies to calibration package devices only. 4. Allowed 5.3 V for 10 hours cumulative time, remaining time at 3.3 V + 10% 5. Allowed 5.9 V for 10 hours cumulative time, remaining time at 5 V + 10% 70/133 Doc ID 18078 Rev 4 o C SPC564A70B4, SPC564A70L7 Electrical characteristics 6. All functional non-supply I/O pins are clamped to VSS and VDDE, or VDDEH. 7. Internal structures hold the voltage greater than –1.0 V if the injection current limit of 2 mA is met. 8. AC signal overshoot and undershoot of up to 2.0 V of the input voltages is permitted for an accumulative duration of 60 hours over the complete lifetime of the device (injection current not limited for this duration). 9. Internal structures hold the input voltage less than the maximum voltage on all pads powered by VDDEH supplies, if the maximum injection current specification is met (2 mA for all pins) and VDDEH is within the operating voltage specifications. 10. Internal structures hold the input voltage less than the maximum voltage on all pads powered by VDDE supplies, if the maximum injection current specification is met (2 mA for all pins) and VDDE is within the operating voltage specifications. 11. Total injection current for all pins (including both digital and analog) must not exceed 25 mA. 12. Total injection current for all analog input pins must not exceed 15 mA. 13. Lifetime operation at these specification limits is not guaranteed. 14. Solder profile per IPC/JEDEC J-STD-020D 15. Moisture sensitivity per JEDEC test method A112 Doc ID 18078 Rev 4 71/133 Electrical characteristics SPC564A70B4, SPC564A70L7 3.3 Thermal characteristics Table 10. Thermal characteristics for 176-pin LQFP(1) Symbol C Parameter Conditions (2) Value Unit RθJA CC D Junction-to-ambient, natural convection Single-layer board – 1s 38 °C/W RθJA CC D Junction-to-ambient, natural convection(2) Four-layer board – 2s2p 31 °C/W CC D at 200 ft./min., single-layer board – 1s 30 °C/W at 200 ft./min., four-layer board – 2s2p 25 °C/W 20 °C/W 5 °C/W 2 °C/W RθJMA RθJB Junction-to-moving-air, ambient(2) CC D CC D Junction-to-board (3) RθJCtop CC D Junction-to-case(4) ΨJT CC D Junction-to-package top, natural convection(5) 1. Thermal characteristics are targets based on simulation that are subject to change per device characterization. 2. Junction-to-Ambient Thermal Resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package. 3. Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. 4. Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. 5. Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT. Thermal characteristics for 208-pin LBGA(1)(2) Table 11. Symbol C CC D RθJA Conditions Junction-to-ambient, natural convection(3) CC D CC D RθJMA Parameter Junction-to-moving-air, ambient(3) CC D RθJB CC D Junction-to-board(6) Value Unit Single layer board – 1s(4) 39 °C/W 24 °C/W 31 °C/W at 200 ft./min., four-layer board – 2s2p 20 °C/W Four-layer board – 2s2p 13 °C/W 6 °C/W 2 °C/W Four layer board – 2s2p(5) at 200 ft./min., single-layer board – 1s(5) RθJC CC D Junction-to-case(7) ΨJT CC D Junction-to-package top natural convection(8) 1. Thermal characteristics are targets based on simulation that are subject to change per device characterization. 2. LBGA208 is available upon specific request. Please contact your ST sales office for details. 3. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. 4. Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal 5. Per JEDEC JESD51-6 with the board horizontal 6. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package. 7. Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature. 8. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT. 72/133 Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 Table 12. Symbol Thermal characteristics for 324-pin PBGA(1) C CC D RθJA RθJB Parameter Conditions Junction-to-ambient, natural convection(2) CC D CC D RθJMA Electrical characteristics Junction-to-moving-air, ambient(2) CC D CC D Junction-to-board Single-layer board – 1s 31 °C/W Four-layer board – 2s2p 23 °C/W at 200 ft./min., single-layer board – 1s 23 °C/W at 200 ft./min., four-layer board – 2s2p 17 °C/W 11 °C/W 7 °C/W 2 °C/W (3) (4) RθJCtop CC D Junction-to-case ΨJT CC D Value Unit Junction-to-package top, natural convection(5) 1. Thermal characteristics are targets based on simulation that are subject to change per device characterization. 2. Junction-to-Ambient Thermal Resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package. 3. Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. 4. Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. 5. Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT. 3.3.1 General notes for specifications at maximum junction temperature An estimation of the chip junction temperature, TJ, can be obtained from Equation 1: Equation 1 TJ = TA + (RθJA * PD) where: TA = ambient temperature for the package (°C) RθJA = junction-to-ambient thermal resistance (°C/W) PD = power dissipation in the package (W) The thermal resistance values used are based on the JEDEC JESD51 series of standards to provide consistent values for estimations and comparisons. The difference between the values determined for the single-layer (1s) board compared to a four-layer board that has two signal layers, a power and a ground plane (2s2p), demonstrate that the effective thermal resistance is not a constant. The thermal resistance depends on the: ● Construction of the application board (number of planes) ● Effective size of the board which cools the component ● Quality of the thermal and electrical connections to the planes ● Power dissipated by adjacent components Connect all the ground and power balls to the respective planes with one via per ball. Using fewer vias to connect the package to the planes reduces the thermal performance. Thinner planes also reduce the thermal performance. When the clearance between the vias leave the planes virtually disconnected, the thermal performance is also greatly reduced. Doc ID 18078 Rev 4 73/133 Electrical characteristics SPC564A70B4, SPC564A70L7 As a general rule, the value obtained on a single-layer board is within the normal range for the tightly packed printed circuit board. The value obtained on a board with the internal planes is usually within the normal range if the application board has: ● One oz. (35 micron nominal thickness) internal planes ● Components that are well separated ● Overall power dissipation on the board is less than 0.02 W/cm2 The thermal performance of any component depends on the power dissipation of the surrounding components. In addition, the ambient temperature varies widely within the application. For many natural convection and especially closed-box applications, the board temperature at the perimeter (edge) of the package is approximately the same as the local air temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the local ambient conditions that determine the temperature of the device. At a known board temperature, the junction temperature is estimated using Equation 2: Equation 2 TJ = TB + (RθJB * PD) where: TB = board temperature for the package perimeter (°C) RθJB = junction-to-board thermal resistance (°C/W) per JESD51-8S PD = power dissipation in the package (W) When the heat loss from the package case to the air does not factor into the calculation, an acceptable value for the junction temperature is predictable. Ensure the application board is similar to the thermal test condition, with the component soldered to a board with internal planes. The thermal resistance is expressed as the sum of a junction-to-case thermal resistance plus a case-to-ambient thermal resistance: Equation 3 RθJA = RθJC + RθCA where: RθJA = junction-to-ambient thermal resistance (°C/W) RθJC = junction-to-case thermal resistance (°C/W) RθCA = case to ambient thermal resistance (°C/W) RθJC is device-related and is not affected by other factors. The thermal environment can be controlled to change the case-to-ambient thermal resistance, RθCA. For example, change the air flow around the device, add a heat sink, change the mounting arrangement on the printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. This description is most useful for packages with heat sinks where 90% of the heat flow is through the case to heat sink to ambient. For most packages, a better model is required. A more accurate two-resistor thermal model can be constructed from the junction-to-board thermal resistance and the junction-to-case thermal resistance. The junction-to-case thermal resistance describes when using a heat sink or where a substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the thermal performance when most of the heat is conducted to the printed circuit board. This model can be used to generate simple estimations and for computational fluid dynamics (CFD) thermal models. 74/133 Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 Electrical characteristics To determine the junction temperature of the device in the application on a prototype board, use the thermal characterization parameter (ΨJT) to determine the junction temperature by measuring the temperature at the top center of the package case using Equation 4: Equation 4 TJ = TT + (ΨJT x PD) where: TT = thermocouple temperature on top of the package (°C) ΨJT = thermal characterization parameter (°C/W) PD = power dissipation in the package (W) The thermal characterization parameter is measured in compliance with the JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. Position the thermocouple so that the thermocouple junction rests on the package. Place a small amount of epoxy on the thermocouple junction and approximately 1 mm of wire extending from the junction. Place the thermocouple wire flat against the package case to avoid measurement errors caused by the cooling effects of the thermocouple wire. References: ● Semiconductor Equipment and Materials International 3081 Zanker Road San Jose, CA 95134 USA Phone (+1) 408-943-6900 ● MIL-SPEC and EIA/JESD (JEDEC) specifications available from Global Engineering Documents (phone (+1) 800-854-7179 or (+1) 303-397-7956) ● JEDEC specifications available on the Web at www.jedec.org ● C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module,” Proceedings of SemiTherm, San Diego, 1998, pp. 47-54. ● G. Kromann, S. Shidore, and S. Addison, “Thermal Modeling of a PBGA for Air-Cooled Applications”, Electronic Packaging and Production, pp. 53-58, March 1998. ● B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling,” Proceedings of SemiTherm, San Diego, 1999, pp. 212-220. Doc ID 18078 Rev 4 75/133 Electrical characteristics SPC564A70B4, SPC564A70L7 3.4 EMI (electromagnetic interference) characteristics Table 13. EMI testing specifications(1) Symbol VRE_TEM Parameter Radiated emissions, electric field Conditions Level (max) 150 kHz–50 MHz 20 50–150 MHz 20 150–500 MHz 26 500–1000 MHz 26 IEC Level K — SAE Level 3 — 150 kHz–50 MHz 13 50–150 MHz 13 150–500 MHz 11 500–1000 MHz 13 IEC Level L — SAE Level 2 — Conditions Value Unit 16 MHz crystal 40 MHz bus No PLL frequency modulation VDD = 5.25 V; TA = +25 °C 150 kHz–30 MHz — RBW 9 kHz, step size 5 kHz 30 MHz–1 GHz — RBW 120 kHz, step size 80 kHz Frequency fOSC/fBUS Unit dBµV 16 MHz crystal 40 MHz bus ±2% PLL frequency modulation dBµV 1. EMI testing and I/O port waveforms per standard IEC 61967-2. 3.5 Electrostatic discharge (ESD) characteristics Table 14. ESD ratings(1)(2) Symbol Parameter — SR ESD for Human Body Model (HBM) — 2000 V R1 SR — 1500 Ω — 100 pF HBM circuit description C SR — SR ESD for Field Induced Charge Model (FDCM) — — All pins 500 Corner pins 750 V Positive pulses (HBM) 1 — Negative pulses (HBM) 1 — 1 — SR Number of pulses per pin SR Number of pulses — 1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. 2. Device failure is defined as: “If after exposure to ESD pulses, the device does not meet the device specification requirements, which includes the complete DC parametric and functional testing at room temperature and hot temperature.” 76/133 Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 Electrical characteristics 3.6 Power management control (PMC) and power on reset (POR) electrical specifications Table 15. PMC operating conditions and external regulators supply voltage Value ID 1 Name TJ C Parameter Unit SR — Junction temperature 2 VDDREG SR — PMC 5 V supply voltage VDDREG 3 VDD 3a — 4 IVDD 5 Core supply voltage 1.2 V VDD when external regulator is used CC C without disabling the internal regulator (PMC unit turned on, LVI monitor active)(1) CC C Min Typ Max –40 27 150 °C 4.75 5 5.25 V 1.3 1.32 V 1.2 1.32 V 1.26 (2) Core supply voltage 1.2 V VDD when external regulator is used with a 1.14 disabled internal regulator (PMC unit turned-off, LVI monitor disabled) CC C Voltage regulator core supply maximum required DC output current 400 — — mA Regulated 3.3 V supply voltage when external regulator is used VDD33 CC C without disabling the internal regulator (PMC unit turned-on, internal 3.3V regulator enabled, LVI monitor active)(3) 3.3 3.45 3.6 V 3 3.3 3.6 V 80 — — mA Regulated 3.3 V supply voltage when external regulator is used with a disabled internal regulator (PMC unit turned-off, LVI monitor disabled) 5a — CC C 6 — CC C Voltage regulator 3.3 V supply maximum required DC output current 1. An internal regulator controller can be used to regulate the core supply. 2. The minimum supply required for the part to exit reset and enter in normal run mode is 1.28 V. 3. An internal regulator can be used to regulate the 3.3 V supply. Table 16. PMC electrical characteristics Value ID Name C Parameter CC C Nominal bandgap voltage reference Unit Min Typ Max — 1.219 — V VBG − 7% VBG VBG + 6% V VBG − 10mV VBG VBG + 10mV V 1 VBG 1a — CC C Untrimmed bandgap reference voltage 1b — CC C 1c — CC C Bandgap reference temperature variation — 100 — ppm/°C 1d — CC C Bandgap reference supply voltage variation — 3000 — ppm/V 2 VDD Nominal VDD core supply internal regulator target DC output voltage(1) — 1.28 — V 2a — Nominal VDD core supply internal regulator CC C target DC output voltage variation at poweron reset VDD − 6% VDD VDD + 10% V 2b — Nominal VDD core supply internal regulator CC C target DC output voltage variation after power-on reset VDD − 10%(2) VDD VDD + 3% V CC C Trimmed bandgap reference voltage (5 V, 27 °C) Doc ID 18078 Rev 4 77/133 Electrical characteristics Table 16. SPC564A70B4, SPC564A70L7 PMC electrical characteristics (continued) Value ID Name C Parameter Unit 2c — CC C Trimming step VDD 2d IVRCCTL CC C 3 Lvi1p2 CC C Nominal LVI for rising core supply(3) 3a — CC C Variation of LVI for rising core supply at power-on reset(4) 3b — CC C Variation of LVI for rising core supply after power-on reset(4) 3c — CC C Trimming step LVI core supply Voltage regulator controller for core supply maximum DC output current Min Typ Max — 20 — mV 20 — — mA — 1.160 — V 1.120 1.200 1.280 V Lvi1p2 − 3% Lvi1p2 Lvi1p2 + 3% V — 20 — mV 3d Lvi1p2_h CC C LVI core supply hysteresis — 40 — mV 4 Por1.2V_r CC C POR 1.2 V rising — 0.709 — V Por1.2V_r + 35% V — V Por1.2V_f + 35% V 4a — Por1.2V_r − Por1.2V_r 35% CC C POR 1.2 V rising variation 4b Por1.2V_f CC C POR 1.2 V falling — 0.638 Por1.2V_f − Por1.2V_f 35% 4c — CC C POR 1.2 V falling variation 5 VDD33 CC C Nominal 3.3 V supply internal regulator DC output voltage — 3.39 — V 5a — CC C Nominal 3.3 V supply internal regulator DC output voltage variation at power-on reset VDD33 − 8.5% VDD33 VDD33 + 7% V 5b — Nominal 3.3 V supply internal regulator DC CC C output voltage variation after power-on reset(5) VDD33 − 7.5% VDD33 VDD33 + 7% V 5c — CC C Voltage regulator 3.3 V output impedance at maximum DC load — — 2 Ω 5d Idd3p3 CC C Voltage regulator 3.3 V maximum DC output current 80 — — mA — 130 — mA — 3.090 — V 5e Vdd33 ILim CC C Voltage regulator 3.3 V DC current limit 6 Lvi3p3 6a — CC C Variation of LVI for rising 3.3 V supply at power-on reset(7) Lvi3p3 − 6% Lvi3p3 Lvi3p3 + 6% V 6b — CC C Variation of LVI for rising 3.3 V supply after power-on reset(7) Lvi3p3 − 3% Lvi3p3 Lvi3p3 + 3% V 6c — CC C Trimming step LVI 3.3 V — 20 — mV — 60 — mV — 2.07 — V Por3.3V_r + 35% V 6d 7 CC C Nominal LVI for rising 3.3 V supply (6) Lvi3p3_h CC C LVI 3.3 V hysteresis Por3.3V_r CC C Nominal POR for rising 3.3 V 7a 78/133 — supply(8) CC C Variation of POR for rising 3.3 V supply Doc ID 18078 Rev 4 Por3.3V_r − Por3.3V_r 35% SPC564A70B4, SPC564A70L7 Table 16. Electrical characteristics PMC electrical characteristics (continued) Value ID Name C Parameter 7b Por3.3V_f CC C Nominal POR for falling 3.3 V supply 7c — CC C Variation of POR for falling 3.3 V supply 8 Lvi5p0 8a — CC C 8b — CC C 8c — CC C Trimming step LVI 5 V CC C Nominal LVI for rising 5 V VDDREG supply Unit Min Typ Max — 1.95 — V Por3.3V_f + 35% V Por3.3V_f − Por3.3V_f 35% — 4.290 — V Variation of LVI for rising 5 V VDDREG supply at power-on reset Lvi5p0 − 6% Lvi5p0 Lvi5p0 + 6% V Variation of LVI for rising 5 V VDDREG supply power-on reset Lvi5p0 − 3% Lvi5p0 Lvi5p0 + 3% V — 20 — mV 8d Lvi5p0_h CC C LVI 5 V hysteresis — 60 — mV 9 Por5V_r — 2.67 — V 9a — CC C Variation of POR for rising 5 V VDDREG supply Por5V_r − 35% Por5V_r Por5V_r + 35% V 9b Por5V_f CC C Nominal POR for falling 5 V VDDREG supply — 2.47 — V 9c — CC C Variation of POR for falling 5 V VDDREG supply Por5V_f − 35% Por5V_f Por5V_f + 35% V CC C Nominal POR for rising 5 V VDDREG supply 1. Using external ballast transistor. 2. Min range is extended to 10% since Lvi1p2 is reprogrammed from 1.2 V to 1.16 V after power-on reset. 3. LVI for falling supply is calculated as LVI rising – LVI hysteresis. 4. Lvi1p2 tracks DC target variation of internal VDD regulator. Minimum and maximum Lvi1p2 correspond to minimum and maximum VDD DC target respectively. 5. With internal load up to Idd3p3 6. The Lvi3p3 specs are also valid for the VDDEH LVI 7. Lvi3p3 tracks DC target variation of internal VDD33 regulator. Minimum and maximum Lvi3p3 correspond to minimum and maximum VDD33 DC target respectively. 8. The 3.3V POR specs are also valid for the VDDEH POR 3.6.1 Regulator example In designs where the SPC564A70 microcontroller’s internal regulators are used, a ballast is required for generation of the 1.2 V internal supply. No ballast is required when an external 1.2 V supply is used. Doc ID 18078 Rev 4 79/133 Electrical characteristics SPC564A70B4, SPC564A70L7 The resistor may or may not be required. This depends on the allowable power dissipation of the npn bypass transistor device. The resistor may be used to limit the in-rush current at power on. The bypass transistor MUST be operated out of saturation region. VDDREG Creg Rc T1 Cc VRCCTL Keep parasitic inductance under 20nH Re Mandatory decoupling capacitor network MCU Rb VDD Cb VSS Ce Cd VRCCTL capacitor and resistor is required Figure 8. Table 17. Core voltage regulator controller external components preferred configuration SPC564A70 External network specification External Network Parameter T1 Min Typ Max Comment — — — NJD2873 or BCP68 only 2.2μF 2.97μF X7R,-50%/+35% 3*4.7μF+10μF 3*6.35μF+13.5μF X7R, -50%/+35% — 50m Ω — 4*100nF 4*135nF X7R, -50%/+35% 10 Ω 11 Ω +/-10% 0.280 Ω 0.308 Ω +/-10% 10μF — It depends on external Vreg. 10μF 13.5μF X7R, -50%/+35% 5.6 Ω May or may not be required. It depends on the allowable power dissipation of T1. Cb 1.1 μF Ce 3*2.35μF+5μF Equivalent ESR of Ce capacitors 5m Ω Cd 4*50nF Rb 9Ω Re 0.252 Ω Creg Cc Rc 80/133 — 5μF 1.1 Ω — Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 3.6.2 Electrical characteristics Recommended power transistors The following NPN transistors are recommended for use with the on-chip voltage regulator controller: ON Semiconductor™ BCP68T1 or NJD2873 as well as Philips Semiconductor™ BCP68. The collector of the external transistor is preferably connected to the same voltage supply source as the output stage of the regulator. Table 18. Transistor recommended operating characteristics Symbol hFE (β) PD ICMaxDC VCESAT VBE Parameter Value Unit 60–550 — >1.0 (1.5 preferred) W 1.0 A 200–600(1) mV 0.4–1.0 V DC current gain (Beta) Absolute minimum power dissipation Minimum peak collector current Collector-to-emitter saturation voltage Base-to-emitter voltage 1. Adjust resistor at bipolar transistor collector for 3.3 V/5.0 V to avoid VCE < VCESAT 3.7 Power up/down sequencing There is no power sequencing required among power sources during power up and power down, in order to operate within specification. Although there are no power up/down sequencing requirements to prevent issues such as latch-up or excessive current spikes, the state of the I/O pins during power up/down varies according to Table 19 for all pins with pad type fast, and Table 20 for all pins with pad type medium, slow, and multi-voltage. Table 19. Power sequence pin states—Fast type pads VDDE VRC33 VDD Pin state Low X X Low VDDE Low X High VDDE VRC33 Low High impedance VDDE VRC33 VDD Functional Table 20. Power sequence pin states—Medium, slow and multi-voltage type pads VDDEH VDD Pin state Low X Low VDDEH Low High impedance VDDEH VDD Functional Doc ID 18078 Rev 4 81/133 Electrical characteristics SPC564A70B4, SPC564A70L7 3.8 DC electrical specifications Table 21. DC electrical specifications(1) Value Symbol C Parameter Conditions Unit Min Typ Max VDD SR P Core supply voltage — 1.14 — 1.32 V VDDE SR P I/O supply voltage — 3.0 — 3.6 V VDDEH SR P I/O supply voltage — 3.0 — 5.25 V VDDE-EH SR P I/O supply voltage — 3.0 — 5.25 V VRC33 SR P 3.3 V regulated voltage(2) — 3.0 — 3.6 V — 5.25 V VDDA SR P Analog supply voltage — 4.75(3) VINDC SR C Analog input voltage — VSSA − 0.3 — VDDA + 0.3 V VSS – VSSA SR D VSS differential voltage — –100 — 100 mV VRL SR D — VSSA — VSSA + 0.1 V VRL – VSSA SR D VRL differential voltage — –100 — 100 mV VRH SR D Analog reference high voltage — VDDA − 0.1 — VDDA V VRH – VRL SR P VREF differential voltage — 4.75 — 5.25 V — 1.14 — 1.32 V — 3.0 — 3.6 V Unregulated mode 0.95 — 1.2 Regulated mode 2.0 — 5.5 Analog reference low voltage voltage(4) VDDF SR P Flash operating VFLASH(5) SR P Flash read voltage VSTBY SR C SRAM standby voltage VDDREG SR P Voltage regulator supply voltage(6) — 4.75 — 5.25 V VDDPLL SR P Clock synthesizer operating voltage — 1.14 — 1.32 V VSSPLL – VSS SR D VSSPLL to VSS differential voltage — –100 — 100 mV VSS − 0.3 — SR P Slow/medium I/O input P low voltage Hysteresis enabled VIL_S 0.35 * VDDEH Hysteresis disabled VSS − 0.3 — 0.40 * VDDEH P Hysteresis enabled SR VSS − 0.3 — VIL_F 0.35 * VDDE Hysteresis disabled VSS − 0.3 — 0.40 * VDDE — 0.8 SR P Multi-voltage I/O pad input Hysteresis enabled low voltage in Low-swingP mode(7)(8)(9)(10) Hysteresis disabled VSS − 0.3 VIL_LS VSS − 0.3 — 0.9 — 0.35 VDDEH SR P Multi-voltage pad I/O input Hysteresis enabled low voltage in high-swingP mode Hysteresis disabled VSS − 0.3 VIL_HS VSS − 0.3 — 0.4 VDDEH 82/133 V Fast I/O input low voltage P Doc ID 18078 Rev 4 V V V V SPC564A70B4, SPC564A70L7 Table 21. Electrical characteristics DC electrical specifications(1) (continued) Value Symbol C Parameter Conditions Unit Min Typ Max P Slow/medium pad I/O P input high voltage Hysteresis enabled 0.65 VDDEH — VDDEH + 0.3 Hysteresis disabled 0.55 VDDEH — VDDEH + 0.3 P Hysteresis enabled 0.65 VDDE — VDDE + 0.3 Hysteresis disabled 0.58 VDDE — VDDE + 0.3 P Multi-voltage pad I/O input Hysteresis enabled high voltage in low-swingP mode(7)(8)(9)(10) Hysteresis disabled 2.5 — VDDE + 0.3 2.2 — VDDE + 0.3 P Multi-voltage I/O input Hysteresis enabled high voltage in high-swingP mode Hysteresis disabled 0.65 VDDEH — VDDEH + 0.3 0.55 VDDEH — VDDEH + 0.3 — — — 0.2 * VDDEH V — — — 0.2 * VDDE V Multi-voltage pad I/O P output low voltage in lowswing mode(7)(8)(9)(10)(11) — — — 0.6 V CC Multi-voltage pad I/O P output low voltage in highswing mode(11) — — — 0.2 VDDEH V VOH_S CC P Slow/medium I/O output high voltage(11) — 0.8 VDDEH — — V VOH_F CC P Fast pad I/O output high voltage(11) — 0.8 VDDE — — V VOH_LS CC Multi-voltage pad I/O P output high voltage in lowswing mode(7)(8)(9)(10)(11) — 2.3 3.1 3.7 V VOH_HS CC Multi-voltage pad I/O P output high voltage in high-swing mode(11) — 0.8 VDDEH — — V VHYS_S CC Slow/medium/multiP voltage I/O input hysteresis — 0.1 * VDDEH — — V VHYS_F CC P Fast I/O input hysteresis — 0.1 * VDDE — — V VHYS_LS CC Low-swing-mode multiC voltage I/O input hysteresis Hysteresis enabled 0.25 — — v VIH_S SR VIH_F SR VIH_LS SR VIH_HS SR VOL_S CC P Slow/medium pad I/O output low voltage(11) VOL_F CC P Fast I/O output low voltage(11) VOL_LS CC VOL_HS Fast I/O input high voltage P Doc ID 18078 Rev 4 V V V V 83/133 Electrical characteristics Table 21. SPC564A70B4, SPC564A70L7 DC electrical specifications(1) (continued) Value Symbol IDD+IDDPLL IDDSTBY IDDSTBY27 IDDSTBY150 C CC Parameter CC P VDD @1.32 V @ 80 MHz — — 300 mA P Operating current 1.2 V VDD @ 1.32 V @ 120 MHz supplies — — 360 mA P VDD @ 1.32 V @ 150 MHz — — 400 mA T Operating current 0.95VSTBY at 55 oC 1.2 V — 35 100 μA T Operating current 2– 5.5 V — 45 110 μA VSTBY at 55 oC P Operating current 0.95VSTBY 27 oC 1.2 V — 25 90 μA P Operating current 25.5 V — 35 100 μA VSTBY 27 oC P Operating current 0.95VSTBY 150 oC 1.2 V — 790 2000 μA P Operating current 2– 5.5 V VSTBY at 150 oC — 760 2000 μA Slow mode(12) — — 191 Stop mode(13) — — 190 VRC33(2) — — 60 VDDA — — 30.0 Analog reference supply current (transient) — — 1.0 P VDDREG — — 70(14) P VDDEH1 — — P VDDEH4 — — P VDDEH6 — — VDDEH7 — — VDDE7 — — P VDDEH9 — — P VDDE12 — — P Slow/medium I/O weak 16 P pull-up/down current 3.0 V–3.6 V 15 — 95 4.75 V–5.25 V 35 — 200 C VDD low-power mode operating current @ C 1.32 V P Operating current 3.3 V supplies P CC P IDDREG 84/133 Max CC IDD33 IACT_S Typ CC CC IDDH1 IDDH4 IDDH6 IDDH7 IDD7 IDDH9 IDD12 Unit Min CC IDDSLOW IDDSTOP IDDA IREF Conditions CC CC Operating current 5.0 V supplies Operating current P VDDE(15) supplies P mA See note (15) mA mA mA µA Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 Table 21. Electrical characteristics DC electrical specifications(1) (continued) Value Symbol C Parameter Conditions P IACT_F IACT_MV_PU CC CC Fast I/O weak pullP up/down current(16) P C Multi-voltage pad weak pull-up current C IACT_MV_PD CC C Multi-voltage pad weak pull-down current C Unit Min Typ Max 1.62 V–1.98 V 36 — 120 2.25 V–2.75 V 34 — 139 3.0 V–3.6 V 42 — 158 VDDE = 3.0 – 3.6 V(7), multi-voltage, high swing mode only 10 — 75 4.75 V–5.25 V 25 — 175 VDDE = 3.0 – 3.6 V(7), multi-voltage, all process corners, high swing mode only 10 — 60 4.75 V–5.25 V 25 — 200 µA µA µA IINACT_D CC P I/O input leakage current(17) — –2.5 — 2.5 µA IIC SR T DC injection current (per pin) — –1.0 — 1.0 mA P Analog input current, channel off, AN[0:7](18) — –250 — 250 IINACT_A SR nA Analog input current, P channel off, all other analog pins18 — –150 — 150 DSC(PCR[8:9]) = 0b00 — — 10 DSC(PCR[8:9]) = 0b01 — — 20 D DSC(PCR[8:9]) = 0b10 — — 30 D DSC(PCR[8:9]) = 0b11 — — 50 D D CL Load capacitance (fast I/O)(19) CC pF CIN CC D Input capacitance (digital pins) — — — 7 pF CIN_A CC D Input capacitance (analog pins) — — — 10 pF CIN_M CC D Input capacitance (digital and analog pins(20)) — — — 12 pF RPUPD200K SR Weak pull-up/down C resistance(21), 200 kΩ option — 130 — 280 kΩ Doc ID 18078 Rev 4 85/133 Electrical characteristics Table 21. SPC564A70B4, SPC564A70L7 DC electrical specifications(1) (continued) Value Symbol C Parameter Conditions Typ Max 65 — 140 1.4 — 5.2 1.7 — 7.7 5 V ± 5% supply 1.4 — 7.5 kΩ Pull-up and pulldown resistances both enabled and settings are equal. –2.5 — 2.5 % — –40.0 — 125.0 °C — — — 25 V/ms RPUPD100K SR Weak pull-up/down C resistance(21), 100 kΩ option RPUPD5K SR C Weak pull-up/down 5 V ± 10% supply (21) C resistance , 5 kΩ option 3.3 V ± 10% supply RPUPD5K SR C — Weak Pull-Up/Down Resistance(21), 5 kΩ Option RPUPDMTCH CC Pull-up/Down C Resistance matching ratios (100K/200K) TA (TL to TH) SR Operating temperature P range - ambient (packaged) — SR D Unit Min Slew rate on power supply pins kΩ kΩ 1. These specifications are design targets and subject to change per device characterization. 2. These specifications apply when VRC33 is supplied externally, after disabling the internal regulator (VDDREG = 0). 3. ADC is functional with 4 V ≤ VDDA ≤ 4.75 V but with derated accuracy. This means the ADC will continue to function at full speed with no undesirable behavior, but the accuracy will be degraded. 4. The VDDF supply is connected to VDD in the package substrate. This specification applies to calibration package devices only. 5. VFLASH is available in the calibration package only. 6. Regulator is functional, with derated performance, with supply voltage down to 4.0 V 7. Multi-voltage power supply cannot be below 4.5 V when in low-swing mode 8. The slew rate (SRC) setting must be 0b11 when in low-swing mode. 9. While in low-swing mode there are no restrictions in transitioning to high-swing mode. 10. Pin in low-swing mode can accept a 5 V input 11. All VOL/VOH values 100% tested with ± 2 mA load except where otherwise noted 12. Bypass mode, system clock @ 1 MHz (using system clock divider), PLL shut down, CPU running simple executive code, 4 x ADC conversion every 10 ms, 2 x PWM channels @ 1 kHz, all other modules stopped. 13. Bypass mode, system clock @ 1 MHz (using system clock divider), CPU stopped, PIT running, all other modules stopped 14. If 1.2V and 3.3V internal regulators are on,then iddreg=70mA If supply is external that is 3.3V internal regulator is off, then iddreg=15mA 15. Power requirements for each I/O segment are dependent on the frequency of operation and load of the I/O pins on a particular I/O segment, and the voltage of the I/O segment. See Table 22 for values to calculate power dissipation for specific operation. The total power consumption of an I/O segment is the sum of the individual power consumptions for each pin on the segment. 16. Absolute value of current, measured at VIL and VIH 17. Weak pull-up/down inactive. Measured at VDDE = 3.6 V and VDDEH = 5.25 V. Applies to all digital pad types. 18. Maximum leakage occurs at maximum operating temperature. Leakage current decreases by approximately one-half for each 8 to 12 oC, in the ambient temperature range of 50 to 125 oC. Applies to analog pads. 19. Applies to CLKOUT, external bus pins, and Nexus pins 86/133 Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 Electrical characteristics 20. Applies to the FCK, SDI, SDO, and SDS pins 21. This programmable option applies only to eQADC differential input channels and is used for biasing and sensor diagnostics. 3.9 I/O pad current specifications The power consumption of an I/O segment depends on the usage of the pins on a particular segment. The power consumption is the sum of all output pin currents for a particular segment. The output pin current can be calculated from Table 22 based on the voltage, frequency, and load on the pin. Use linear scaling to calculate pin currents for voltage, frequency, and load parameters that fall outside the values given in Table 22. Table 22. I/O pad average IDDE specifications(1) Pad type Slow Medium Symbol IDRV_SSR_HV IDRV_MSR_HV Period (ns) Load(2) (pF) VDDE (V) C D C 37 50 5.25 11 9 — C D C 130 50 5.25 01 2.5 — C D C 650 50 5.25 00 0.5 — C D C 840 200 5.25 00 1.5 — C D C 24 50 5.25 11 14 — C D C 62 50 5.25 01 5.3 — C D C 317 50 5.25 00 1.1 — C D C 425 200 5.25 00 3 — C Doc ID 18078 Rev 4 Drive/Slew IDDE Avg IDDE RMS (mA) rate select (mA)(3) 87/133 Electrical characteristics Table 22. SPC564A70B4, SPC564A70L7 I/O pad average IDDE specifications(1) (continued) Pad type Fast Symbol IDRV_FC MultiV (High swing mode) MultiV (Low swing mode) IDRV_MULTV_HV IDRV_MULTV_HV Period (ns) Load(2) (pF) VDDE (V) C D C 10 50 3.6 11 22.7 68.3 C D C 10 30 3.6 10 12.1 41.1 C D C 10 20 3.6 01 8.3 27.7 C D C 10 10 3.6 00 4.44 14.3 C D C 10 50 1.98 11 12.5 31 C D C 10 30 1.98 10 7.3 18.6 C D C 10 20 1.98 01 5.42 12.6 C D C 10 10 1.98 00 2.84 6.4 C D C 20 50 5.25 11 9 — C D C 30 50 5.25 01 6.1 — C D C 117 50 5.25 00 2.3 — C D C 212 200 5.25 00 5.8 — C D C 30 30 5.25 11 3.4 — C Drive/Slew IDDE Avg IDDE RMS (mA) rate select (mA)(3) 1. Numbers from simulations at best case process, 150 °C 2. All loads are lumped. 3. Average current is for pad configured as output only 3.9.1 I/O pad VRC33 current specifications The power consumption of the VRC33 supply is dependent on the usage of the pins on all I/O segments. The power consumption is the sum of all input and output pin VRC33 currents for all I/O segments. The output pin VRC33 current can be calculated from Table 23 based on the voltage, frequency, and load on all fast pins. The input pin VRC33 current can be calculated from Table 23 based on the voltage, frequency, and load on all medium pins. Use linear scaling to calculate pin currents for voltage, frequency, and load parameters that fall outside the values given in Table 23. 88/133 Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 Electrical characteristics I/O pad VRC33 average IDDE specifications(1) Table 23. Pad type Period (ns) Load(2) (pF) Drive select IDD33 Avg (µA) IDD33 RMS (µA) CC D 100 50 11 0.8 235.7 CC D 200 50 01 0.04 87.4 CC D 800 50 00 0.06 47.4 CC D 800 200 00 0.009 47 CC D 40 50 11 2.75 258 CC D 100 50 01 0.11 76.5 CC D 500 50 00 0.02 56.2 CC D 500 200 00 0.01 56.2 CC D 20 50 11 33.4 35.4 CC D 30 50 01 33.4 34.8 CC D 117 50 00 33.4 33.8 CC D 212 200 00 33.4 33.7 CC D 30 30 11 33.4 33.7 Symbol Slow IDRV_SSR_HV Medium IDRV_MSR_HV MultiV(3) (High swing mode) IDRV_MULTV_HV MultiV(4) (Low swing mode) IDRV_MULTV_HV C 1. These are typical values that are estimated from simulation and not tested. Currents apply to output pins only. 2. All loads are lumped. 3. Average current is for pad configured as output only 4. In low swing mode, multi-voltage pads must operate in highest slew rate setting, ipp_sre0 = 1, ipp_sre1 = 1. Table 24. Pad type Fast VRC33 pad average DC current(1) C Period (ns) Load(2) (pF) VRC33 (V) VDDE (V) Drive select IDD33 Avg (µA) IDD33 RMS (µA) CC D 10 50 3.6 3.6 11 2.35 6.12 CC D 10 30 3.6 3.6 10 1.75 4.3 CC D 10 20 3.6 3.6 01 1.41 3.43 CC D 10 10 3.6 3.6 00 1.06 2.9 CC D 10 50 3.6 1.98 11 1.75 4.56 CC D 10 30 3.6 1.98 10 1.32 3.44 CC D 10 20 3.6 1.98 01 1.14 2.95 CC D 10 10 3.6 1.98 00 0.95 2.62 Symbol IDRV_FC 1. These are typical values that are estimated from simulation and not tested. Currents apply to output pins only. 2. All loads are lumped. Doc ID 18078 Rev 4 89/133 Electrical characteristics 3.9.2 SPC564A70B4, SPC564A70L7 LVDS pad specifications LVDS pads are implemented to support the MSC (Microsecond Channel) protocol which is an enhanced feature of the DSPI module. The LVDS pads are compliant with LVDS specifications and support data rates up to 50 MHz. Table 25. DSPI LVDS pad specification Value Symbol C Parameter Condition Unit Min Typ Max — 50 — SRC = 0b00 or 0b11 150 — 400 SRC = 0b01 90 — 320 SRC = 0b10 160 — 480 Data rate fLVDSCLK CC D Data frequency — MHz Driver specifications CC P VOD CC P Differential output voltage CC P mV VOC CC P Common mode voltage (LVDS), VOS — 1.06 1.2 1.39 V TR/TF CC D Rise/Fall time — — 2 — ns TPLH CC D Propagation delay (Low to High) — — 4 — ns TPHL CC D Propagation delay (High to Low) — — 4 — ns tPDSYNC CC D Delay (H/L), sync mode — — 4 — ns TDZ CC D Delay, Z to Normal (High/Low) — — 500 — ns TSKEW CC D — — — 0.5 ns CC D Transmission line (differential Zo) — 95 100 105 W CC D Temperature — –40 — 150 °C Differential skew Itphla-tplhbI or ItplhbtphlaI Termination 3.10 Oscillator and PLLMRFM electrical characteristics Table 26. PLLMRFM electrical specifications(1) (VDDPLL = 1.08 V to 3.6 V, VSS = VSSPLL = 0 V, TA = TL to TH) Value Symbol fref_crystal fref_ext fpll_in 90/133 C Parameter Conditions C P PLL reference frequency range(2) C P Unit Min Max Crystal reference 4 40 External reference 4 80 — 4 16 MHz C Phase detector input frequency range D C (after pre-divider) Doc ID 18078 Rev 4 MHz SPC564A70B4, SPC564A70L7 Electrical characteristics PLLMRFM electrical specifications(1) Table 26. (VDDPLL = 1.08 V to 3.6 V, VSS = VSSPLL = 0 V, TA = TL to TH) (continued) Value Symbol C Parameter Conditions Unit Min Max fvco C D VCO frequency range C — 256 512 MHz fsys C T On-chip PLL frequency(2) C — 16 150 MHz C T System frequency in bypass mode(3) C T Crystal reference 4 40 fsys External reference 0 80 tCYC C D System clock period C — — 1 / fsys fLORL fLORH C D Loss of reference frequency window(4) C D Lower limit 1.6 3.7 Upper limit 24 56 fSCM C P Self-clocked mode frequency(5)(6) C — 1.2 72.25 MHz –5 5 % fCLKOUT –6 6 ns — 10 ms Crystal mode(13) Vxtal + 0.4 — T External reference(13)(14) VRC33/2 + 0.4 VRC33 D Crystal mode(13) — Vxtal – 0.4 0 VRC33/2 – 0.4 — 5 30 4 MHz 5 30 8 MHz 5 26 12 MHz 5 23 16 MHz 5 19 20 MHz 5 16 40 MHz 5 8 C CJITTER C C CLKOUT period jitter(7)(8)(9)(10) C tcst Long-term jitter (avg. over 2 ms interval) VILEXT — — V EXTAL input high voltage C C EXTAL input low voltage T — fSYS maximum C T Crystal start-up time(11)(12) C C C ns MHz Peak-to-peak (clock edge to clock edge) D VIHEXT MHz V External reference(13)(14) C T XTAL load capacitance C C C XTAL load capacitance(11) C pF pF tlpll C P PLL lock time(11)(15) C — — 200 µs tdc C D Duty cycle of reference C — 40 60 % Doc ID 18078 Rev 4 91/133 Electrical characteristics SPC564A70B4, SPC564A70L7 PLLMRFM electrical specifications(1) Table 26. (VDDPLL = 1.08 V to 3.6 V, VSS = VSSPLL = 0 V, TA = TL to TH) (continued) Value Symbol C Parameter Conditions Unit Min Max fLCK C D Frequency LOCK range C — –6 6 % fsys fUL C D Frequency un-LOCK range C — –18 18 % fsys fCS fDS C D Modulation depth C D Center spread ±0.25 ±4.0 Down spread –0.5 –8.0 — 100 fMOD C D Modulation frequency(16) C — % fsys kHz 1. All values given are initial design targets and subject to change. 2. Considering operation with PLL not bypassed 3. All internal registers retain data at 0 Hz. 4. “Loss of Reference Frequency” window is the reference frequency range outside of which the PLL is in self clocked mode. 5. Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls outside the fLOR window. 6. fVCO self clock range is 20–150 MHz. fSCM represents fSYS after PLL output divider (ERFD) of 2 through 16 in enhanced mode. 7. This value is determined by the crystal manufacturer and board design. 8. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fSYS. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via VDDPLL and VSSPLL and variation in crystal oscillator frequency increase the CJITTER percentage for a given interval. 9. Proper PC board layout procedures must be followed to achieve specifications. 10. Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of CJITTER and either fCS or fDS (depending on whether center spread or down spread modulation is enabled). 11. This value is determined by the crystal manufacturer and board design. For 4 MHz to 40 MHz crystals specified for this PLL, load capacitors should not exceed these limits. 12. Proper PC board layout procedures must be followed to achieve specifications. 13. This parameter is guaranteed by design rather than 100% tested. 14. VIHEXT cannot exceed VRC33 in external reference mode. 15. This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the synthesizer control register (SYNCR). 16. Modulation depth will be attenuated from depth setting when operating at modulation frequencies above 50 kHz. 3.11 Temperature sensor electrical characteristics Table 27. Temperature sensor electrical characteristics Value Symbol — 92/133 C CC C Parameter Conditions Temperature monitoring range Doc ID 18078 Rev 4 Unit Min Typ Max –40 — 150 °C SPC564A70B4, SPC564A70L7 Table 27. Electrical characteristics Temperature sensor electrical characteristics (continued) Value Symbol C Parameter — CC C Sensitivity — CC C Accuracy 3.12 Conditions Unit TJ = –40 to 150 °C Min Typ Max — 6.3 — mV/°C –10 — 10 °C eQADC electrical characteristics Table 28. eQADC conversion specifications (operating) Value Symbol C Unit Parameter min max 2 16 MHz 2+13 128+14 ADCLK cycles fADCLK SR — ADC clock (ADCLK) frequency CC CC D Conversion cycles TSR CC C Stop mode recovery time(1) — 10 μs fADCLK SR — ADC clock (ADCLK) frequency 2 16 mV 1. Stop mode recovery time is the time from the setting of either of the enable bits in the ADC Control Register to the time that the ADC is ready to perform conversions.Delay from power up to full accuracy = 8 ms. Table 29. eQADC single ended conversion specifications (operating) Value Symbol C Parameter Unit min max OFFNC CC C Offset error without calibration 0 160 Counts OFFWC CC C Offset error with calibration –4 4 Counts GAINNC CC C Full scale gain error without calibration –160 0 Counts GAINWC CC C Full scale gain error with calibration –4 4 Counts (3), (4) –3 3 mA Disruptive input injection current (1), (2), IINJ CC T EINJ CC T Incremental error due to injection current(5),(6) –4 4 Counts TUE8 CC C Total unadjusted error (TUE) at 8 MHz –4 4(6) Counts TUE16 CC C Total unadjusted error at 16 MHz –8 8 Counts 1. Below disruptive current conditions, the channel being stressed has conversion values of 0x3FF for analog inputs greater then VRH and 0x0 for values less then VRL. Other channels are not affected by nondisruptive conditions. 2. Exceeding limit may cause conversion error on stressed channels and on unstressed channels. Transitions within the limit do not affect device reliability or cause permanent damage. 3. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values using VPOSCLAMP = VDDA + 0.5 V and VNEGCLAMP = – 0.3 V, then use the larger of the calculated values. 4. Condition applies to two adjacent pins at injection limits. Doc ID 18078 Rev 4 93/133 Electrical characteristics SPC564A70B4, SPC564A70L7 5. Performance expected with production silicon. 6. All channels have same 10 kΩ < Rs < 100 kΩ; Channel under test has Rs=10 kΩ; IINJ=IINJMAX,IINJMIN Table 30. eQADC differential ended conversion specifications (operating) Value Symbol C Parameter Unit min CC – CC C max Variable gain amplifier accuracy (gain=1)(2) 8 MHz ADC –4 4 Counts (3) INL GAINVGA1 CC C 16 MHz ADC –8 8 Counts CC C 8 MHz ADC –3(4) 3(4) Counts 16 MHz ADC –3(4) 3(4) Counts (1) DNL CC C CC – CC D Variable gain amplifier accuracy (gain=2)(2) 8 MHz ADC –5 5 Counts INL GAINVGA2 CC D 16 MHz ADC –8 8 Counts CC D 8 MHz ADC –3 3 Counts 16 MHz ADC –3 3 Counts (1) DNL CC D CC – CC D CC Variable gain amplifier accuracy (gain=4)(2) 8 MHz ADC –7 7 Counts D 16 MHz ADC –8 8 Counts CC D 8 MHz ADC –4 4 Counts CC D 16 MHz ADC –4 4 Counts INL GAINVGA4 (1) DNL 94/133 Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 Table 30. Electrical characteristics eQADC differential ended conversion specifications (operating) (continued) Value Symbol DIFFmax C CC CC C DIFFmax4 CC C CC Unit min max — (VRH - VRL)/2 V — (VRH - VRL)/4 V — (VRH - VRL)/8 V (VRH + VRL)/2 5% (VRH + VRL)/2 + 5% V PREGAIN set to 1X setting C DIFFmax2 DIFFcmv Parameter Maximum differential voltage PREGAIN (DANx+ - DANx-) set to 2X setting or (DANx- DANx+)(5) PREGAIN set to 4X setting Differential input Common mode voltage (DANx- + DANx+)/2(5) C — 1. Applies only to differential channels. 2. Variable gain is controlled by setting the PRE_GAIN bits in the ADC_ACR1-8 registers to select a gain factor of ×1, ×2, or ×4. Settings are for differential input only. Tested at ×1 gain. Values for other settings are guaranteed by as indicated. 3. At VRH – VRL = 5.12 V, one LSB = 1.25 mV. 4. Guaranteed 10-bit mono tonicity. 5. Voltages between VRL and VRH will not cause damage to the pins. However, they may not be converted accurately if the differential voltage is above the maximum differential voltage. In addition, conversion errors may occur if the common mode voltage of the differential signal violates the Differential Input common mode voltage specification. 3.13 Configuring SRAM wait states Use the SWSC field in the ECSM_MUDCR register to specify an additional wait state for the device SRAM. By default, no wait state is added. Table 31. Cutoff frequency for additional SRAM wait state (1) SWSC Value 98 0 153 1 1. Max frequencies including 2% PLL FM. Please see the device reference manual for details. Doc ID 18078 Rev 4 95/133 Electrical characteristics 3.14 SPC564A70B4, SPC564A70L7 Platform flash controller electrical characteristics Table 32. APC, RWSC, WWSC settings vs. frequency of operation(1) Max. Flash Operating Frequency (MHz)(2) APC(3) RWSC(3) WWSC 20 MHz 0b000 0b000 0b01 61 MHz 0b001 0b001 0b01 90 MHz 0b010 0b010 0b01 123 MHz 0b011 0b011 0b01 153 MHz 0b100 0b100 0b01 1. APC, RWSC and WWSC are fields in the flash memory BIUCR register used to specify wait states for address pipelining and read/write accesses. Illegal combinations exist—all entries must be taken from the same row. 2. Max frequencies including 2% PLL FM. 3. APC must be equal to RWSC. 3.15 Flash memory electrical characteristics Table 33. Flash program and erase specifications(1) Value # Symbol C Parameter Min Typ Initial max(2) Max(3) Unit 1 Tdwprogram C C Double Word (64 bits) Program Time C — 30 — 500 µs 2 C C Page Program Time(4) C — 40 160 500 µs 3 T16kpperase C C 16 KB Block Pre-program and Erase Time C — — 1000 5000 ms 5 T64kpperase C C 64 KB Block Pre-program and Erase Time C — — 1800 5000 ms 6 T128kpperase C C 128 KB Block Pre-program and Erase Time C — — 2600 7500 ms 7 T256kpperase C C 256 KB Block Pre-program and Erase Time C — — 5200 15000 ms 8 Tpsrt S — R Program suspend request rate(5) 100 — — — μs 9 Tesrt S — R Erase suspend request rate (6) 10 Tpprogram ms 1. Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization. 2. Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage, 80 MHz minimum system frequency. 3. The maximum erase time occurs after the specified number of program/erase cycles. This maximum value is characterized but not guaranteed. 96/133 Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 Electrical characteristics 4. Page size is 128 bits (4 words) 5. Time between program suspend resume and the next program suspend request. 6. Time between erase suspend resume and the next erase suspend request. Table 34. Flash EEPROM module life Value Symbol P/E P/E C CC CC Parameter Conditions CC Typ D Number of program/erase cycles per block for 16 KB, 48 KB, and 64 KB blocks over the operating temperature range (TJ) — 100000 — cycles D Number of program/erase cycles per block for 128 KB and 256 KB blocks over the operating temperature range (TJ) — 1000 100000 cycles Blocks with 0 – 1000 P/E cycles 20 — Blocks with 10000 P/E cycles 10 — Blocks with 100000 P/E cycles 5 — D Retention Unit Min D D Minimum data retention at 85 °C Doc ID 18078 Rev 4 years 97/133 Electrical characteristics SPC564A70B4, SPC564A70L7 3.16 AC specifications 3.16.1 Pad AC specifications Table 35. Pad AC specifications (VDDE = 4.75 V)(1) Output delay (ns)(2)(3) Name C C D C Low-to-High / High-toLow Rise/Fall edge (ns)(3)(4) Drive load (pF) Min Max Min Max 4.6/3.7 12/12 2.2/2.2 12/12 MSB, LSB 50 C D C 12/13 28/34 5.6/6 15/15 50 01 C D C 69/71 152/165 34/35 74/74 50 00 C D C 7.3/5.7 19/18 4.4/4.3 20/20 50 11(8) 10(9) — Slow(7)(10) MultiV(11) (High Swing Mode) MultiV (Low Swing Mode) C D C 26/27 61/69 13/13 34/34 50 01 C D C 137/142 320/330 72/74 164/164 50 00 C D C 4.1/3.6 10.3/8.9 3.28/2.98 8/8 50 11(8) 10(9) — C D C 8.38/6.11 16/12.9 5.48/4.81 11/11 50 01 C D C 61.7/10.4 92.2/24.3 42.0/12.2 63/63 50 00 C D C 2.31/2.34 7.62/6.33 1.26/1.67 6.5/4.4 30 11(8) ±1.5/1.5 0.5 — Fast(12) Standalone input buffer(13) 11(8) 10(9) — Medium(5)(6)(7) SRC/DSC — C D C 0.5/0.5 1.9/1.9 0.3/0.3 1. These are worst case values that are estimated from simulation and not tested. The values in the table are simulated at VDD = 1.14 V to 1.32 V, VDDEH = 4.75 V to 5.25 V, TA = TL to TH. 2. This parameter is supplied for reference and is not guaranteed by design and not tested. 3. Delay and rise/fall are measured to 20% or 80% of the respective signal. 4. This parameter is guaranteed by characterization before qualification rather than 100% tested. 5. In high swing mode, high/low swing pad VOL and VOH values are the same as those of the slew controlled output pads. 6. Medium Slew-Rate Controlled Output buffer. Contains an input buffer and weak pull-up/pull-down. 7. Output delay is shown in Figure 9 and Figure 10. Add a maximum of one system clock to the output delay for delay with respect to system clock. 98/133 Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 Electrical characteristics 8. Can be used on the tester 9. This drive select value is not supported. If selected, it will be approximately equal to 11. 10. Slow Slew-Rate Controlled Output buffer. Contains an input buffer and weak pull-up/pull-down. 11. Selectable high/low swing I/O pad with selectable slew in high swing mode only 12. Fast pads are 3.3 V pads. 13. Also has weak pull-up/pull-down. Table 36. Pad AC specifications (VDDE = 3.0 V)(1) Output delay (ns)(2)(3) Pad type C Low-to-High / Highto-Low Rise/Fall edge (ns)(3)(4) Drive load (pF) Min Max Min Max MSB,LSB CC D 5.8/4.4 18/17 2.7/2.1 10/10 50 CC D 16/13 46/49 11.2/8.6 34/34 200 11(8) 10(9) — Medium(5)(6)(7) SRC/DSC CC D 14/16 37/45 6.5/6.7 19/19 50 CC D 27/27 69/82 15/13 43/43 200 CC D 83/86 200/210 38/38 86/86 50 CC D 113/109 270/285 53/46 120/120 200 CC D 9.2/6.9 27/28 5.5/4.1 20/20 50 CC D 30/23 81/87 21/16 63/63 200 01 00 11 10(9) — Slow(7)(10) CC D 31/31 80/90 15.4/15.4 42/42 50 CC D 58/52 144/155 32/26 82/85 200 CC D 162/168 415/415 80/82 190/190 50 CC D 216/205 533/540 106/95 250/250 200 CC D — 3.7/3.1 — 10/10 30 CC D — 46/49 — 42/42 200 01 00 MultiV(7)(11) (High Swing Mode) 11(8) 10(9) — CC D — 32 — 15/15 50 CC D — 72 — 46/46 200 CC D — 210 — 100/100 50 CC D — 295 — 134/134 200 01 00 MultiV (Low Swing Mode) Not a valid operational mode Doc ID 18078 Rev 4 99/133 Electrical characteristics Table 36. SPC564A70B4, SPC564A70L7 Pad AC specifications (VDDE = 3.0 V)(1) (continued) Output delay (ns)(2)(3) Pad type C Low-to-High / Highto-Low Rise/Fall edge (ns)(3)(4) Drive load SRC/DSC (pF) Min Max Min Max MSB,LSB CC D — 2.5/2.5 — 1.2/1.2 10 00 CC D — 2.5/2.5 — 1.2/1.2 20 01 CC D — 2.5/2.5 — 1.2/1.2 30 10 CC D — 2.5/2.5 — 1.2/1.2 50 11(8) CC D 0.5/0.5 3/3 0.4/0.4 ±1.5/1.5 0.5 — Fast Standalone input buffer(12) 1. These are worst case values that are estimated from simulation and not tested. The values in the table are simulated at VDD = 1.14 V to 1.32 V, VDDE = 3 V to 3.6 V, VDDEH = 3 V to 3.6 V, TA = TL to TH. 2. This parameter is supplied for reference and is not guaranteed by design and not tested. 3. Delay and rise/fall are measured to 20% or 80% of the respective signal. 4. This parameter is guaranteed by characterization before qualification rather than 100% tested. 5. In high swing mode, high/low swing pad VOL and VOH values are the same as those of the slew controlled output pads. 6. Medium Slew-Rate Controlled Output buffer. Contains an input buffer and weak pull-up/pull-down. 7. Output delay is shown in Figure 9 and Figure 10. Add a maximum of one system clock to the output delay for delay with respect to system clock. 8. Can be used on the tester. 9. This drive select value is not supported. If selected, it will be approximately equal to 11. 10. Slow Slew-Rate Controlled Output buffer. Contains an input buffer and weak pull-up/pull-down. 11. Selectable high/low swing I/O pad with selectable slew in high swing mode only. 12. Also has weak pull-up/pull-down. 100/133 Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 Electrical characteristics VDDE/2 Pad Data Input Rising Edge Output Delay Falling Edge Output Delay VOH Pad Output Figure 9. VOL Pad output delay—Fast pads VDDE/2 Pad Data Input Rising Edge Output Delay Falling Edge Output Delay VOH Pad Output VOL Figure 10. Pad output delay—Slew rate controlled fast, medium, and slow pads Doc ID 18078 Rev 4 101/133 Electrical characteristics SPC564A70B4, SPC564A70L7 3.17 AC timing 3.17.1 Reset and configuration pin timing Table 37. Reset and configuration pin timing(1) Value # Symbol Characteristic Unit Min Max 1 tRPW RESET Pulse Width 10 — tCYC 2 tGPW RESET Glitch Detect Pulse Width 2 — tCYC 3 tRCSU PLLREF, BOOTCFG, WKPCFG Setup Time to RSTOUT Valid 10 — tCYC 4 tRCH PLLREF, BOOTCFG, WKPCFG Hold Time to RSTOUT Valid 0 — tCYC 1. Reset timing specified at: VDDEH = 3.0 V to 5.25 V, VDD = 1.14 V to 1.32 V, TA = TL to TH. 2 RESET 1 RSTOUT 3 BOOTCFG WKPCFG 4 Figure 11. Reset and configuration pin timing 3.17.2 IEEE 1149.1 interface timing Table 38. JTAG pin AC electrical characteristics(1) Value # 1 102/133 Symbol tJCYC C C C Characteristic D TCK Cycle Time Doc ID 18078 Rev 4 Unit Min Max 100 — ns SPC564A70B4, SPC564A70L7 Electrical characteristics JTAG pin AC electrical characteristics(1) (continued) Table 38. Value # Symbol C Characteristic Unit Min Max 2 tJDC C C D TCK Clock Pulse Width 40 60 ns 3 tTCKRISE C C D TCK Rise and Fall Times (40%–70%) — 3 ns 4 tTMSS, tTDIS C C D TMS, TDI Data Setup Time 10 — ns 5 tTMSH, tTDIH C C D TMS, TDI Data Hold Time 25 — ns 6 tTDOV C C D TCK Low to TDO Data Valid — 22(2) ns 7 tTDOI C C D TCK Low to TDO Data Invalid 0 — ns 8 tTDOHZ C C D TCK Low to TDO High Impedance — 22 ns 9 tJCMPPW C C D JCOMP Assertion Time 100 — ns 10 tJCMPS C C D JCOMP Setup Time to TCK Low 40 — ns 11 tBSDV C C D TCK Falling Edge to Output Valid — 50 ns 12 tBSDVZ C C D TCK Falling Edge to Output Valid out of High Impedance — 50 ns 13 tBSDHZ C C D TCK Falling Edge to Output High Impedance — 50 ns 14 tBSDST C C D Boundary Scan Input Valid to TCK Rising Edge 25(3) — ns 15 tBSDHT C C D TCK Rising Edge to Boundary Scan Input Invalid 25(3) — ns 1. JTAG timing specified at VDD = 1.14 V to 1.32 V, VDDEH = 4.75 V to 5.25 V with multi-voltage pads programmed to LowSwing mode, TA = TL to TH, CL = 30 pF, SRC = 0b11. These specifications apply to JTAG boundary scan only. See Table 39 for functional specifications. 2. Pad delay is 8–10 ns. Remainder includes TCK pad delay, clock tree delay logic delay and TDO output pad delay. 3. For 20 MHz TCK. Note: The Nexus/JTAG Read/Write Access Control/Status Register (RWCS) write (to begin a read access) or the write to the Read/Write Access Data Register (RWD) (to begin a write access) does not actually begin its action until 1 JTAG clock (TCK) after leaving the JTAG Update-DR state. This prevents the access from being performed and therefore will not signal its completion via the READY (RDY) output unless the JTAG controller receives an additional TCK. In addition, EVTI is not latched into the device unless there are clock transitions on TCK. Doc ID 18078 Rev 4 103/133 Electrical characteristics SPC564A70B4, SPC564A70L7 The tool/debugger must provide at least one TCK clock for the EVTI signal to be recognized by the MCU. When using the RDY signal to indicate the end of a Nexus read/write access, ensure that TCK continues to run for at least one TCK after leaving the Update-DR state. This can be just a TCK with TMS low while in the Run-Test/Idle state or by continuing with the next Nexus/JTAG command. Expect the effect of EVTI and RDY to be delayed by edges of TCK. RDY is not available in all device packages. TCK 2 3 2 3 1 Figure 12. JTAG test clock input timing 104/133 Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 Electrical characteristics TCK 4 5 TMS, TDI 6 8 7 TDO Figure 13. JTAG test access port timing TCK 10 JCOMP 9 Figure 14. JTAG JCOMP timing Doc ID 18078 Rev 4 105/133 Electrical characteristics SPC564A70B4, SPC564A70L7 TCK 11 13 Output Signals 12 Output Signals 14 15 Input Signals Figure 15. JTAG boundary scan timing 3.17.3 Nexus timing Table 39. Nexus debug port timing(1) Value # Symbol C Characteristic Unit Min Max 1 tMCYC CC D MCKO Cycle Time 2(2)(3) 8 tCYC 1a tMCYC CC D Absolute Minimum MCKO Cycle Time 25(4) — ns 2 tMDC CC D MCKO Duty Cycle 40 60 % 3 tMDOV Valid(5) −0.1 0.35 tMCYC Valid(5) −0.1 0.35 tMCYC CC D MCKO Low to EVTO Data Valid(5) −0.1 0.35 tMCYC CC D MCKO Low to MDO Data 4 tMSEOV CC D MCKO Low to MSEO Data 6 tEVTOV 7 tEVTIPW CC D EVTI Pulse Width 106/133 4.0 Doc ID 18078 Rev 4 — tTCYC SPC564A70B4, SPC564A70L7 Table 39. Electrical characteristics Nexus debug port timing(1) (continued) Value # 8 9 Symbol C Characteristic Unit tEVTOPW CC D EVTO Pulse Width tTCYC CC D TCK Cycle Time Min Max 1 — tMCYC (6),(7) — tCYC (8) — ns 4 9a tTCYC CC D Absolute Minimum TCK Cycle Time 100 10 tTDC CC D TCK Duty Cycle 40 60 % 11 tNTDIS CC D TDI Data Setup Time 10 — ns 12 tNTDIH CC D TDI Data Hold Time 25 — ns 13 tNTMSS CC D TMS Data Setup Time 10 — ns 14 tNTMSH CC D TMS Data Hold Time 25 — ns 15 — CC D TDO propagation delay from falling edge of TCK — 19.5 ns 16 — CC D 5.25 — ns TDO hold time wrt TCK falling edge (minimum TDO propagation delay) 1. All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal. Nexus timing specified at VDD = 1.14 V to 1.32 V, VDDEH = 4.75 V to 5.25 V with multi-voltage pads programmed to Low-Swing mode, TA = TL to TH, and CL = 30 pF with DSC = 0b10. 2. Achieving the absolute minimum MCKO cycle time may require setting the MCKO divider to more than its minimum setting (NPC_PCR[MCKO_DIV] depending on the actual system frequency being used. 3. This is a functionally allowable feature. However, this may be limited by the maximum frequency specified by the Absolute minimum MCKO period specification. 4. This may require setting the MCO divider to more than its minimum setting (NPC_PCR[MCKO_DIV]) depending on the actual system frequency being used. 5. MDO, MSEO, and EVTO data is held valid until next MCKO low cycle. 6. Achieving the absolute minimum TCK cycle time may require a maximum clock speed (system frequency / 8) that is less than the maximum functional capability of the design (system frequency / 4) depending on the actual system frequency being used. 7. This is a functionally allowable feature. However, this may be limited by the maximum frequency specified by the Absolute minimum TCK period specification. 8. This may require a maximum clock speed (system frequency / 8) that is less than the maximum functional capability of the design (system frequency / 4) depending on the actual system frequency being used. 1 2 MCKO 3 4 6 MDO MSEO EVTO Output Data Valid Doc ID 18078 Rev 4 107/133 Electrical characteristics SPC564A70B4, SPC564A70L7 Figure 16. Nexus output timing TCK EVTI EVTO 9 7 7 8 8 Figure 17. Nexus event trigger and test clock timings TCK 11 13 12 14 TMS, TDI 15 16 TDO Figure 18. Nexus TDI, TMS, TDO timing N 108/133 Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 Table 40. Electrical characteristics Nexus debug port operating frequency Nexus Pin Usage Package Nexus Width Nexus Routing MDO[0:3] LQFP176 BGA208 BGA324 Nexus Data Out Reduced port Route to MDO(2) [0:3] mode(1) Full port mode(4) Route to MDO(2) CSP496 Route to MDO(2) Full port mode(4) Route to CAL_MDO(7) MDO[4:11] CAL_MDO[4:11] GPIO GPIO 40 MHz(3) GPIO 40 MHz(5),(6) GPIO 40 MHz(3) GPIO 40 MHz(5),(6) Cal Nexus Data Out [4:11] 40 MHz(3) Nexus Data Out Nexus Data Out [0:3] [4:11] Reduced port Nexus Data Out Route to MDO(2) mode(1) [0:3] GPIO Nexus Data Out Nexus Data Out [0:3] [4:11] Cal Nexus Data Out [0:3] Max. Operating Frequency GPIO 1. NPC_PCR[FPM] = 0 2. NPC_PCR[NEXCFG] = 0 3. The Nexus AUX port runs up to 40 MHz. Set NPC_PCR[MCKO_DIV] to divide-by-two if the system frequency is greater than 40 MHz. 4. NPC_PCR[FPM] = 1 5. Set the NPC_PCR[MCKO_DIV] to divide by two if the system frequency is between 40 MHz and 80 MHz inclusive. Set the NPC_PCR[MCKO_DIV] to divide by four if the system frequency is greater than 80 MHz. 6. Pad restrictions limit the Maximum Operation Frequency in these configurations 7. NPC_PCR[NEXCFG] = 1 Doc ID 18078 Rev 4 109/133 Electrical characteristics SPC564A70B4, SPC564A70L7 3.17.4 Calibration bus interface timing Table 41. Calibration bus interface maximum operating frequency Port width Multiplexed mode Pin usage CAL_ADDR[12:15] CAL_ADDR[16:30] CAL_DATA[0:15] Max. operating frequency 16-bit Yes GPIO GPIO CAL_ADDR[12:30] CAL_DATA[0:15] 66 MHz(1) 16-bit No CAL_ADDR[12:15] CAL_ADDR[16:30] CAL_DATA[0:15] 66 MHz(1) 32-bit Yes CAL_WE/BE[2:3] CAL_DATA[31] CAL_ADDR[16:30] CAL_DATA[16:30] CAL_ADDR[0:15] CAL_DATA[0:15] 66 MHz(1) 1. Set SIU_ECCR[EBDF] to either divide by two or divide by four if the system frequency is greater than 66 MHz. Calibration bus operation timing(1) Table 42. 66 MHz(2) # 1 2 3 4 Symbol TC C Characteristic CC P CLKOUT period(3) tCDC CC T CLKOUT duty cycle tCRT CC T CLKOUT rise time tCFT CC T CLKOUT fall time Unit Min Max 15.2 — ns 45% 55% TC — (4) ns — 4 ns 1.3 — ns — 9 ns 6.0 — ns CLKOUT Posedge to Output Signal Invalid or High Z (Hold Time) 5 CAL_ADDR[12:30] CAL_CS[0], CAL_CS[2:3] tCOH CC P CAL_DATA[0:15] CAL_OE CAL_RD_WR CAL_TS CAL_WE[0:3]/BE[0:3] CLKOUT Posedge to Output Signal Valid (Output Delay) 6 CAL_ADDR[12:30] CAL_CS[0], CAL_CS[2:3] tCOV CC P CAL_DATA[0:15] CAL_OE CAL_RD_WR CAL_TS CAL_WE[0:3]/BE[0:3] Input Signal Valid to CLKOUT Posedge (Setup Time) 7 tCIS CC P DATA[0:31] 110/133 Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 Electrical characteristics Calibration bus operation timing(1) (continued) Table 42. 66 MHz(2) # Symbol C Characteristic Unit Min Max 1.0 — ns 6.5 — ns 1.5(6) — ns CLKOUT Posedge to Input Signal Invalid (Hold Time) 8 tCIH CC P DATA[0:31] 9 tAPW CC P ALE Pulse Width(5) 10 tAAI CC P ALE Negated to Address Invalid(5) 1. Calibration bus timing specified at fSYS = 150 MHz and 100 MHz, VDD = 1.14 V to 1.32 V, V DDE = 3 V to 3.6 V (unless stated otherwise), TA = TL to TH, and CL = 30 pF with DSC = 0b10. 2. The calibration bus is limited to half the speed of the internal bus. The maximum calibration bus frequency is 66 MHz. The bus division factor should be set accordingly based on the internal frequency being used. 3. Signals are measured at 50% VDDE 4. Refer to fast pad timing in Table 35 and Table 36 (different values for 1.8 V vs. 3.3 V). 5. Measured at 50% of ALE 6. When CAL_TS pad is used for CAL_ALE function the hold time is 1 ns instead of 1.5 ns. VOH_F VDDE/2 CLKOUT VOL_F 2 3 2 4 1 Figure 19. CLKOUT timing Doc ID 18078 Rev 4 111/133 Electrical characteristics SPC564A70B4, SPC564A70L7 VDDE/2 CLKOUT 6 5 VDDE/2 5 OUTPUT BUS VDDE/2 6 5 5 OUTPUT SIGNAL VDDE/2 6 OUTPUT SIGNAL VDDE/2 Figure 20. Synchronous output timing 112/133 Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 Electrical characteristics CLKOUT VDDE/2 7 8 INPUT BUS VDDE/2 7 8 INPUT SIGNAL VDDE/2 Figure 21. Synchronous input timing System clock CLKOUT ALE TS A/D DATA ADDR 9 10 Figure 22. ALE signal timing Doc ID 18078 Rev 4 113/133 Electrical characteristics SPC564A70B4, SPC564A70L7 3.17.5 External interrupt timing (IRQ pin) Table 43. External interrupt timing(1) Value # Symbol Characteristic Unit Min Max 1 tIPWL IRQ Pulse Width Low 3 — tCYC 2 tIPWH IRQ Pulse Width High 3 — tCYC 3 tICYC IRQ Edge to Edge Time(2) 6 — tCYC 1. IRQ timing specified at VDD = 1.14 V to 1.32 V, VDDEH = 3.0 V to 5.25 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL to TH. 2. Applies when IRQ pins are configured for rising edge or falling edge events, but not both. IRQ 2 1 3 Figure 23. External interrupt timing 3.17.6 eTPU timing Table 44. eTPU timing(1) Value # Symbol Characteristic Unit Min Max 1 tICPW eTPU Input Channel Pulse Width 4 — tCYC 2 tOCPW eTPU Output Channel Pulse Width(2) 2 — tCYC 1. eTPU timing specified at VDD = 1.14 V to 1.32 V, VDDEH = 3.0 V to 5.25 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL to TH, and CL = 50 pF with SRC = 0b00. 2. This specification does not include the rise and fall times. When calculating the minimum eTPU pulse width, include the rise and fall times defined in the slew rate control fields (SRC) of the pad configuration registers (PCR). 114/133 Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 3.17.7 eMIOS timing Table 45. eMIOS timing(1) Electrical characteristics Value # Symbol C Characteristic Unit Min Max 1 tMIPW CC D eMIOS Input Pulse Width 4 — tCYC 2 tMOPW CC D eMIOS Output Pulse Width 1 — tCYC 1. eMIOS timing specified at VDD = 1.14 V to 1.32 V, VDDEH = 4.75 V to 5.25 V, TA = TL to TH, and CL = 50 pF with SRC = 0b00. 3.17.8 DSPI timing DSPI channel frequency support for the SPC564A70 MCU is shown in Table 46. Timing specifications are in Table 47. Table 46. DSPI channel frequency support System clock (MHz) DSPI Use Mode Maximum usable frequency (MHz) LVDS 37.5 Use sysclock /4 divide ratio Non-LVDS 18.75 Use sysclock /8 divide ratio Notes 150 LVDS 40 Use sysclock /3 divide ratio. Gives 33/66 duty cycle. Use DSPI configuration DBR = 0b1 (double baud rate), BR = 0b0000 (scaler value 2) and PBR = 0b01 (prescaler value 3). Non-LVDS 20 Use sysclock /6 divide ratio LVDS 40 Use sysclock /2 divide ratio Non-LVDS 20 Use sysclock /4 divide ratio 120 80 Table 47. # DSPI timing(1)(2) Symbol C Characteristic Condition Time(3)(4)(5) 1 tSCK CC D SCK Cycle 2 tCSC CC D PCS to SCK Delay(6) Delay(8) Min. Max. Unit 24.4 ns 2.9 ms — 22(7) — ns 21(9) — ns (½tSC) − 2 (½tSC) + 2 ns 3 tASC CC D After SCK 4 tSDC CC D SCK Duty Cycle 5 tA CC D Slave Access Time (SS active to SOUT driven) — 25 ns 6 tDIS CC D Slave SOUT Disable Time (SS inactive to SOUT High-Z or invalid) — 25 ns 7 tPCSC CC D PCSx to PCSS time 4(10) — ns 8 tPASC CC D PCSS to PCSx time 5(11) — ns Doc ID 18078 Rev 4 115/133 Electrical characteristics Table 47. # SPC564A70B4, SPC564A70L7 DSPI timing(1)(2) (continued) Symbol C Characteristic Condition Min. Max. VDDEH=4.75–5.25 V 20 — VDDEH=3–3.6 V 22 — 2 — 8 — VDDEH=4.75–5.25 V 20 — VDDEH=3–3.6 V 22 — −4 — 7 — 21 — −4 — VDDEH=4.75–5.25 V — 5 VDDEH=3–3.6 V — 6.3 VDDEH=4.75–5.25 V — 25 VDDEH=3–3.6 V — 25.7 — 21 VDDEH=4.75–5.25 V — 5 VDDEH=3–3.6 V — 6.3 VDDEH=4.75–5.25 V −5 — VDDEH=3–3.6 V −6.3 — 5.5 — 3 — VDDEH=4.75–5.25 V −5 — VDDEH=3–3.6 V −6.3 — Unit Data Setup Time for Inputs D Master (MTFE = 0) D 9 tSUI CC D Slave D Master (MTFE = 1, CPHA = ns 0)(12) D Master (MTFE = 1, CPHA = 1) D Data Hold Time for Inputs D Master (MTFE = 0) 10 tHI CC D Slave D Master (MTFE = 1, CPHA = ns 0)(12) D Master (MTFE = 1, CPHA = 1) Data Valid (after SCK edge) D Master (MTFE = 0) D D 11 tSUO CC Slave D D Master (MTFE = 1, CPHA = 0) D Master (MTFE = 1, CPHA = 1) D ns Data Hold Time for Outputs D Master (MTFE = 0) D 12 tHO CC D Slave ns D Master (MTFE = 1, CPHA = 0) D Master (MTFE = 1, CPHA = 1) D 1. All DSPI timing specifications use the fastest slew rate (SRC = 0b11) on pad type pad_msr. DSPI signals using pad type of pad_ssr have an additional delay based on the slew rate. DSPI timing is specified at VDDEH = 3.0 to 3.6 V, TA = TL to TH, and CL = 50 pF with SRC = 0b11. 2. Data is verified at fSYS = 102 MHz and 153 MHz (100 MHz and 150 MHz + 2% frequency modulation). 3. The minimum DSPI Cycle Time restricts the baud rate selection for given system clock rate. These numbers are calculated based on two SPC564A70 devices communicating over a DSPI link. 4. The actual minimum SCK cycle time is limited by pad performance. 5. For DSPI channels using LVDS output operation, up to 40 MHz SCK cycle time is supported. For non-LVDS output, maximum SCK frequency is 20 MHz. Appropriate clock division must be applied. 6. The maximum value is programmable in DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK]. 7. Timing met when PCSSCK = 3 (01), and CSSCK = 2 (0000) 116/133 Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 Electrical characteristics 8. The maximum value is programmable in DSPI_CTARx[PASC] and DSPI_CTARx[ASC]. 9. Timing met when ASC = 2 (0000), and PASC = 3 (01) 10. Timing met when PCSSCK = 3 11. Timing met when ASC = 3 12. This number is calculated assuming the SMPL_PT bitfield in DSPI_MCR is set to 0b10. 2 3 PCSx 1 4 SCK Output (CPOL = 0) 4 SCK Output (CPOL = 1) 10 9 SIN First Data Data 12 SOUT First Data Last Data 11 Data Last Data Figure 24. DSPI classic SPI timing (master, CPHA = 0) Doc ID 18078 Rev 4 117/133 Electrical characteristics SPC564A70B4, SPC564A70L7 PCSx SCK Output (CPOL = 0) 10 SCK Output (CPOL = 1) 9 Data First Data SIN Last Data 12 SOUT First Data 11 Data Last Data Figure 25. DSPI classic SPI timing (master, CPHA = 1) 3 2 SS 1 4 SCK Input (CPOL = 0) 4 SCK Input (CPOL = 1) 5 SOUT First Data 9 SIN 11 12 Data Last Data Data Last Data 10 First Data Figure 26. DSPI classic SPI timing (slave, CPHA = 0) 118/133 Doc ID 18078 Rev 4 6 SPC564A70B4, SPC564A70L7 Electrical characteristics SS SCK Input (CPOL = 0) SCK Input (CPOL = 1) 11 5 6 12 SOUT First Data 9 SIN Data Last Data Data Last Data 10 First Data Figure 27. DSPI classic SPI timing (slave, CPHA = 1) 3 PCSx 4 1 2 SCK Output (CPOL = 0) 4 SCK Output (CPOL = 1) 9 SIN First Data 10 12 SOUT First Data Last Data Data 11 Data Last Data Figure 28. DSPI modified transfer format timing (master, CPHA = 0) Doc ID 18078 Rev 4 119/133 Electrical characteristics SPC564A70B4, SPC564A70L7 PCSx SCK Output (CPOL = 0) SCK Output (CPOL = 1) 10 9 SIN First Data Last Data Data 12 First Data SOUT 11 Last Data Data Figure 29. DSPI modified transfer format timing (master, CPHA = 1) 3 2 SS 1 SCK Input (CPOL = 0) 4 4 SCK Input (CPOL = 1) SOUT First Data Data First Data Last Data 10 9 SIN 12 11 5 Data Last Data Figure 30. DSPI modified transfer format timing (slave, CPHA = 0) 120/133 Doc ID 18078 Rev 4 6 SPC564A70B4, SPC564A70L7 Electrical characteristics SS SCK Input (CPOL = 0) SCK Input (CPOL = 1) 11 5 6 12 First Data SOUT 9 Last Data Data Last Data 10 First Data SIN Data Figure 31. DSPI modified transfer format timing (slave, CPHA = 1) 8 7 PCSS PCSx Figure 32. DSPI PCS strobe (PCSS) timing 3.17.9 eQADC SSI timing Table 48. eQADC SSI timing characteristics (pads at 3.3 V or at 5.0 V)(1) CLOAD = 25 pF on all outputs. Pad drive strength set to maximum. Value # Symbol C Rating Unit Min 1 fFCK CC D FCK Frequency (2)(3) 1 tFCK CC D FCK Period (tFCK = 1/ fFCK) Typ Max 1/17 1/2 fSYS_CLK 2 17 tSYS_CLK Doc ID 18078 Rev 4 121/133 Electrical characteristics SPC564A70B4, SPC564A70L7 eQADC SSI timing characteristics (pads at 3.3 V or at 5.0 V)(1) (continued) Table 48. CLOAD = 25 pF on all outputs. Pad drive strength set to maximum. Value # Symbol C Rating Unit Min Typ Max 2 tFCKHT CC D Clock (FCK) High Time tSYS_CLK − 6.5 9 * tSYS_CLK + 6.5 ns 3 tSYS_CLK − 6.5 8 * tSYS_CLK + 6.5 ns 4 tSDS_LL CC D SDS Lead/Lag Time −7.5 7.5 ns 5 tSDO_LL CC D SDO Lead/Lag Time −7.5 7.5 ns tFCKLT CC D Clock (FCK) Low Time Data Valid from FCK Falling Edge (tFCKLT + tSDO_LL) 1 ns 7 tEQ_SU CC D eQADC Data Setup Time (Inputs) 22 ns 8 tEQ_HO CC D eQADC Data Hold Time (Inputs) 1 ns 6 tDVFE CC D 1. SSI timing specified at fSYS = 80 MHz, VDD = 1.14 V to 1.32 V, VDDEH = 4.75 V to 5.25 V, TA = TL to TH, and CL = 50 pF with SRC = 0b00. 2. Maximum operating frequency is highly dependent on track delays, master pad delays, and slave pad delays. 3. FCK duty is not 50% when it is generated through the division of the system clock by an odd number. 1 2 3 FCK 4 4 SDS 5 SDO 25th 6 1st (MSB) 5 2nd 26th External Device Data Sample at FCK Falling Edge 8 7 SDI 1st (MSB) 2nd 25th 26th eQADC Data Sample at FCK Rising Edge Figure 33. eQADC SSI timing 3.17.10 FlexCAN system clock source Table 49. 122/133 FlexCAN engine system clock divider threshold # Symbol 1 fCAN_TH Characteristic FlexCAN engine system clock threshold Doc ID 18078 Rev 4 Value Unit 100 MHz SPC564A70B4, SPC564A70L7 Table 50. Electrical characteristics FlexCAN engine system clock divider System frequency Required SIU_SYSDIV[CAN_SRC] value ≤ fCAN_TH 0(1),(2) > fCAN_TH 1(2)(3) 1. Divides system clock source for FlexCAN engine by 1 2. System clock is only selected for FlexCAN when CAN_CR[CLK_SRC] = 1 3. Divides system clock source for FlexCAN engine by 2 Doc ID 18078 Rev 4 123/133 Packages SPC564A70B4, SPC564A70L7 4 Packages 4.1 ECOPACK® In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 4.2 Package mechanical data 4.2.1 LQFP176 C Seating plane 0.25 mm gauge plane A A2 k c A1 ccc C A1 HD L D L1 ZD ZE 89 132 88 133 b E 176 Pin 1 identification 45 44 1 e Figure 34. LQFP176 package mechanical drawing 124/133 HE Doc ID 18078 Rev 4 1T_ME SPC564A70B4, SPC564A70L7 Table 51. Packages LQFP176 mechanical data(1) inches(2) mm Symbol Min Typ Max Min Typ Max A — — 1.600 — — 0.063 A1 0.050 — 0.150 0.002 — — A2 1.350 — 1.450 0.053 — 0.057 b 0.170 — 0.270 0.007 — 0.011 C 0.090 — 0.200 0.004 — 0.008 D 23.900 — 24.100 0.941 — 0.949 E 23.900 — 24.100 0.941 — 0.949 e — 0.500 — — 0.020 — HD 25.900 — 26.100 1.020 — 1.028 HE 25.900 — 26.100 1.020 — 1.028 L(3) 0.450 — 0.750 0.018 — 0.030 L1 — 1.000 — — 0.039 — ZD — 1.250 — — 0.049 — ZE — 1.250 — — 0.049 — k 0° — 7° 0° — 7° ccc — — 0.080 — — 0.003 1. Controlling dimension: millimeter 2. Values in inches are converted from mm and rounded to 4 decimal digits. 3. L dimension is measured at gauge plane at 0.25 above the seating plane. Doc ID 18078 Rev 4 125/133 Packages 4.2.2 SPC564A70B4, SPC564A70L7 BGA208(c) ddd C Seating plane A A A1 A3 A4 B A2 D D D1 e A F E e E1 F T R P N M L K J H G F E D C B A 1 3 2 5 4 7 6 9 8 A1 corner index area (See note 1) 11 13 15 10 12 14 16 b (208 balls) eee M C A B fff M C Bottom view Figure 35. LBGA208 package mechanical drawing 1. The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink or metallized markings, or other feature of package body or integral heatslug. A distinguishing feature is allowable on the bottom surface of the package to identify the terminal A1 corner. Exact shape of each corner is optional. Table 52. LBGA208 mechanical data(1) inches(2) mm Symbol (3) A A1 c. Min Typ Max Min Typ Max — — 1.70 — — 1.55 0.30 — — 0.45 0.50 0.55 LBGA208 is available upon specific request. Please contact your ST sales office for details. 126/133 Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 Table 52. Packages LBGA208 mechanical data(1) (continued) inches(2) mm Symbol Min Typ Max Min Typ Max A2 — 1.085 — 1.03 1.085 1.14 A3 — 0.30 — 0.26 0.30 0.34 A4 — — 0.80 0.77 0.785 0.80 b(4) 0.50 0.60 0.70 0.55 0.60 0.65 D 16.80 17.00 17.20 16.90 17.00 17.10 D1 — 15.00 — — 15.00 — E 16.80 17.00 17.20 16.90 17.00 17.10 E1 — 15.00 — — 15.00 — e — 1.00 — — 1.00 — F — 1.00 — — 1.00 — ddd — — 0.20 — — 0.0079 eee(5) — — 0.25 — — 0.0098 fff(6),(7) — — 0.10 — — 0.0039 1. Controlling dimension: millimeter 2. Values in inches are converted from mm and rounded to 4 decimal digits. 3. LBGA stands for Low profile Ball Grid Array. - Low profile: The total profile height (Dim A) is measured from the seating plane to the top of the component - The maximum total package height is calculated by the following methodology: A2 Typ + A1 Typ +√ (A12 + A32 + A42 tolerance values) - Low profile: 1.20 mm < A < 1.70 mm 4. The typical ball diameter before mounting is 0.60 mm. 5. The tolerance of position that controls the location of the pattern of balls with respect to datums A and B. For each ball there is a cylindrical tolerance zone eee perpendicular to datum C and located on true position with respect to datums A and B as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone. 6. The tolerance of position that controls the location of the balls within the matrix with respect to each other. For each ball there is a cylindrical tolerance zone fff perpendicular to datum C and located on true position as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone. Each tolerance zone fff in the array is contained entirely in the respective zone eee above. The axis of each ball must lie simultaneously in both tolerance zones. 7. The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink or metallized markings, or other feature of package body or integral heatslug. A distinguishing feature is allowable on the bottom surface of the package to identify the terminal A1 corner. Exact shape of each corner is optional. 4.2.3 PBGA324 Doc ID 18078 Rev 4 127/133 Packages SPC564A70B4, SPC564A70L7 Figure 36. PBGA324 package mechanical drawing 128/133 Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 Table 53. Packages PBGA324 package mechanical data Symbol Databook Drawing (mm) (mm) Min Typ Max Min Typ Max A(1) (2) (3) — 1.720 — 1.620 1.720 1.820 A1 0.270 — — 0.350 0.400 0.450 A2 — 1.320 — — 1.320 — b 0.550 0.6000 0.650 0.550 0.600 0.650 D 22.80 23.00 23.200 22.900 23.000 23.100 D1 — 21.00 — — 21.000 — E 22.800 23.000 23.200 22.900 23.000 23.100 E1 — 21.000 — — 21.000 — e 0.950 1.000 1.050 0.950 1.000 1.050 f 0.875 1.000 1.125 0.875 1.000 1.125 ddd — — 0.200 — — 0.200 1. Max mounted height is 1.77 mm. Based on 0.35 mm ball pad diameter. Solder paste is 0.15 mm thickness and 0.35 mm diameter. 2. PBGA stands for Plastic Ball Grid Array. 3. The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink or metallized markings, or other feature of package body or integral heatslug. A distinguishing feature is allowable on the bottom surface of the package to identify the terminal A1corner. Exact shape of each corner is optional. Doc ID 18078 Rev 4 129/133 Ordering information 5 SPC564A70B4, SPC564A70L7 Ordering information Figure 37. Product code structure Example code: SPC56 4 A 70 L7 C F A Y Product identifier Core Family Memory Package Temperature Custom vers. Max Freq. Conditioning Y = Tray R = Tape and Reel A = 150 MHz B = 120 MHz C = 80 MHz F = Optional FlexRay controller B = −40 to 105 °C C = −40 to 125 °C B2 = LBGA208 B4 = PBGA324 L7 = LQFP176 70 = 2 MB A = SPC564A70 family 4 = e200z4 SPC56 = Power Architecture in 90nm 130/133 Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 6 Revision history Revision history Table 54 summarizes customer facing revisions to this document. Table 54. Document revision history Date Revision 07-Oct-2010 1 Initial release. 2 Figure 1 (SPC564A70 series block diagram), added ECSM block and its definition in the elegend. Table 3 (SPC564A70 series block summary), added the following blocks: REACN, SIU, ECSM, FMPLL, PIT and SWT. Updated Table 9 (Absolute maximum ratings) In 3, Electrical characteristics, deleted the “Recommended operating conditions” subsection. Table 15 (PMC operating conditions and external regulators supply voltage), removed minimum value of VDDREG and its footnote. Updated Table 16 (PMC electrical characteristics) Updated Section 3.6.1, Regulator example Updated Table 21 (DC electrical specifications) Figure 8 (Core voltage regulator controller external components preferred configuration), added “T1” label to indicate the transistor. Table 21 (DC electrical specifications), changed maximum value of VIL_LS to 0.9, was 1.1 Table 22 (I/O pad average IDDE specifications), in the VDDE column changed all 5.5 to 5.25 Table 25 (DSPI LVDS pad specification): Renamed VOC, was VOD Updated minimum and maximum value of VOC deleted all footnote Table 27 (Temperature sensor electrical characteristics), updated minimum and maximum value of accuracy Updated Section 3.12, eQADC electrical characteristics Added Section 3.13, Configuring SRAM wait states Updated Table 32 (APC, RWSC, WWSC settings vs. frequency of operation) Updated Table 33 (Flash program and erase specifications) Table 32 (APC, RWSC, WWSC settings vs. frequency of operation), changed all values in the WWSC column to 0b01. Updated Table 33 (Flash program and erase specifications) Table 34 (Flash EEPROM module life): updated temperature value in the Retention description (was 150 °C, is 85 °C) added values for Retention Table 35 (Pad AC specifications (VDDE = 4.75 V)): changed maximum value of Medium to 12/12 changed maximum value of Slow to 20/20 Updated Table 36 (Pad AC specifications (VDDE = 3.0 V)) Table 38 (JTAG pin AC electrical characteristics): changed all parameter classification to D changed minumum value of tTMSS, tTDIS to 10 Updated Table 39 (Nexus debug port timing) 11-Apr-2012 Changes Doc ID 18078 Rev 4 131/133 Revision history SPC564A70B4, SPC564A70L7 Table 54. Document revision history (continued) Date Revision Changes Added Table 40 (Nexus debug port operating frequency) Table 40 (Nexus debug port operating frequency), added a footnote near the value of tAAI Table 45 (eMIOS timing): changed minumum value of tMOPW to 1 removed the footnote of tMOPW 11-Apr-2012 132/133 Merged “DSPI timing (VDDEH = 3.0 to 3.6 V)” and “DSPI timing (VDDEH = 4.5 to 5.5V)” tables into Table 47 (DSPI timing) and changed all parameter classification to D 2 Table 48 (eQADC SSI timing characteristics (pads at 3.3 V or at 5.0 V)) changed all parameter classification to D (continued) Table 52 (LBGA208 mechanical data) deleted Notes column and moved all footnote next to relative references Table 53 (PBGA324 package mechanical data) deleted Notes column and moved all footnote next to relative references [[ST_Specific]] Table 12 (Thermal characteristics for 324-pin PBGA), updated values In Section 3.6, Power management control (PMC) and power on reset (POR) electrical specifications, deleted the “Voltage regulator controller (VRC) electrical specifications” Updated Section 4.2.1, LQFP176 06-Jun-2012 3 Minor editorial changes and improvements throughout. In Section 2.4, Signal summary, Table 4 (SPC564A70 signal properties), updated the following properties for the Nexus pins: – Added a footnote to the “Nexus” title for this pin group. – Added a footnote to the “Name” entry for EVTO. – Updated the “Status During reset” entry for EVTO. In Section 3.2, Maximum ratings, Table 9 (Absolute maximum ratings), removed the “TBD - To be defined” footnote. In Section 3.8, DC electrical specifications, Table 21 (DC electrical specifications), removed the “TBD - To be defined” footnote. In Section 3.9, I/O pad current specifications, Table 22 (I/O pad average IDDE specifications): – Updated values and replaced TBDs with numerical data. – Removed the “TBD - To be defined” footnote. In Section 3.9.1, I/O pad VRC33 current specifications, Table 23 (I/O pad VRC33 average IDDE specifications): – Updated values and replaced TBDs with numerical data. – Removed the “TBD - To be defined” footnote. In Section 3.14, Platform flash controller electrical characteristics, Table 32 (APC, RWSC, WWSC settings vs. frequency of operation), removed the “TBD - To be defined” footnote. In Table 54 (Document revision history), removed extraneous text from the Revision 2 entry. 18-Sep-2013 4 Updated Disclaimer. Doc ID 18078 Rev 4 SPC564A70B4, SPC564A70L7 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2013 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com Doc ID 18078 Rev 4 133/133
SPC564A70L7COCY 价格&库存

很抱歉,暂时无法提供与“SPC564A70L7COCY”相匹配的价格&库存,您可以联系我们找货

免费人工找货