0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STM32L552RET6Q

STM32L552RET6Q

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    LQFP64

  • 描述:

  • 数据手册
  • 价格&库存
STM32L552RET6Q 数据手册
STM32L552xx Ultra-low-power Arm® Cortex®-M33 32-bit MCU+TrustZone®+FPU, 165 DMIPS, up to 512 KB Flash memory, 256 KB SRAM, SMPS Datasheet - production data Features Ultra-low-power with FlexPowerControl • 1.71 V to 3.6 V power supply LQFP48 (7 x 7 mm) LQFP64 (10 x 10 mm) LQFP100(*) (14 x14 mm) LQFP144 (20 x 20mm) • -40 °C to 85/125 °C temperature range • Batch acquisition mode (BAM) • 187 nA in VBAT mode: supply for RTC and 32x32-bit backup registers • 17 nA Shutdown mode (5 wakeup pins) FBGA UFBGA132 (7 x 7 mm) • 108 nA Standby mode (5 wakeup pins) UFQFPN48 (7 x 7 mm) WLCSP81 (4.36 x 4.07 mm) (*): Silhouette shown above. • 222 nA Standby mode with RTC • 3.16 μA Stop 2 with RTC Memories • 106 μA/MHz Run mode (LDO mode) • Up to 512-Kbyte Flash, two banks read-whilewrite • 62 μA/MHz Run mode @ 3 V (SMPS step-down converter mode) • 5 µs wakeup from Stop mode • 256 Kbytes of SRAM including 64 Kbytes with hardware parity check • Brownout reset (BOR) in all modes except Shutdown • External memory interface supporting SRAM, PSRAM, NOR, NAND and FRAM memories Core • OCTOSPI memory interface • Arm® 32-bit Cortex®-M33 CPU with TrustZone® and FPU Security • Arm® TrustZone® and securable I/Os, memories and peripherals ART Accelerator • 8-Kbyte instruction cache allowing 0-wait-state execution from Flash memory and external memories; frequency up to 110 MHz, MPU, 165 DMIPS and DSP instructions • Flexible life cycle scheme with RDP (readout protection) • Root of trust thanks to unique boot entry and hide protection area (HDP) Performance benckmark • SFI (secure firmware installation) thanks to embedded RSS (root secure services) • 1.5 DMIPS/MHz (Drystone 2.1) • Secure firmware upgrade support with TF-M • 442 CoreMark® (4.02 CoreMark®/MHz) Energy benchmark • 370 ULPMark-CP® score • HASH hardware accelerator • Active tamper and protection against temperature, voltage and frequency attacks • 54 ULPMark-PP® score • True random number generator NIST SP80090B compliant • 27400 SecureMark-TLS® score • 96-bit unique ID October 2020 This is information on a product in full production. DS12737 Rev 6 1/340 www.st.com STM32L552xx • 512-byte OTP (one-time programmable) for user data General-purpose input/outputs • Up to 114 fast I/Os with interrupt capability most 5 V-tolerant and up to 14 I/Os with independent supply down to 1.08 V Up to 19 communication peripherals • 1x USB Type-C™/ USB power delivery controller • 1x USB 2.0 full-speed crystal less solution, LPM and BCD • 2x SAIs (serial audio interface) • 4x I2C FM+(1 Mbit/s), SMBus/PMBus™ Power management • Embedded regulator (LDO) with three configurable range output to supply the digital circuitry • Embedded SMPS step-down converter • 6x USARTs (ISO 7816, LIN, IrDA, modem) • 3x SPIs (7x SPIs with USART and OCTOSPI in SPI mode) • 1x FDCAN controller • 1x SDMMC interface • External SMPS support 2 DMA controllers Clock management • 14 DMA channels • 4 to 48 MHz crystal oscillator • 32 kHz crystal oscillator for RTC (LSE) Up to 22 capacitive sensing channels • Internal 16 MHz factory-trimmed RC (±1%) • Support touch key, linear and rotary touch sensors • Internal low-power 32 kHz RC (±5%) • Internal multispeed 100 kHz to 48 MHz oscillator, auto-trimmed by LSE (better than ±0.25% accuracy) • Internal 48 MHz with clock recovery • 3 PLLs for system clock, USB, audio, ADC Up to 16 timers and 2 watchdogs • 16x timers: 2 x 16-bit advanced motor-control, 2 x 32-bit and 5 x 16-bit general purpose, 2x 16-bit basic, 3x low-power 16-bit timers (available in Stop mode), 2x watchdogs, 2x SysTick timer • RTC with hardware calendar, alarms and calibration Rich analog peripherals (independent supply) • 2x 12-bit ADC 5 Msps, up to 16-bit with hardware oversampling, 200 µA/Msps • 2x 12-bit DAC outputs, low-power sample and hold • 2x operational amplifiers with built-in PGA • 2x ultra-low-power comparators • 4x digital filters for sigma delta modulator CRC calculation unit Debug • Development support: serial wire debug (SWD), JTAG, Embedded Trace Macrocell™ (ETM) Table 1. Device summary Reference STM32L552xx 2/340 Part numbers STM32L552CC, STM32L552CE, STM32L552ME, STM32L552QC, STM32L552QE, STM32L552RC, STM32L552RE, STM32L552VC, STM32L552VE, STM32L552ZC, STM32L552ZE DS12737 Rev 6 STM32L552xx Contents Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1 Arm® Cortex®-M33 core with TrustZone® and FPU . . . . . . . . . . . . . . . . . 20 3.2 Art Accelerator – instruction cache (ICACHE) . . . . . . . . . . . . . . . . . . . . . 20 3.3 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.5 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.6 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.7 Global TrustZone controller (GTZC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.8 TrustZone security architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.8.1 3.9 TrustZone peripheral classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.9.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.9.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.9.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.9.4 SMPS step down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.9.5 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.9.6 Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.9.7 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.9.8 PWR TrustZone security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.10 Peripheral interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.11 Reset and clock controller (RCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.12 Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.13 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.14 Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.15 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.16 DMA request router (DMAMUX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.17 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.17.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 57 DS12737 Rev 6 3/340 6 Contents STM32L552xx 3.17.2 4/340 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 57 3.18 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 58 3.19 Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . . 58 3.20 Octo-SPI interface (OCTOSPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.21 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.21.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.21.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.21.3 VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.22 Digital to analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.23 Voltage reference buffer (VREFBUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.24 Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.25 Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.26 Digital filter for sigma-delta modulators (DFSDM) . . . . . . . . . . . . . . . . . . 64 3.27 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.28 True random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.29 HASH hardware accelerator (HASH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.30 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.30.1 Advanced-control timer (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.30.2 General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM15, TIM16, TIM17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.30.3 Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.30.4 Low-power timers (LPTIM1, LPTIM2 and LPTIM3) . . . . . . . . . . . . . . . . 69 3.30.5 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.30.6 Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.30.7 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.31 Real-time clock (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.32 Tamper and backup registers (TAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.33 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.34 Universal synchronous/asynchronous receiver transmitter (USART) . . . 74 3.35 Low-power universal asynchronous receiver transmitter (LPUART) . . . . 75 3.36 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.37 Serial audio interfaces (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.38 Secure digital input/output and MultiMediaCards Interface (SDMMC) . . . 76 3.39 Controller area network (FDCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.40 Universal serial bus (USB FS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 DS12737 Rev 6 STM32L552xx Contents 3.41 USB Type-C™ / USB Power Delivery controller (UCPD) . . . . . . . . . . . . . 77 3.42 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.42.1 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.42.2 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 142 5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 5.3.2 SMPS step-down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 5.3.3 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . 148 5.3.4 Embedded reset and power control block characteristics . . . . . . . . . . 148 5.3.5 Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 5.3.6 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 5.3.7 Wakeup time from low-power modes and voltage scaling transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 5.3.8 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 213 5.3.9 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 218 5.3.10 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 5.3.11 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 5.3.12 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 5.3.13 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 5.3.14 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 5.3.15 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 5.3.16 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 5.3.17 Extended interrupt and event controller input (EXTI) characteristics . . 237 5.3.18 Analog switches booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 DS12737 Rev 6 5/340 6 Contents 6 STM32L552xx 5.3.19 Analog-to-digital converter characteristics . . . . . . . . . . . . . . . . . . . . . . 239 5.3.20 Digital-to-Analog converter characteristics . . . . . . . . . . . . . . . . . . . . . 252 5.3.21 Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . 257 5.3.22 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 5.3.23 Operational amplifiers characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 261 5.3.24 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 5.3.25 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 5.3.26 Temperature and VDD thresholds monitoring . . . . . . . . . . . . . . . . . . . 266 5.3.27 DFSDM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 5.3.28 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 5.3.29 Communication interfaces characteristics . . . . . . . . . . . . . . . . . . . . . . 270 5.3.30 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 5.3.31 OCTOSPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 5.3.32 SD/SDIO/MMC card host interfaces (SDMMC) . . . . . . . . . . . . . . . . . . 304 5.3.33 UCPD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 6.1 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 6.2 UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .311 6.3 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 6.4 WLCSP81 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 6.5 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 6.6 UFBGA132 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 6.7 LQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 6.8 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 6.8.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 6.8.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 331 7 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 6/340 DS12737 Rev 6 STM32L552xx List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 STM32L552xx features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Boot modes when TrustZone is disabled (TZEN=0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Boot modes when TrustZone is enabled (TZEN=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Boot space versus RDP protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Example of memory map security attribution vs SAU configuration regions . . . . . . . . . . . 27 Securable peripherals by TZSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 TrustZone-aware peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 SMPS external components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 STM32L552xx modes overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Functionalities depending on the working mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 STM32L552xx peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 DMA1 and DMA2 implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 USART/UART/LPUART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 SAI implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 STM32L552xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Alternate function AF0 to AF7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Alternate function AF8 to AF15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 SMPS modes summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 SMPS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 148 Embedded internal voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Current consumption in Run and Low-power run modes, code with data processing running from Flash in single Bank, ICACHE ON in 2-way . . . . . . . . . . . . . . . . . . . . . . . . 153 Current consumption in Run and Low-power run modes, code with data processing running from Flash in single Bank, ICACHE ON in 1-way . . . . . . . . . . . . . . . . . . . . . . . . 154 Current consumption in Run and Low-power run modes, code with data processing running from Flash in single Bank, ICACHE disabled. . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Current consumption in Run mode, code with data processing running from Flash in single bank, ICACHE ON in 2-way and power supplied by internal SMPS step down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Current consumption in Run mode, code with data processing running from Flash in single bank, ICACHE ON in 1-way and power supplied by internal SMPS step down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Current consumption in Run mode, code with data processing running from Flash in single bank, ICACHE disabled and power supplied by internal SMPS step down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 Current consumption in Run and Low-power run modes, code with data processing DS12737 Rev 6 7/340 11 List of tables Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. 8/340 STM32L552xx running from Flash in dual bank, ICACHE ON in 2-way . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Current consumption in Run and Low-power run modes, code with data processing running from Flash in dual bank, ICACHE ON in 1-way . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Current consumption in Run and Low-power run modes, code with data processing running from Flash in dual bank, ICACHE disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Current consumption in Run mode, code with data processing running from Flash in dual bank, ICACHE ON in 2-way and power supplied by internal SMPS step down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Current consumption in Run mode, code with data processing running from Flash in dual bank, ICACHE ON in 1-way and power supplied by internal SMPS step down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Current consumption in Run mode, code with data processing running from Flash in dual bank, ICACHE disabled and power supplied by internal SMPS step down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Current consumption in Run and Low-power run modes, code with data processing running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Current consumption in Run mode, code with data processing running from SRAM1 and power supplied by internal SMPS step down converter . . . . . . . . . . . . 166 Current consumption in Run and Low-power run modes, code with data processing running from SRAM2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Current consumption in Run mode, code with data processing running from SRAM2 and power supplied by internal SMPS step down converter . . . . . 168 Typical current consumption in Run and Low-power run modes, with different codes running from Flash, ICACHE ON (2-way) . . . . . . . . . . . . . . . . . . . . . 169 Typical current consumption in Run mode with SMPS, with different codes running from Flash, ICACHE ON (2-way) . . . . . . . . . . . . . . . . . . . . . 170 Typical current consumption in Run and Low-power run modes, with different codes running from Flash, ICACHE ON (1-way) . . . . . . . . . . . . . . . . . . . . . 171 Typical current consumption in Run mode with SMPS, with different codes running from Flash, ICACHE ON (1-way) . . . . . . . . . . . . . . . . . . . . . 172 Typical current consumption in Run and Low-power run modes, with different codes running from Flash, ICACHE disabled . . . . . . . . . . . . . . . . . . . . . . . 173 Typical current consumption in Run mode with internal SMPS, with different codes running from Flash, ICACHE disabled . . . . . . . . . . . . . . . . . . . . . . . 174 Typical current consumption in Run and Low-power run modes, with different codes running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 Typical current consumption in Run mode with internal SMPS, with different codes running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 Typical current consumption in Run and Low-power run modes, with different codes running from SRAM2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 Typical current consumption in Run mode with internal SMPS, with different codes running from SRAM2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 Current consumption in Sleep and Low-power sleep mode, Flash ON . . . . . . . . . . . . . . 179 Current consumption in Low-power sleep mode, Flash in power-down . . . . . . . . . . . . . . 180 Current consumption in Sleep mode, Flash ON and power supplied by internal SMPS step down converter . . . . . . . . . . . . . . 181 Current consumption in Run mode, code with data processing running from Flash in single bank, ICACHE ON in 2-way and power supplied by external SMPS . . . . . . . . . 182 Current consumption in Run mode, code with data processing running from Flash in single bank, ICACHE ON in 1-way and power supplied by external SMPS . . . . . . . . . 183 Current consumption in Run mode, code with data processing running from Flash in single bank, ICACHE disabled and power supplied by external SMPS . . . . . . . . . . . . 184 DS12737 Rev 6 STM32L552xx Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. Table 82. Table 83. Table 84. Table 85. Table 86. Table 87. Table 88. Table 89. Table 90. Table 91. Table 92. Table 93. Table 94. Table 95. Table 96. Table 97. Table 98. Table 99. Table 100. Table 101. Table 102. Table 103. Table 104. Table 105. Table 106. List of tables Current consumption in Run mode, code with data processing running from Flash in dual bank, ICACHE on in 2-way and power supplied by external SMPS . . . . . . . . . . . 185 Current consumption in Run mode, code with data processing running from Flash in dual bank, ICACHE on in 1-way and power supplied by external SMPS . . . . . . . . . . . 186 Current consumption in Run mode, code with data processing running from Flash in dual bank, ICACHE disabled and power supplied by external SMPS. . . . . . . . . . . . . . 187 Current consumption in Run mode, code with data processing running from SRAM1, and power supplied by external SMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 Current consumption in Run mode, code with data processing running from SRAM2, and power supplied by external SMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 Current consumption in Sleep mode, Flash ON and power supplied by external SMPS . 190 Current consumption in Run mode, code with data processing running from Flash, ICACHE on (2-way) and power supplied by external SMPS . . . . . . . . . . . . . . . . . . . . . . 191 Current consumption in Run mode, code with data processing running from Flash, ICACHE on (1-way) and power supplied by external SMPS . . . . . . . . . . . . . . . . . . . . . . 192 Current consumption in Run mode, code with data processing running from Flash, ICACHE disabled and power supplied by external SMPS . . . . . . . . . . . . . . . . . . . . . . . . 193 Current consumption in Run mode, code with data processing running from SRAM1, and power supplied by external SMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 Current consumption in Run mode, code with data processing running from SRAM2, and power supplied by external SMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 Current consumption in Stop 2 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 Current consumption in Stop 0 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 Regulator modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 Wakeup time using USART/LPUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220 HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 PLL, PLLSAI1, PLLSAI2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 I/O AC characteristics (All I/Os except FT_c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 FT_c I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 DS12737 Rev 6 9/340 11 List of tables Table 107. Table 108. Table 109. Table 110. Table 111. Table 112. Table 113. Table 114. Table 115. Table 116. Table 117. Table 118. Table 119. Table 120. Table 121. Table 122. Table 123. Table 124. Table 125. Table 126. Table 127. Table 128. Table 129. Table 130. Table 131. Table 132. Table 133. Table 134. Table 135. Table 136. Table 137. Table 138. Table 139. Table 140. Table 141. Table 142. Table 143. Table 144. Table 145. Table 146. Table 147. Table 148. Table 149. Table 150. Table 151. Table 152. Table 153. Table 154. Table 155. Table 156. Table 157. 10/340 STM32L552xx EXTI input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 Analog switches booster characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 ADC accuracy - limited test conditions 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 ADC accuracy - limited test conditions 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 ADC accuracy - limited test conditions 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 ADC accuracy - limited test conditions 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 DAC accuracy ranges 0/1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 OPAMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 VBAT charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 Temp and VDD monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 DFSDM measured timing 1.71 to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 IWDG min/max timeout period at 32 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 WWDG min/max timeout value at 110 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 USART characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 281 Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings . . . . . . . . . . . 281 Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 282 Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings. . . . . . . . . . . 283 Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 284 Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 284 Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 286 Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 286 Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 292 Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 297 OCTOSPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 OCTOSPI characteristics in DTR mode (no DQS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 OCTOSPI characteristics in DTR mode (with DQS)/Octal and HyperBus . . . . . . . . . . . . 300 Dynamics characteristics: delay block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 Dynamics characteristics: SD / eMMC characteristics, VDD=2.7V to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 Dynamics characteristics: eMMC characteristics VDD=1.71 V to 1.9 V . . . . . . . . . . . . . . 305 UCPD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 LQFP48 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 UFQFPN48 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 LQFP64 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 WLCSP81 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 WLCSP81 recommended PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 DS12737 Rev 6 STM32L552xx Table 158. Table 159. Table 160. Table 161. Table 162. Table 163. Table 164. List of tables LQPF100 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 UFBGA132 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 UFBGA132 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . 324 LQFP144 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 STM32L552xx ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 DS12737 Rev 6 11/340 11 List of figures STM32L552xx List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. 12/340 STM32L552xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 STM32L552xx power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 STM32L552xxxxP power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 STM32L552xxxxQ power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Power-up/down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 SMPS step down converter power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 STM32L552xx clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Voltage reference buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 STM32L552xx LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 STM32L552xxxxP LQFP48 external SMPS pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 STM32L552xx UFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 STM32L552xxxxP UFQFPN48 external SMPS pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 STM32L552xx LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 STM32L552xxxxQ LQFP64 SMPS step down converter pinout. . . . . . . . . . . . . . . . . . . . . 81 STM32L552xxxxP LQFP64 external SMPS pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 STM32L552xxxxQ WLCSP81 SMPS step down converter ballout . . . . . . . . . . . . . . . . . . 82 STM32L552xxxxP WLCSP81 external SMPS ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 STM32L552xx LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 STM32L552xxxxQ LQFP100 SMPS step down converter pinout. . . . . . . . . . . . . . . . . . . . 84 STM32L552xx UFBGA132 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 STM32L552xxxxQ UFBGA132 SMPS step down converter ballout. . . . . . . . . . . . . . . . . . 85 STM32L552xx LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 STM32L552xxxxQ LQFP144 SMPS step down converter pinout. . . . . . . . . . . . . . . . . . . . 87 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 STM32L552xx and STM32L562xx power supply overview . . . . . . . . . . . . . . . . . . . . . . . 139 STM32L552xxxP and STM32L562xxxP power supply overview . . . . . . . . . . . . . . . . . . . 140 STM32L552xxxQ and STM32L562xxxQ power supply overview . . . . . . . . . . . . . . . . . . . 141 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 External components for SMPS step down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 VREFINT versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 HSI16 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 Typical current consumption versus MSI frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 HSI48 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 I/O AC characteristics definition(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 12-bit buffered / non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 VREFBUF in case VRS = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 VREFBUF in case VRS = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 DS12737 Rev 6 STM32L552xx Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. Figure 61. Figure 62. Figure 63. Figure 64. Figure 65. Figure 66. Figure 67. Figure 68. Figure 69. Figure 70. Figure 71. Figure 72. Figure 73. Figure 74. Figure 75. Figure 76. Figure 77. Figure 78. Figure 79. Figure 80. Figure 81. Figure 82. Figure 83. Figure 84. Figure 85. Figure 86. Figure 87. Figure 88. Figure 89. Figure 90. Figure 91. Figure 92. Figure 93. Figure 94. Figure 95. Figure 96. List of figures SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 USART master mode timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 USART slave mode timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 280 Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 282 Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 283 Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 285 Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 291 Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 296 NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 296 OCTOSPI timing diagram - SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 OCTOSPI timing diagram - DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 OCTOSPI HyperBus clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 OCTOSPI HyperBus read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 OCTOSPI HyperBus read with double latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 OCTOSPI HyperBus write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 LQFP48 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 LQFP48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 Example of LQFP48 package marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . 310 UFQFPN48 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 UFQFPN48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 Example of UFQFPN48 package marking (package top view). . . . . . . . . . . . . . . . . . . . . 313 LQFP64 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 Example of LQFP64 package marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . 316 WLCSP81 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 WLCSP 81 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 Example of WLCSP81 package marking (package top view). . . . . . . . . . . . . . . . . . . . . . 319 LQFP100 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 LQFP100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 Example of LQFP100 package marking (package top view) . . . . . . . . . . . . . . . . . . . . . . 322 UFBGA132 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 UFBGA132 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 Example of UFBGA132 package marking (package top view) . . . . . . . . . . . . . . . . . . . . 325 LQFP144 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 LQFP144 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 Example of LQFP144 package marking (package top view) . . . . . . . . . . . . . . . . . . . . . . 329 DS12737 Rev 6 13/340 13 Introduction 1 STM32L552xx Introduction This document provides the ordering information and mechanical device characteristics of the STM32L552xx microcontrollers. This document should be read in conjunction with the STM32L552xx and STM32L562xx reference manual (RM0438). For information on the Arm®(a) Cortex®-M33 core, refer to the Cortex®-M33 Technical Reference Manual, available from the www.arm.com website. a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere. 14/340 DS12737 Rev 6 STM32L552xx 2 Description Description The STM32L552xx devices are an ultra-low-power microcontrollers family (STM32L5 Series) based on the high-performance Arm® Cortex®-M33 32-bit RISC core. They operate at a frequency of up to 110 MHz. The Cortex®-M33 core features a single-precision floating-point unit (FPU), which supports all the Arm® single-precision data-processing instructions and all the data types. The Cortex®-M33 core also implements a full set of DSP (digital signal processing) instructions and a memory protection unit (MPU) which enhances the application’s security. These devices embed high-speed memories (512 Kbytes of Flash memory and 256 Kbytes of SRAM), a flexible external memory controller (FSMC) for static memories (for devices with packages of 100 pins and more), an Octo-SPI Flash memories interface (available on all packages) and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix. The STM32L5 Series devices offer security foundation compliant with the trusted based security architecture (TBSA) requirements from Arm. They embed the necessary security features to implement a secure boot, secure data storage, secure firmware installation and secure firmware upgrade. Flexible life cycle is managed thanks to multiple levels of readout protection. Firmware hardware isolation is supported thanks to securable peripherals, memories and I/Os, and also to the possibility to configure the peripherals and memories as “privilege”. The STM32L552xx devices embed several protection mechanisms for embedded Flash memory and SRAM: readout protection, write protection, secure and hidden protection areas. The STM32L552xx devices embed peripherals reinforcing security: - One HASH hardware accelerator - One true random number generator The STM32L5 Series devices offer active tamper detection and protection against transient and environmental perturbation attacks thanks to several internal monitoring which generate secret data erase in case of attack. This helps to fit the PCI requirements for point of sales applications. These devices offer two fast 12-bit ADC (5 Msps), two comparators, two operational amplifiers, two DAC channels, an internal voltage reference buffer, a low-power RTC, two general-purpose 32-bit timer, two 16-bit PWM timers dedicated to motor control, seven general-purpose 16-bit timers, and two 16-bit low-power timers. The devices support four digital filters for external sigma delta modulators (DFSDM). In addition, up to 22 capacitive sensing channels are available. STM32L5 Series also feature standard and advanced communication interfaces such as: - Four I2Cs - Three SPIs - Three USARTs, two UARTs and one low-power UART - Two SAIs - One SDMMC - One FDCAN DS12737 Rev 6 15/340 78 Description STM32L552xx - USB device FS - USB Type-C / USB power delivery controller The devices operate in the -40 to +85 °C (+105 °C junction) and -40 to +125 °C (+130 °C junction) temperature ranges from a 1.71 to 3.6 V power supply. A comprehensive set of power-saving modes allows the design of low-power applications. Some independent power supplies are supported like an analog independent supply input for ADC, DAC, OPAMPs and comparators, a 3.3 V dedicated supply input for USB and up to 14 I/Os, which can be supplied independently down to 1.08 V. A VBAT input allows the backup of the RTC and the backup of the registers. The STM32L552xx devices offer seven packages from 48-pin to 144-pin. Flash memory (Kbyte) SRAM 16/340 Backup (byte) 128 No Yes 1 Advanced control 2 (16-bit) General purpose 5 (16-bit) 2 (32-bit) Basic 2 (16-bit) Low power 3 (16-bit) SysTick timer 1 Watchdog timers (independent, window) 2 DS12737 Rev 6 STM32L552ZE/ STM32L552ZExxQ, STM32L552ZCxxQ STM32L552QExxP/ STM32L552QExxQ, STM32L552QCxxQ STM32L552VExxQ, STM32L552VCxxQ STM32L552VE/ 256 (192+64) OCTOSPI Timers STM32L552MExxQ 512/256 System (Kbyte) External memory controller for static memories (FSMC) STM32L552MExxP/ STM32L552RExxP/ STM32L552RExxQ STM32L552RE, STM32L552RC/ STM32L552CExxP Peripherals STM32L552CE, STM32L552CC/ Table 2. STM32L552xx features and peripheral counts STM32L552xx Description I2C 4 USART(1)/UART UART Communication LPUART interfaces SAI USB FS Yes No Yes (4 filters) Number of channels 8 Real time clock (RTC) Yes 3 4/4/3 3 True random number generator Yes HASH (SHA-256) Yes Capacitive sensing Number of channels 38/36 3 0 52/50/47 4/3/3 0 54/51 3 6 83/79 5/4 0 108/105 5 13/10 115 /111 5/4 14/13 5 10/10/9 10 19/18 22 22/21 16/14 16 16/14 12-bit ADC ADC DAC Number of channels 8/7 Yes Yes/No/Yes Digital filters for sigmadelta modulators GPIOs Wakeup pins Nb of I/Os down to 1.08 V 5 2 1 Tamper pins 5/4 3/2 (2) 2 1 FDCAN SDMMC STM32L552ZE/ STM32L552ZExxQ, STM32L552ZCxxQ 3 STM32L552QExxP/ STM32L552QExxQ, STM32L552QCxxQ SPI STM32L552VExxQ, STM32L552VCxxQ STM32L552VE/ STM32L552MExxQ STM32L552MExxP/ STM32L552RExxP/ STM32L552RExxQ STM32L552RE, STM32L552RC/ STM32L552CExxP Peripherals STM32L552CE, STM32L552CC/ Table 2. STM32L552xx features and peripheral counts (continued) 2 9 16/16/15 16/15 12-bit DAC 1 Number of channels 2 Internal voltage reference buffer Yes Analog comparator 2 Operational amplifiers 2 Max. CPU frequency 110 MHz DS12737 Rev 6 17/340 78 Description STM32L552xx Operating voltage Operating temperature Package STM32L552ZE/ STM32L552ZExxQ, STM32L552ZCxxQ STM32L552QExxP/ STM32L552QExxQ, STM32L552QCxxQ STM32L552VExxQ, STM32L552VCxxQ STM32L552VE/ STM32L552MExxQ STM32L552MExxP/ STM32L552RExxP/ STM32L552RExxQ STM32L552RE, STM32L552RC/ STM32L552CExxP Peripherals STM32L552CE, STM32L552CC/ Table 2. STM32L552xx features and peripheral counts (continued) 1.71 to 3.6 V Ambient operating temperature: -40 to 85 °C / -40 to 125 °C Junction temperature: -40 to 105 °C / -40 to 130 °C LQFP48, UFQFPN48 LQFP64 WLCSP81 LQFP100(2) UFBGA132 LQFP144 1. USART3 is not available on STM32L552CExxP devices. 2. For the LQFP100 package, only FSMC Bank1 is available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. 18/340 DS12737 Rev 6 STM32L552xx Description Figure 1. STM32L552xx block diagram TRACECLK TRACED[3:0] CLK, NE[4:1], NL, NBL[1:0], A[25:0], D[15:0], NOE, NWE, NWAIT, NCE, INT as AF Flexible static memory controller (FSMC): SRAM, PSRAM, NOR Flash,FRAM, NAND Flash JTAG & SW MPU ETM NVIC Arm Cortex-M33 110 MHz TrustZone FPU IO[7:0], CLK, NCLK, NCS. DQS Octo SPI1 memory interface Icache 8KB NJTRST, JTDI, JTCK/SWCLK JTDO/SWD, JTDO C-BUS RNG Flash up to 512KB HASH SDMMC1 SRAM 64 KB VDD AHB2 110 MHz DMA2 PHY @ VDDUSB SRAM 192 KB FIFO FIFO D[7:0], D[3:1]dir CMD, CMDdir,CK, CKin D0dir, D2dir AHB bus-matrix S-BUS USB FS DP DM Power management Voltage Regulator LDO and SMPS 3.3 to 1.2 V VDD = 1.71 to 3.6 V VSS DMA1 @ VDD @ VDD RC HSI RC LSI GTZC PLL 1&2&3 GPIO PORT A PA[15:0] VDDIO, VDDUSB Int Touch sensing controller AHB1 110AHB1 MHz 110 MHz 8 groups of sensing channels as AF Supply supervision reset MSI DMAMUX1 BOR VDDA, VSSA VDD, VSS, NRST PVD, PVM @VDD OSC_IN OSC_OUT XTAL OSC 4- 16MHz IWDG PB[15:0] GPIO PORT B PC[15:0] GPIO PORT C PD[15:0] GPIO PORT D PE[15:0] GPIO PORT E XTAL 32 kHz PF[15:0] GPIO PORT F RTC Standby interface Reset & clock M AN AGT control @VBAT OSC32_IN PH[1:0] GPIO PORT H 114 AF EXT. IT WKUP PCLKx GPIO PORT G FCLK PG[15:0] HCLKx OSC32_OUT VBAT = 1.55 to 3.6 V CRC @ VDD U STemperature AR T 2 M B ps sensor 16xIN RTC_TS RTC_TAMP[8:1] RTC_OUT AWU Backup register TIM2 32b 4 channels, ETR as AF TIM3 16b 4 channels, ETR as AF TIM4 16b 4 channels, ETR as AF TIM5 32b 4 channels, ETR as AF @ VDDA ADC1 ITF USART2 smcard irDA RX, TX, CK, CTS, RTS as AF USART3 smcard irDA RX, TX, CK, CTS, RTS as AF ADC2 AHB/APB1 AHB/APB2 3 compl. channels (TIM1_CH[1:3]N), 4 channels (TIM1_CH[1:4]), ETR, BKIN, BKIN2 as AF TIM1 / PWM 3 compl. Channels (TIM1_CH[1:3]N), 4 channels (TIM1_CH[1:4]), ETR, BKIN, BKIN2 as AF TIM8 / PWM 16b 2 channels, 1 compl. channel, BKIN as AF TIM15 16b 1 channel, 1 compl. channel, BKIN as AF TIM16 16b RX, TX, CTS, RTS as AF UART5 RX, TX, CTS, RTS as AF 16b SPI2 MOSI, MISO, SCK, NSS as AF I2C1/SMBUS WWDG CRS 16b I2C2/SMBUS SCL, SDA, SMBA as AF I2C3/SMBUS SCL, SDA, SMBA as AF I2C4/SMBUS SCL, SDA, SMBA as AF SAI1 MCLK_A, SD_A, FS_A, SCK_A, EXTCLK MCLK_B, SD_B, FS_B, SCK_B as AF SAI2 SDCKIN[7:0], SDDATIN[7:0], SDCKOUT,SDTRIG as AF TIM6 16b TIM7 16b DFSDM P B 1(max) 3 0 M Hz APB1 110AMHz SPI1 MCLK_A, SD_A, FS_A, SCK_A, EXTCLK MCLK_B, SD_B, FS_B, SCK_B as AF A 60P M B Hz 2 110MHz APB2 USART1 MOSI, MISO, SCK, NSS as AF SCL, SDA, SMBA as AF FDCAN1 FIFO TIM17 smcard irDA MOSI, MISO, SCK, NSS as AF SPI3 TX, RX as AF @VDDA OpAmp1 OUT, INN, INP OpAmp2 OUT, INN, INP SYSCFG @ VDDUSB UCPD1 PHY 1 channel, 1 compl. channel, BKIN as AF RX, TX, CK,CTS, RTS as AF UART4 DP DM @ VDDA VREF+ VREF Buffer LPUART1 @ VDDA @ VDDA LPTIM1 IN1, IN2, OUT, ETR as AF RX, TX, CTS, RTS as AF LPTIM2 IN1, OUT, ETR as AF LPTIM3 IN1, OUT, ETR as AF CH1 INP, INN, OUT COMP1 DAC1 CH2 INP, INN, OUT COMP2 OUT1 OUT2 32-bits AHB bus 32-bits APB bus VDDIO2 power domain VDD power domain VBAT power domain VDDA power domain VDDUSB power domain MSv49361V6 1. AF: alternate function on I/O pins. DS12737 Rev 6 19/340 78 Functional overview STM32L552xx 3 Functional overview 3.1 Arm® Cortex®-M33 core with TrustZone® and FPU The Cortex®-M33 with TrustZone and FPU is a highly energy efficient processor designed for microcontrollers and deeply embedded applications, especially those requiring efficient security. The Cortex®-M33 processor delivers a high computational performance with low-power consumption and an advanced response to interrupts. it features: • Arm® TrustZone® technology, using the Armv8-M main extension supporting secure and non-secure states • Memory protection units (MPUs), 8 regions for secure and 8 regions for non secure • Configurable secure attribute unit (SAU) supporting up to 8 memory regions • Floating-point arithmetic functionality with support for single precision arithmetic The processor supports a set of DSP instructions that allows an efficient signal processing and a complex algorithm execution. The Cortex®-M33 processor supports the following bus interfaces: • System AHB bus: The System AHB (S-AHB) bus interface is used for any instruction fetch and data access to the memory-mapped SRAM, peripheral, external RAM and external device, or Vendor_SYS regions of the Armv8-M memory map. • Code AHB bus The Code AHB (C-AHB) bus interface is used for any instruction fetch and data access to the code region of the Armv8-M memory map. Figure 1 shows the general block diagram of the STM32L552xx family devices. 3.2 Art Accelerator – instruction cache (ICACHE) The instruction cache (ICACHE) is introduced on C-AHB code bus of Cortex®-M33 processor to improve performance when fetching instruction (or data) from both internal and external memories. 20/340 DS12737 Rev 6 STM32L552xx Functional overview ICACHE offers the following features: • • 3.3 Multi-bus interface: – slave port receiving the memory requests from the Cortex®-M33 C-AHB code execution port – master1 port performing refill requests to internal memories (FLASH and SRAMs) – master2 port performing refill requests to external memories (external FLASH/RAMs through Octo-SPI/FMC interfaces) – a second slave port dedicated to ICACHE registers access. Close to zero wait states instructions/data access performance: – 0 wait-state on cache hit – hit-under-miss capability, allowing to serve new processor requests while a line refill (due to a previous cache miss) is still ongoing – critical-word-first refill policy, minimizing processor stalls on cache miss – hit ratio improved by 2-ways set-associative architecture and pLRU-t replacement policy (pseudo-least-recently-used, based on binary tree), algorithm with best complexity/performance balance – dual master ports allowing to decouple internal and external memory traffics, on Fast and Slow buses, respectively; also minimizing impact on interrupt latency – optimal cache line refill thanks to AHB burst transactions (of the cache line size). – performance monitoring by means of a hit counter and a miss counter. • Extension of cacheable region beyond Code memory space, by means of address remapping logic that allows to define up to 4 cacheable external regions • Power consumption reduced intrinsically (most accesses to cache memory rather to bigger main memories); even improved by configuring ICACHE as direct mapped (rather than the default 2-ways set-associative mode) • TrustZone® security support • Maintenance operation for software management of cache coherency • Error management: detection of unexpected cacheable write access, with optional interrupt raising. Memory protection unit The memory protection unit (MPU) is used to manage the CPU accesses to the memory and to prevent one task to accidentally corrupt the memory or the resources used by any other active task. This memory area is organized into up to 8 regions for secure and 8 regions for non secure state. The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting based on the process to be executed. The MPU is optional and can be bypassed for applications that do not need it. DS12737 Rev 6 21/340 78 Functional overview 3.4 STM32L552xx Embedded Flash memory The devices feature 512 Kbytes of embedded Flash memory which is available for storing programs and data. The Flash interface features: • Single or dual bank operating modes • Read-while-write (RWW) in dual bank mode This feature allows a read operation to be performed from one bank while an erase or program operation is performed to the other bank. The dual bank boot is also supported. Each bank contains 128 pages of 2 or 4 Kbytes (depending on the read access width). The Flash memory also embeds 512 bytes OTP (one-time programmable) for user data. Flexible protections can be configured thanks to the option bytes: • Readout protection (RDP) to protect the whole memory. Four levels of protection are available: – Level 0: no readout protection – Level 0.5: available only when TrustZone is enabled All read/write operations (if no write protection is set) from/to the non-secure Flash memory are possible. The Debug access to secure area is prohibited. Debug access to non-secure area remains possible. – Level 1: memory readout protection; the Flash memory cannot be read from or written to if either the debug features are connected or the boot in RAM or bootloader are selected. If TrustZone is enabled, the non-secure debug is possible and the boot in SRAM is not possible. – Level 2: chip readout protection; the debug features (Cortex®-M33 JTAG and serial wire), the boot in RAM and the bootloader selection are disabled (JTAG fuse). This selection is irreversible. • Write protection (WRP): the protected area is protected against erasing and programming: – In single bank mode, four areas can be selected with 4-Kbyte granularity. – In dual bank mode, two areas per bank can be selected with 2-Kbyte granularity. The whole non-volatile memory embeds the error correction code (ECC) feature supporting: • Single error detection and correction • Double error detection • The address of the ECC fail can be read in the ECC register. TrustZone security When the TrustZone security is enabled, the whole Flash is secure after reset and the following protections are available: • • 22/340 Non-volatile watermark-based secure Flash area: the secure area can be accessed only in secure mode. – In single bank mode, four areas can be selected with a page granularity. – In dual bank mode, one area per bank can be selected with a page granularity. Secure hidden protection area: it is part of the Flash secure area and it can be protected to deny an access to this area by any data read, write and instruction fetch. DS12737 Rev 6 STM32L552xx Functional overview For example, a software code in the secure Flash memory hidden protection area can be executed only once and deny any further access to this area until next system reset. • 3.5 Volatile block-based secure Flash area. In a block-based secure area, each page can be programmed on-the-fly as secure or non-secure. Embedded SRAM The devices feature 256 Kbytes of embedded SRAM. This SRAM is split into three blocks: • 192 Kbytes mapped at address 0x2000 0000 (SRAM1). • 64 Kbytes located at address 0x0A03 0000 with hardware parity check (SRAM2). This memory is also mapped at address 0x2003 0000 offering a contiguous address space with the SRAM1. This block is accessed through the C-bus for maximum performance. Either 64 Kbytes or upper 4 Kbytes of SRAM2 can be retained in Standby mode. The SRAM2 can be write-protected with 1 Kbyte granularity. The memory can be accessed in read/write at CPU clock speed with 0 wait states. TrustZone security When the TrustZone security is enabled, all SRAMs are secure after reset. The SRAM can be programmed as non-secure by block based using the MPCBB (memory protection controller block based) in GTZC controller. The granularity of SRAM secure block based is a page of 256 bytes. 3.6 Boot modes At startup, a BOOT0 pin, nBOOT0 and NSBOOTADDx[24:0] / SECBOOTADD0[24:0] option bytes are used to select the boot memory address which includes: • Boot from any address in user Flash • Boot from system memory bootloader • Boot from any address in embedded SRAM • Boot from Root Security service (RSS) The BOOT0 value may come from the PH3-BOOT0 pin or from an option bit depending on the value of a user option bit to free the GPIO pad if needed. The boot loader is located in the system memory. It is used to reprogram the Flash memory by using USART, I2C, SPI, FDCAN or USB FS in device mode through the DFU (device firmware upgrade). The bootloader is available on all devices. Refer to the application note STM32 microcontroller system memory boot mode (AN2606) for more details. The root secure services (RSS) are embedded in a Flash memory area named secure information block, programmed during ST production. The RSS enables for example the secure firmware installation (SFI) thanks to the RSS extension firmware (RSSe SFI). This feature allows the customers to protect the confidentiality of the firmware to be provisioned into the STM32 device when the production is subcontracted to a third party. DS12737 Rev 6 23/340 78 Functional overview STM32L552xx The RSS is available on all devices, after enabling the TrustZone through the TZEN option bit. Refer to the application note Overview secure firmware install (SFI) (AN4992) for more details. Refer to Table 3 and Table 4 for boot modes when TrustZone is disabled and enabled respectively. Table 3. Boot modes when TrustZone is disabled (TZEN=0) nBOOT0 BOOT0 nSWBOOT0 Boot address optionbytes selection Boot area ST programmed default value FLASH_ OPTR[27] pin PH3 FLASH_ OPTR[26] - 0 1 NSBOOTADD0[24:0] Boot address defined by user option bytes NSBOOTADD0[24:0] Flash: 0x0800 0000 - 1 1 NSBOOTADD1[24:0] Boot address defined by user option bytes NSBOOTADD1[24:0] System bootloader: 0x0BF9 0000 1 - 0 NSBOOTADD0[24:0] Boot address defined by user option bytes NSBOOTADD0[24:0] Flash: 0x0800 0000 0 - 0 NSBOOTADD1[24:0] Boot address defined by user option bytes NSBOOTADD1[24:0] System bootloader: 0x0BF9 0000 When TrustZone is enabled by setting the TZEN option bit, the boot space must be in secure area. The SECBOOTADD0[24:0] option bytes are used to select the boot secure memory address. A unique boot entry option can be selected by setting the BOOT_LOCK option bit, allowing to boot always at the address selected by SECBOOTADD0[24:0] option bytes. All other boot options are ignored. 24/340 DS12737 Rev 6 STM32L552xx Functional overview Table 4. Boot modes when TrustZone is enabled (TZEN=1) BOOT_ LOCK nBOOT0 BOOT0 nSWBOOT0 Boot address RSS FLASH_ pin option-bytes FLASH_ command OPTR[27] PH3 selection OPTR[26] - 0 1 0 - 1 1 0 0 1 Boot area Secure boot address SECBOOTAD defined by user option bytes D0[24:0] SECBOOTADD0[24:0] N/A RSS: 0x0FF8 0000 Secure boot address SECBOOTAD defined by user option D0[24:0] bytes SECBOOTADD0[24:0] ST programmed default value Flash: 0x0C00 0000 RSS: 0x0FF8 0000 Flash: 0x0C00 0000 1 - 0 0 0 - 0 0 N/A RSS: RSS: 0x0FF8 0000 RSS: 0x0FF8 0000 - - - ≠0 N/A RSS: RSS: 0x0FF8 0000 RSS: 0x0FF8 0000 - - - - Secure boot address SECBOOTAD defined by user option D0[24:0] bytes SECBOOTADD0[24:0] Flash: 0x0C00 0000 The boot address option bytes enables the possibility to program any boot memory address. However, the allowed address space depends on Flash read protection RDP level. If the programmed boot memory address is out of the allowed memory mapped area when RDP level is 0.5 or more, the default boot fetch address is forced to: • 0x0800 0000 (when TZEN = 0) • RSS (when TZEN = 1) Refer to Table 5. Table 5. Boot space versus RDP protection RDP 0 TZEN = 1 Any boot address TZEN = 0 Any boot address DS12737 Rev 6 25/340 78 Functional overview STM32L552xx Table 5. Boot space versus RDP protection (continued) RDP TZEN = 1 0.5 N/A 1 Any boot address Boot address only in: – RSS – or secure Flash: 0x0C00 0000 0x0C07 FFFF 2 Otherwise boot address forced to RSS 3.7 TZEN = 0 If boot is configured for NSBOOTADD0 and NSBOOTADD0 in the range 0x0800 0000 0x0807 FFFF: boot at the address stored in NSBOOTADD0 If boot is configured for NSBOOTADD1 and NSBOOTADD1 in the range 0x0800 0000 0x0807 FFFF: boot at the address stored in NSBOOTADD1 Otherwise boot address is forced at 0x0800 0000 Global TrustZone controller (GTZC) The GTZC includes three different sub-blocks: • TZSC: TrustZone® security controller This sub-block defines the secure/privilege state of slave/master peripherals. It also controls the non-secure area size for the watermark memory peripheral controller (MPCWM). The TZSC block informs some peripherals (such as RCC or GPIOs) about the secure status of each securable peripheral, by sharing with RCC and I/O logic. 1. MPCBB: block-based memory protection controller This sub-block controls secure states of all blocks (256-byte pages) of the associated SRAM. 2. TZIC: TrustZone illegal access controller This sub-block gathers all illegal access events in the system and generates a secure interrupt towards NVIC. These sub-blocks are used to configure TrustZone and privileged attributes within the full system. The GTZC main features are: • 3 independent 32-bit AHB interface for TZSC, MPCBB and TZIC • MPCBB and TZIC accessible only with secure transactions • Secure and non-secure access supported for priv/non-priv part of TZSC • Register set to define security settings: • 26/340 – Secure blocks for internal SRAM – Non-secure regions for external memories – Secure/privilege access mode for securable and TZ-aware peripherals Secure/privilege access mode for securable legacy masters. DS12737 Rev 6 STM32L552xx 3.8 Functional overview TrustZone security architecture The security architecture is based on Arm® TrustZone® with the Armv8-M Main Extension. The TrustZone security is activated by the TZEN option bit in the FLASH_OPTR register. When the TrustZone is enabled, the SAU (security attribution unit) and IDAU (implementation defined attribution unit) defines the access permissions based on secure and non-secure state. • SAU: Up to 8 SAU configurable regions are available for security attribution. • IDAU: It provides a first memory partition as non-secure or non-secure callable attributes. It is then combined with the results from the SAU security attribution and the higher security state is selected. Based on IDAU security attribution, the Flash, system SRAMs and peripherals memory space is aliased twice for secure and non-secure state. However, the external memories space is not aliased. Table 6 shows an example of typical SAU regions configuration based on IDAU regions. The user can split and choose the secure, non-secure or NSC regions for external memories as needed. Table 6. Example of memory map security attribution vs SAU configuration regions(1) (2) Region description Code - external memories Code - Flash and SRAM Code - external memories SRAM Peripherals External memories Address range IDAU security attribution SAU security attribution typical configuration Final security attribution 0x0000_0000 0x07FF_FFFF Non-secure Secure or nonsecure or NSC Secure or nonsecure or NSC 0x0800_0000 0x0BFF_FFFF Non-secure Non-secure Non-secure 0x0C00_0000 0x0FFF_FFFF NSC Secure or NSC Secure or NSC 0x1000_0000 0x17FF_FFFF 0x1800_0000 0x1FFF_FFFF Non-secure Non-secure 0x2000_0000 0x2FFF_FFFF Non-secure 0x3000_0000 0x3FFF_FFFF NSC Secure or NSC Secure or NSC 0x4000_0000 0x4FFF_FFFF Non-secure Non-secure Non-secure 0x5000_0000 0x5FFF_FFFF NSC Secure or NSC Secure or NSC 0x6000_0000 0xDFFF_FFFF Non-secure Secure or nonsecure or NSC Secure or nonsecure or NSC 1. NSC = non-secure callable. DS12737 Rev 6 27/340 78 Functional overview STM32L552xx 2. Different colors highlights the different configurations Pink: Non-secure Green: NSC (non-secure callable) Lighter green: Secure or non-secure or NSC 3.8.1 TrustZone peripheral classification When the TrustZone security is active, a peripheral can be either Securable or TrustZoneaware type as follows: • Securable: a peripheral is protected by an AHB/APB firewall gate that is controlled from TZSC controller to define security properties. • TrustZone-aware: a peripheral connected directly to AHB or APB bus and is implementing a specific TrustZone behavior such as a subset of registers being secure. The tables below summarize the list of Securable and TrustZone aware peripherals within the system. Table 7. Securable peripherals by TZSC Bus AHB3 Peripheral OCTOSPI1 registers FMC registers SDMMC1 AHB 2 RNG ADC ICACHE registers AHB1 TSC CRC DFSDM1 SAI2 SAI1 TIM17 TIM16 APB2 TIM15 USART1 TIM8 SPI1 TIM1 COMP VREFBUF 28/340 DS12737 Rev 6 STM32L552xx Functional overview Table 7. Securable peripherals by TZSC (continued) Bus Peripheral UCPD1 USB FS FDCAN1 LPTIM3 LPTIM2 I2C4 LPUART1 LPTIM1 OPAMP DAC1 CRS I2C3 I2C2 APB1 I2C1 UART5 UART4 USART3 USART2 SPI3 SPI2 IWDG WWDG TIM7 TIM6 TIM5 TIM4 TIM3 TIM2 DS12737 Rev 6 29/340 78 Functional overview STM32L552xx Table 8. TrustZone-aware peripherals Bus Peripheral GPIOH GPIOG GPIOF AHB2 GPIOE GPIOD GPIOC GPIOB GPIOA MPCBB2 MPCBB1 MPCWM2 MPCWM1 TZIC AHB1 TZSC EXTI Flash memory RCC DMAMUX1 DMA2 DMA1 APB2 APB1 30/340 SYSCFG PWR RTC DS12737 Rev 6 STM32L552xx Functional overview Default TrustZone security state The default system security state is: • CPU: – • Memory map: – • • – Flash security area is defined by watermark user options. – Flash block based area is non-secure after reset. SRAMs: Note: All SRAMs are secure after reset. MPCBB (memory protection block based controller) is secure. External memories: – • SAU: is fully secure after reset. Consequently, all memory map is fully secure. Up to 8 SAU configurable regions are available for security attribution. Flash: – • Cortex®-M33 is in secure state after reset. The boot address must be in secure address. FSMC, OCTOSPI banks are secure after reset. MPCWMx (memory protection watermark based controller) are secure Peripherals – Securable peripherals are non-secure after reset. – TrustZone-aware peripherals (except the GPIO) are non-secure after reset. Their secure configuration registers are secure. Refer to Table 7 and Table 8 for a list of Securable and TrustZone-aware peripherals. • All GPIO are secure after reset. • Interrupts: – NVIC: All interrupts are secure after reset. NVIC is banked for secure and nonsecure state. – TZIC: All illegal access interrupts are disabled after reset. DS12737 Rev 6 31/340 78 Functional overview 3.9 STM32L552xx Power supply management The power controller (PWR) main features are: • • • • 3.9.1 Power supplies and supply domains – Core domains (VCORE) – VDD domain – Backup domain (VBAT) – Analog domain (VDDA) – VDDIO2 domain – VDDUSB for USB transceiver System supply voltage regulation – SMPS step down converter – Voltage regulator (LDO) Power supply supervision – POR/PDR monitor – BOR monitor – PVD monitor – PVM monitor (VDDA, VDDUSB, VDDIO2) – Temperature thresholds monitor – Upper VDD voltage threshold monitor Power management – Operating modes – Voltage scaling control – Low-power modes • VBAT battery charging • TrustZone security Power supply schemes The devices require a 1.71 V to 3.6 V VDD operating voltage supply. Several independent supplies can be provided for specific peripherals: • VDD = 1.71 V to 3.6 V VDD is the external power supply for the I/Os, the internal regulator and the system analog such as reset, power management and internal clocks. It is provided externally through the VDD pins. • 32/340 VDDA = 1.62 V (ADCs/COMPs) / 1.8 V (DACs/OPAMPs) to 2.4 V (VREFBUF) to 3.6 V VDDA is the external analog power supply for A/D converters, D/A converters, voltage reference buffer, operational amplifiers and comparators. The VDDA voltage level is independent from the VDD voltage and should preferably be connected to VDD when these peripherals are not used. DS12737 Rev 6 STM32L552xx Note: Functional overview • VDDSMPS = 1.71 V to 3.6 V VDDSMPS is the external power supply for the SMPS step down converter. It is provided externally through VDDSMPS supply pin, and shall be connected to the same supply as VDD. • VLXSMPS is the switched SMPS step down converter output. • V15SMPS are the power supply for the system regulator. It is provided externally through the SMPS step down converter VLXSMPS output. The SMPS power supply pins are available only on a specific package with SMPS step down converter option. • VDD12 = 1.05 to 1.32 V VDD12 is the external power supply bypassing the internal regulator when connected to an external SMPS. It is provided externally through VDD12 pins and only available on packages with the external SMPS supply option. VDD12 does not require any external decoupling capacitance and cannot support any external load. • VDDUSB = 3.0 V to 3.6 V VDDUSB is the external independent power supply for USB transceivers. The VDDUSB voltage level is independent from the VDD voltage and should preferably be connected to VDD when the USB is not used. • VDDIO2 = 1.08 V to 3.6 V • VDDIO2 is the external power supply for 14 I/Os (port G[15:2]). The VDDIO2 voltage level is independent from the VDD voltage and should preferably be connected to VDD when PG[15:2] are not used. • VBAT = 1.55 V to 3.6 V VBAT is the power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when VDD is not present. • VREF-, VREF+ VREF+ is the input reference voltage for ADCs and DACs. It is also the output of the internal voltage reference buffer when enabled. When VDDA < 2 V VREF+ must be equal to VDDA. When VDDA ≥ 2 V VREF+ must be between 2 V and VDDA. VREF+ can be grounded when ADC and DAC are not active. The internal voltage reference buffer supports two output voltages, which are configured with VRS bit in the VREFBUF_CSR register: – VREF+ around 2.048 V. This requires VDDA equal to or higher than 2.4 V. – VREF+ around 2.5 V. This requires VDDA equal to or higher than 2.8 V. VREF- and VREF+ pins are not available on all packages. When not available, they are bonded to VSSA and VDDA, respectively. When the VREF+ is double-bonded with VDDA in a package, the internal voltage reference buffer is not available and must be kept disabled (refer to datasheet for packages pinout description). VREF- must always be equal to VSSA. An embedded linear voltage-regulator is used to supply the internal digital power VCORE. VCORE is the power supply for digital peripherals, SRAM1 and SRAM2. The Flash is supplied by VCORE and VDD. DS12737 Rev 6 33/340 78 Functional overview STM32L552xx Figure 2. STM32L552xx power supply overview VDDA domain VDDA VSSA VDDUSB VSS VDDIO2 VSS 2 x A/D converters 2 x comparators 2 x D/A converters 2 x operational amplifiers Voltage reference buffer USB transceivers VDDIO2 domain VDDIO2 I/O ring PG[15:2] VDD domain VDDIO1 I/O ring VCORE domain Reset block Temp. sensor 3 x PLL, HSI, MSI VSS VDD Standby circuitry (Wakeup logic, IWDG) Core SRAM1 SRAM2 VCORE Digital peripherals Voltage regulator Low voltage detector Flash memory Backup domain VBAT LSE crystal 32 K osc BKP registers RCC BDCR register RTC MSv49301V1 34/340 DS12737 Rev 6 STM32L552xx Functional overview Figure 3. STM32L552xxxxP power supply overview VDDA domain VDDA VSSA VDDUSB VSS VDDIO2 VSS 2 x A/D converters 2 x comparators 2 x D/A converters 2 x operational amplifiers Voltage reference buffer USB transceivers VDDIO2 domain VDDIO2 I/O ring PG[15:2] VDD domain VDDIO1 I/O ring VCORE domain Reset block Temp. sensor Core 3 x PLL, HSI, MSI VSS VDD Standby circuitry (Wakeup logic, IWDG) Voltage regulator 2x VDD12 SRAM1 SRAM2 Digital VCORE peripherals Flash memory Low voltage detector Backup domain VBAT LSE crystal 32 K osc BKP registers RCC BDCR register RTC MSv49336V1 DS12737 Rev 6 35/340 78 Functional overview STM32L552xx Figure 4. STM32L552xxxxQ power supply overview VDDA domain VDDA VSSA 2 x A/D converters 2 x comparators 2 x D/A converters 2 x operational amplifiers Voltage reference buffer VDDUSB VSS USB transceivers VDDIO2 domain VDDIO2 VDDIO2 VSS I/O ring VDD domain VDDIO1 I/O ring Reset block Temp. sensor 3 x PLL, HSI, MSI VSS VDD VCORE domain Standby circuitry (Wakeup logic, IWDG) Core Voltage regulator 2 x V15SMPS VLXSMPS VDDSMPS VSSSMPS MR VCORE SRAM1 SRAM2 Digital SMPS Low voltage detector LPR peripherals Flash memory Backup domain VBAT LSE crystal 32 K osc BKP registers RCC BDCR register RTC MSv49332V1 During power-up and power-down phases, the following power sequence requirements must be respected: 36/340 • When VDD is below 1 V, other power supplies (VDDA, VDDIO2 and VDDUSB) must remain below VDD +300 mV. • When VDD is above 1 V, all power supplies are independent. • During the power-down phase, VDD can temporarily become lower than other supplies only if the energy provided to the MCU remains below 1 mJ; this allows external decoupling capacitors to be discharged with different time constants during the powerdown transient phase. DS12737 Rev 6 STM32L552xx Functional overview Figure 5. Power-up/down sequence V 3.6 VDDX(1) VDD VBOR0 1 0.3 Power-on Invalid supply area Operating mode VDDX < VDD + 300 mV Power-down time VDDX independent from VDD MSv47490V1 1. VDDX refers to any power supply among VDDA, VDDIO2 and VDDUSB. 3.9.2 Power supply supervisor The devices have an integrated ultra-low-power Brownout reset (BOR) active in all modes (except for Shutdown mode). The BOR ensures proper operation of the devices after poweron and during power down. The devices remain in reset mode when the monitored supply voltage VDD is below a specified threshold, without the need for an external reset circuit. The lowest BOR level is 1.71 V at power on, and other higher thresholds can be selected through option bytes.The devices feature an embedded programmable voltage detector (PVD) that monitors the VDD power supply and compares it to the VPVD threshold. An interrupt can be generated when VDD drops below the VPVD threshold and/or when VDD is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. In addition, the devices embed a peripheral voltage monitor which compares the independent supply voltages VDDA, VDDUSB, VDDIO2 with a fixed threshold in order to ensure that the peripheral is in its functional supply range. 3.9.3 Voltage regulator Two embedded linear voltage regulators supply most of the digital circuitries: the main regulator (MR) and the low-power regulator (LPR). • The MR is used in the Run and Sleep modes and in the Stop 0 mode. • The LPR is used in Low-power run, Low-power sleep, Stop 1 and Stop 2 modes. It is also used to supply the 64 Kbytes or only 4 Kbytes of SRAM2 in standby with SRAM2 retention. • Both regulators are in power-down while they are in standby and Shutdown modes: the regulator output is in high impedance, and the kernel circuitry is powered down thus inducing zero consumption. DS12737 Rev 6 37/340 78 Functional overview STM32L552xx The ultra-low-power STM32L552xx devices support dynamic voltage scaling to optimize its power consumption in Run mode. The voltage from the main regulator that supplies the logic (VCORE) can be adjusted according to the system’s maximum operating frequency. The main regulator operates in the following ranges: • Range 0 with the CPU running at up to 110 MHz. • Range 1 with the CPU running at up to 80 MHz. • Range 2 with a maximum CPU frequency of 26 MHz. All peripheral clocks are also limited to 26 MHz. The VCORE can be supplied by the low-power regulator, the main regulator being switched off. The system is then in Low-power run mode. • 3.9.4 Low-power run mode with the CPU running at up to 2 MHz. Peripherals with independent clock can be clocked by the HSI16. SMPS step down converter The built-in SMPS step down converter is a highly power-efficient DC/DC non-linear switching regulator that improves low-power performance when the VDD voltage is high enough. This SMPS step down converter automatically enters in bypass mode when the VDD voltage falls below 2 V in Range 0 and Range 1. Note: There is no automatic SMPS bypass in Range 2. The SMPS step down converter can be configured in: • High-power mode (HPM): achieving a high efficiency at high current load. It is the default selected mode after POR reset. • Low power mode achieving very high efficiency at low load • Bypass mode The SMPS step down converter can be switched in bypass mode at any time by the application software. Note: The SMPS step down converter is available only on specific package. SMPS step down converter power supply scheme The SMPS step down converter requires an external coil with typical value of 4.7 μH to be connected between the VLXSMPS and the V15SMPS pins and a 4.7μF capacitor to be connected between the V15SMPS to VSSSMPS pins. It can be switched OFF by selecting the Bypass mode by software. Thus, only main regulator is used by the application. 38/340 DS12737 Rev 6 STM32L552xx Functional overview Figure 6. SMPS step down converter power supply scheme VDD VDDSMPS VLXSMPS V15SMPS SMPS Step Down Converter V15SMPS VCORE Main regulator VDD VSSSMPS VSS MSv49346V1 If the selected package is with the SMPS step down converter option but it is never used by the application, it is recommend to set the SMPS power supply pins as follows: • VDDSMPS and VLXSMPS connected to VSS • V15SMPS connected to VDD Table 9. SMPS external components Component Description C SMPS output capacitor(1) SMPS inductance(2) L Value 4.7 µF 4.7 µH 1. For example GRM155R60J475ME87J and GRM21BR71E475KA73L. 2. For example TDK MLP2016H4R7MT. SMPS step down converter fast startup After POR reset, the SMPS step down converter starts in High-power mode and in Low startup mode. The low-startup feature is selected to limit the inrush current after power-on reset. However, it is possible to configure a faster startup on the fly and it is applied for next startup either after a system reset or wakeup from low-power mode except Shutdown and VBAT modes. The fast startup is selected by setting the SMPSFSTEN bit in the PWR_CR4 register. DS12737 Rev 6 39/340 78 Low-power modes The ultra-low-power STM32L552xx devices support seven low-power modes to achieve the best compromise between low-power consumption, short startup time, available peripherals and available wake-up sources. Table 11 shows the related STM32L552xx modes overview. Table 10. STM32L552xx modes overview Mode Run DS12737 Rev 6 LPRun Sleep LPSleep Stop 0(5) Regulator and SMPS mode(1) Ranges 0/1 SMPS HP mode Range 2 SMPS LP or HP mode LPR Ranges 0/1 SMPS HP mode Range 2 SMPS LP or HP mode LPR Ranges 0/1/2 CPU Flash SRAM Clocks Yes ON(3) ON Any DMA and Peripherals(2) Functional overview 40/340 3.9.5 Wakeup source All N/A All except USB_FS, RNG Yes ON(3) ON No ON(3) ON(4) Any except PLL All except USB_FS, RNG N/A All Any Any interrupt or event All except USB_FS, RNG No No ON(3) Off ON(4) ON All except USB_FS, RNG Any interrupt or event LSE LSI BOR, PVD, PVM RTC, IWDG COMPx (x=1,2) DAC1 OPAMPx (x=1,2) USARTx (x=1...5)(6) LPUART1(6) I2Cx (x=1...4)(7) LPTIMx (x=1,2) *** All other peripherals are frozen Reset pin, all I/Os BOR, PVD, PVM RTC, IWDG COMPx (x=1..2) USARTx (x=1...5)(6) LPUART1(6) I2Cx (x=1...4)(7) LPTIMx (x=1,2) USB_FS(8) STM32L552xx Any except PLL Mode Stop 1 DS12737 Rev 6 Stop 2 Regulator and SMPS mode(1) LPR LPR CPU No No Flash Off Off SRAM ON ON Clocks DMA and Peripherals(2) Wakeup source LSE LSI BOR, PVD, PVM RTC, IWDG COMPx (x=1,2) DAC1 OPAMPx (x=1,2) USARTx (x=1...5)(6) LPUART1(6) I2Cx (x=1...4)(7) LPTIMx (x=1,2) *** All other peripherals are frozen Reset pin, all I/Os BOR, PVD, PVM RTC, IWDG COMPx (x=1..2) USARTx (x=1...5)(6) LPUART1(6) I2Cx (x=1...4)(7) LPTIMx (x=1,2) USB_FS(8) LSE LSI BOR, PVD, PVM RTC, IWDG COMPx (x=1..2) I2C3(7) LPUART1(6) LPTIMx (x= 1,3) *** All other peripherals are frozen Reset pin, all I/Os BOR, PVD, PVM RTC, IWDG COMPx (x=1..2) I2C3(7) LPUART1(6) LPTIMx (x= 1,3) STM32L552xx Table 10. STM32L552xx modes overview (continued) Functional overview 41/340 Mode Regulator and SMPS mode(1) CPU Flash LPR Standby Shutdown OFF OFF SRAM DS12737 Rev 6 Clocks DMA and Peripherals(2) Wakeup source LSE LSI BOR, RTC, IWDG *** All other peripherals are powered off *** I/O configuration can be floating, pull-up or pull-down Reset pin 5 I/Os (WKUPx)(9) BOR, RTC, IWDG LSE RTC *** All other peripherals are powered off *** I/O configuration can be floating, pull-up or pull-down(10) Reset pin 5 I/Os (WKUPx)(9) RTC SRAM2 ON Powered Off Powered Off Off Off Powered Off Powered Off Functional overview 42/340 Table 10. STM32L552xx modes overview (continued) 1. LPR means Main regulator is OFF and Low-power regulator is ON. 2. All peripherals can be active or clock gated to save power consumption. 3. The Flash memory can be put in power-down and its clock can be gated off when executing from SRAM. 4. The SRAM1 and SRAM2 clocks can be gated on or off independently. 5. SMPS mode can be used in Stop 0 mode, but no significant power gain can be expected. 6. U(S)ART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event. 7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match. 8. USB_FS wakeup by resume from suspend and attach detection protocol event. 9. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5. 10. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode. STM32L552xx STM32L552xx Functional overview By default, the microcontroller is in Run mode after a system or a power reset. It is up to the user to select one of the low-power modes described below: • Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. • Low-power run mode This mode is achieved with VCORE supplied by the low-power regulator to minimize the regulator's operating current. The code can be executed from SRAM or from Flash, and the CPU frequency is limited to 2 MHz. The peripherals with independent clock can be clocked by HSI16. • Low-power sleep mode This mode is entered from the Low-power run mode. Only the CPU clock is stopped. When wakeup is triggered by an event or an interrupt, the system reverts to the Lowpower run mode. • Stop 0, Stop 1 and Stop 2 modes Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the VCORE domain are stopped, the PLL, the MSI RC, the HSI16 RC and the HSE crystal oscillators are disabled. The LSE or LSI is still running. The RTC can remain active (Stop mode with RTC, Stop mode without RTC). Some peripherals with wake-up capability can enable the HSI16 RC during Stop mode to detect their wake-up condition. Three Stop modes are available: Stop 0, Stop 1 and Stop 2 modes. In Stop 2 mode, most of the VCORE domain is put in a lower leakage mode. Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller wakeup time but a higher consumption than Stop 2. In Stop 0 mode, the main regulator remains ON, allowing a very fast wakeup time but with much higher consumption. The system clock when exiting from Stop 0, Stop 1 or Stop 2 modes can be either MSI up to 48 MHz or HSI16, depending on software configuration. • Standby mode The Standby mode is used to achieve the lowest power consumption with BOR. The internal regulator is switched off so that the VCORE domain is powered off. The PLL, the MSI RC, the HSI16 RC and the HSE crystal oscillators are also switched off. The RTC can remain active (Standby mode with RTC, Standby mode without RTC). The Brownout reset (BOR) always remains active in Standby mode. The state of each I/O during Standby mode can be selected by software: I/O with internal pull-up, internal pull-down or floating. After entering Standby mode, SRAM1 and register contents are lost except for registers in the Backup domain and Standby circuitry. Optionally, the full SRAM2 or 4 Kbytes can be retained in Standby mode, supplied by the low-power regulator (standby with RAM2 retention mode). DS12737 Rev 6 43/340 78 Functional overview STM32L552xx The BORL (brown out detector low) can be configured in ultra-low-power mode to further reduce power consumption during standby mode. The device exits Standby mode when an external reset (NRST pin), an IWDG reset, WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp, tamper) or a failure is detected on LSE (CSS on LSE). The system clock after wakeup is MSI up to 8 MHz. • Shutdown mode The Shutdown mode allows to achieve the lowest power consumption. The internal regulator is switched off so that the VCORE domain is powered off. The PLL, the HSI16, the MSI, the LSI and the HSE oscillators are also switched off. The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC). The BOR is not available in Shutdown mode. No power voltage monitoring is possible in this mode, therefore the switch to Backup domain is not supported. SRAM1, SRAM2 and register contents are lost except for registers in the Backup domain. The device exits Shutdown mode when an external reset (NRST pin), a WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp, tamper). The system clock after wakeup is MSI at 4 MHz. 44/340 DS12737 Rev 6 STM32L552xx Functional overview Table 11. Functionalities depending on the working mode(1) - - Y - Y - - - - - - - - - - O(2) O(2) O(2) O(2) - - - - - - - - - SRAM1 (192 Kbytes) Y Y(3) Y Y(3) Y - Y - - - - - - SRAM2 (64 Kbytes) Y Y(3) Y Y(3) Y - Y - O(4) - - - - FSMC O O O O - - - - - - - - - OCTOSPI O O O O - - - - - - - - - Backup registers Y Y Y Y Y - Y - Y - Y - Y Brownout reset (BOR) Y Y Y Y Y Y Y Y Y Y - - - Programmable voltage detector (PVD) O O O O O O O O - - - - - Peripheral voltage monitor (PVMx; x=1,2,3,4) O O O O O O O O - - - - - DMA O O O O - - - - - - - - - High speed internal (HSI16) O O O O (5) - (5) - - - - - - Oscillator HSI48 O O - - - - - - - - - - - High speed external (HSE) O O O O - - - - - - - - - Low speed internal (LSI) O O O O O - O - O - - - - Low speed external (LSE) O O O O O - O - O - O - O Multi speed internal (MSI) O O O O - - - - - - - - - Clock security system (CSS) O O O O - - - - - - - - - Clock security system on LSE O O O O O O O O O O - - - Peripheral CPU Flash memory (512 Kbyte) Run Sleep Lowpower run Lowpower sleep - DS12737 Rev 6 Wakeup capability - Wakeup capability Standby Shutdown Wakeup capability Stop 2 Wakeup capability Stop 0/1 VBAT 45/340 78 Functional overview STM32L552xx Table 11. Functionalities depending on the working mode(1) (continued) - - VDD voltage monitoring, temperature monitoring O O O O O O O O O O - - - RTC / TAMP O O O O O O O O O O O O O Number of RTC Tamper pins 8 8 8 8 8 O 8 O 8 O 8 O 3 USB, UCPD O(8) O(8) - - - O - - - - - - - USARTx (x=1,2,3,4,5) O O O O O(6) O(6) - - - - - - - Low-power UART (LPUART) O O O O O(6) O(6) O(6) O(6) - - - - - I2Cx (x=1,2,4) O O O O O(7) O(7) Peripheral Run Sleep Lowpower run Lowpower sleep - (7) Wakeup capability - Wakeup capability Standby Shutdown Wakeup capability Stop 2 Wakeup capability Stop 0/1 VBAT - - - - - - - O(7) O(7) O(7) - - - - - I2C3 O O O O O SPIx (x=1,2,3) O O O O - - - - - - - - - FDCAN1 O O O O - - - - - - - - - SDMMC1 O O O O - - - - - - - - - SAIx (x=1,2) O O O O - - - - - - - - - DFSDM1 O O O O - - - - - - - - - ADCx (x=1,2) O O O O - - - - - - - - - DAC1 O O O O O - - - - - - - - VREFBUF O O O O O - - - - - - - - OPAMPx (x=1,2) O O O O O - - - - - - - - COMPx (x=1,2) O O O O O O O O - - - - - Temperature sensor O O O O - - - - - - - - - Timers (TIMx) O O O O - - - - - - - - - Low-power timer 1, 3 (LPTIM1 and LPTIM3) O O O O O O O O - - - - - Low-power timer 2 (LPTIM2) O O O O O O - - - - - - - Independent watchdog (IWDG) O O O O O O O O O O - - - 46/340 DS12737 Rev 6 STM32L552xx Functional overview Table 11. Functionalities depending on the working mode(1) (continued) - - Window watchdog (WWDG) O O O O - - - - - - - - - SysTick timer O O O O - - - - - - - - - Touch sensing controller (TSC) O O O O - - - - - - - - - Random number generator (RNG) O(8) O(8) - - - - - - - - - - - CRC calculation unit O O O O - - - - - - - - - GPIOs O O O O O O O O (9) 5 pins (11) 5 pins - Peripheral Run Sleep Lowpower run Lowpower sleep - (10) Wakeup capability - Wakeup capability Standby Shutdown Wakeup capability Stop 2 Wakeup capability Stop 0/1 VBAT (10) 1. Legend: Y = yes (enable). O = optional (disable by default, can be enabled by software). - = not available. Gray cells highlight the wakeup capability in each mode. 2. The Flash can be configured in Power-down mode. By default, it is not in Power-down mode. 3. The SRAM clock can be gated on or off. 4. 4 Kbytes or full SRAM2 content is preserved depending on RRS[1:0] bits configuration in PWR_CR3 register. 5. Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16 is woken up by the peripheral, and only feeds the peripheral which requested it. HSI16 is automatically put off when the peripheral does not need it anymore. 6. UART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event. 7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match. 8. Voltage scaling ranges 0 and 1 only. 9. I/Os can be configured with internal pull-up, pull-down or floating in Standby mode. 10. The I/Os with wakeup from standby/shutdown capability are: PA0, PC13, PE6, PA2, PC5. 11. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode. 3.9.6 Reset mode In order to improve the consumption under reset, the I/Os state under and after reset is “analog state” (the I/O schmitt trigger is disable). In addition, the internal reset pull-up is deactivated when the reset source is internal. 3.9.7 VBAT operation The VBAT pin allows the device VBAT domain to be powered from an external battery, an external supercapacitor, or from VDD when there is no external battery and when an external DS12737 Rev 6 47/340 78 Functional overview STM32L552xx supercapacitor is present. The VBAT pin supplies the RTC with LSE and the backup registers. Three anti-tamper detection pins are available in VBAT mode. The VBAT operation is automatically activated when VDD is not present. An internal VBAT battery charging circuit is embedded and can be activated when VDD is present. Note: When the microcontroller is supplied from VBAT, neither external interrupts nor RTC alarm/events exit the microcontroller from the VBAT operation. 3.9.8 PWR TrustZone security When the TrustZone security is activated by the TZEN option bit, the PWR is switched in TrustZone security mode. The PWR TrustZone security allows to secure the following configuration: • Low-power mode • Wake-up (WKUP) pins • Voltage detection and monitoring • VBAT mode Other PWR configuration bits are secure when: 3.10 • The system clock selection is secure in RCC, the voltage scaling (VOS) configuration is secure • A GPIO is configured as secure, it's corresponding bit for Pull-up/Pull-down in standby mode is secure • The RTC is secure, the backup domain write protection bit in PWR is secure. Peripheral interconnect matrix Several peripherals have direct connections between them, which allow autonomous communication between them and support the saving of CPU resources (thus power supply consumption). In addition, these hardware connections allow fast and predictable latency. Depending on the peripherals, these interconnections can operate in Run, Sleep, Lowpower run and Sleep, Stop 0, Stop 1 and Stop 2 modes. See Table 12 for more details. 48/340 Low-power run Low-power sleep Stop 0 / Stop 1 Stop 2 TIMx Sleep Interconnect source Run Table 12. STM32L552xx peripherals interconnect matrix TIMx Timers synchronization or chaining Y Y Y Y - - ADC DAC1 DFSDM1 Conversion triggers Y Y Y Y - - DMA Memory to memory transfer trigger Y Y Y Y - - COMPx Comparator output blanking Y Y Y Y - - Interconnect destination Interconnect action DS12737 Rev 6 STM32L552xx Functional overview Run Sleep Low-power run Low-power sleep Stop 0 / Stop 1 Stop 2 Table 12. STM32L552xx peripherals interconnect matrix (continued) TIM1, 8 TIM2, 3 Timer input channel, trigger, break from analog signals comparison Y Y Y Y - - LPTIMERx Low-power timer triggered by analog signals comparison Y Y Y Y Y (1) TIM1, 8 Timer triggered by analog watchdog Y Y Y Y - - TIM16 Timer input channel from RTC events Y Y Y Y - - LPTIMERx Low-power timer triggered by RTC alarms or tampers Y Y Y Y Y (1) All clocks sources (internal TIM2 and external) TIM15, 16, 17 Clock source used as input channel for RC measurement and trimming Y Y Y Y - - USB Timer triggered by USB SOF Y Y - - - - Timer break Y Y Y Y - - TIMx External trigger Y Y Y Y - - LPTIMERx External trigger Y Y Y Y Y (1) ADC DAC1 DFSDM1 Conversion external trigger Y Y Y Y - - Interconnect source COMPx ADCx RTC Interconnect destination TIM2 CSS CPU (hard fault) RAM (parity error) Flash memory (ECC error) TIM1,8 COMPx TIM15,16,17 PVD DFSDM1 (analog watchdog, short circuit detection) GPIO Interconnect action Y Y Y 1. LPTIM1 and LPTIM3 only. DS12737 Rev 6 49/340 78 Functional overview 3.11 STM32L552xx Reset and clock controller (RCC) The clock controller (see Figure 7) distributes the clocks coming from the different oscillators to the core and to the peripherals. It also manages the clock gating for low-power modes and ensures the clock robustness. It features: 50/340 • Clock prescaler: to get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler. • Clock security system: clock sources can be changed safely on the fly in Run mode through a configuration register. • Clock management: to reduce the power consumption, the clock controller can stop the clock to the core, individual peripherals or memory. • System clock source: four different clock sources can be used to drive the master clock SYSCLK: – 4 to 48 MHz high-speed external crystal or ceramic resonator (HSE), that can supply a PLL. The HSE can also be configured in bypass mode for an external clock. – 16 MHz high-speed internal RC oscillator (HSI16), trimmable by software, that can supply a PLL – Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 12 frequencies from 100 kHz to 48 MHz. When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be automatically trimmed by hardware to reach better than ±0.25% accuracy. In this mode the MSI can feed the USB device, saving the need of an external high-speed crystal (HSE). The MSI can supply a PLL. – System PLL which can be fed by HSE, HSI16 or MSI, with a maximum frequency at 110 MHz. • RC48 with clock recovery system (HSI48): internal 48 MHz clock source (HSI48)can be used to drive the USB, the SDMMC or the RNG peripherals. This clock can be output on the MCO. • UCPD kernel clock: it is derived from HSI16 clock. The HSI16 RC oscillator must be enabled prior to the UCPD kernel clock use. • Auxiliary clock source: two ultra-low-power clock sources that can be used to drive the real-time clock: – 32.768 kHz low-speed external crystal (LSE), supporting four drive capability modes. The LSE can also be configured in bypass mode for an external clock. – 32 kHz low-speed internal RC (LSI), also used to drive the independent watchdog. The LSI clock accuracy is ±5% accuracy. The LSI clock can be divided by 128 to output a 250 Hz as source clock. • Peripheral clock sources: several peripherals (USB, SDMMC, RNG, SAI, USARTs, I2Cs, LPTimers, ADC) have their own independent clock whatever the system clock. Three PLLs, each having three independent outputs allowing the highest flexibility, can generate independent clocks for the ADC, the USB/SDMMC/RNG and the two SAIs. • Startup clock: after reset, the microcontroller restarts by default with an internal 4 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts. • Clock security system (CSS): this feature can be enabled by software. If a HSE clock failure occurs, the master clock is automatically switched to HSI16 and a software DS12737 Rev 6 STM32L552xx Functional overview interrupt is generated if enabled. LSE failure can also be detected and generated an interrupt. • Clock-out capability: – MCO (microcontroller clock output): it outputs one of the internal clocks for external use by the application – LSCO (low-speed clock output): it outputs LSI or LSE in all low-power modes (except VBAT). Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the AHB and the APB domains is 110 MHz. DS12737 Rev 6 51/340 78 Functional overview STM32L552xx Figure 7. STM32L552xx clock tree to IWDG LSI RC 32 kHz LSCO to RTC OSC32_OUT LSE OSC 32.768 kHz /32 OSC32_IN MCO to PWR LSE LSI MSI HSI16 HSE SYSCLK / 1→16 to AHB bus, core, memory and DMA AHB PRESC / 1,2,..512 HCLK PLLCLK HSI48 to Cortex system timer /8 Clock source control OSC_OUT HSE OSC 4-48 MHz OSC_IN Clock detector FCLK Cortex free running clock APB1 PRESC / 1,2,4,8,16 HSE PCLK1 to APB1 peripherals x1 or x2 MSI SYSCLK HSI16 LSE HSI16 SYSCLK to USARTx X=2..5 to LPUART1 HSI RC 16 MHz HSI16 SYSCLK MSI RC 100 kHz – 48 MHz PLL MSI HSI16 HSE /M /P PLLSAI3CLK /Q PLL48M1CLK /R PLLCLK OCTOSPI clock CRS clock PCLK2 APB2 PRESC / 1,2,4,8,16 MSI HSI16 HSE /M /P PLLSAI1CLK /Q PLL48M2CLK /R PLLADC1CLK to TIMx x=1,8,15,16,17 LSE HSI16 SYSCLK MSI 48 MHz clock to USB, RNG /P HSE PLLSAI2CLK To UCPD1 MSI HSI16 DFSDM audio clock /Q /R to ADC HSI16 FDCAN /M to USART1 SDMMC clock 48 MHz SYSCLK MSI HSI16 HSE to APB2 peripherals x1 or x2 HSI16 PLLSAI2 to LPTIMx x=1,2 MSI HSI16 PLLSAI1 to I2Cx x=1,2,3,4 LSI LSE HSI16 RC 48 MHz to TIMx x=2..7 to SAI1 HSI16 SAI1_EXTCLK to SAI2 SAI2_EXTCLK MSv49302V2 52/340 DS12737 Rev 6 STM32L552xx Functional overview TrustZone security When the TrustZone security is activated by the TZEN option bit, the RCC is switched in TrustZone security mode. The RCC TrustZone security allows to secure some RCC system configuration and peripheral configuration clock from being read or modified by non-secure accesses: • • RCC system security: – HSE, HSE-CSS, HSI, MSI, LSI, LSE, LSE-CSS, HSI48 configuration and status bits – Main PLL, PLLSAI1, PLLSAI2, AHB prescaler configuration and status bits – System clock SYSCLK and HSI48 source clock selection and status bits – MCO clock output configuration and STOPWUCK bit – Reset flag RMVF configuration bit RCC peripheral security: – • 3.12 When a peripheral is secure, the related peripheral clock, reset, clock source selection and clock enable during low power modes control bits are secure. A peripheral is in secure state when: – For securable peripherals, when it's corresponding SEC security bit is set in the TZSC (TrustZone security controller) – For TrustZone-aware peripherals, a security feature of this peripheral is enabled through its dedicated bits. Clock recovery system (CRS) The devices embed a special block which allows automatic trimming of the internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device operational range. This automatic trimming is based on the external synchronization signal, which could be either derived from USB SOF signalization, from LSE oscillator, from an external signal on CRS_SYNC pin or generated by user software. For faster lock-in during startup it is also possible to combine automatic trimming with manual trimming action. 3.13 General-purpose inputs/outputs (GPIOs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. After reset, all GPIOs are in Analog mode to reduce power consumption. The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers. GPIO TrustZone security Each I/O pin of GPIO port can be individually configured as secure. When the selected I/O pin is configured as secure, its corresponding configuration bits for alternate function, mode selection, I/O data are secure against a non-secure access. The associated registers bit access is restricted to a secure software only. After reset, all GPIO ports are secure. DS12737 Rev 6 53/340 78 Functional overview 3.14 STM32L552xx Multi-AHB bus matrix The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, SDMMC1) and the slaves (Flash memory, RAM, FMC, OCTOSPI, AHB and APB peripherals). It also ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously. Figure 8. Multi-AHB bus matrix C-bus CORTEX®-M33 with TrustZone and FPU Legend DMA2 SDMMC1 Bus multiplexer Master Interface S-bus Slave Interface MPCBBx: Memory protection controller block based MPCWMx: Memory protection controller Watermark Fast-bus 8 KB I-Cache Slow-bus DMA1 FLASH 512 KB MPCBB1 SRAM1 MPCBB2 SRAM2 AHB1 peripherals AHB2 peripherals MPCWM1 OctoSPI1 MPCWM2 MPCWM3 FSMC BusMatrix-S MSv61198V1 54/340 DS12737 Rev 6 STM32L552xx 3.15 Functional overview Direct memory access controller (DMA) The device embeds 2 DMAs. Refer to Table 13: DMA1 and DMA2 implementation for the features implementation. Direct memory access (DMA) is used in order to provide a high-speed data transfer between peripherals and memory as well as from memory to memory. Data can be quickly moved by DMA without any CPU actions. This keeps the CPU resources free for other operations. The two DMA controllers have 16 channels in total, each one dedicated to manage memory access requests from one or more peripherals. Each controller has an arbiter for handling the priority between DMA requests. The DMA supports 8 channels for each DMA1 and DMA2, independently configurable: • Each channel is associated either with a DMA request signal coming from a peripheral, or with a software trigger in memory-to-memory transfers. This configuration is done by software. • Priority between the requests is programmable by software (4 levels per channel: very high, high, medium, low) or by hardware in case of equality (such as request 1 has priority over request 2). • Transfer size of source and destination are independent (byte, half-word, word), emulating packing and unpacking. Source and destination addresses must be aligned on the data size. • Support of transfers from/to peripherals to/from memory with circular buffer management. • Programmable number of data to be transferred: 0 to 218 - 1. • Generation of an interrupt request per channel. Each interrupt request is caused from any of the three DMA events: transfer complete, half transfer, or transfer error. • TrustZone support: • – Support for AHB secure and non-secure DMA transfers, independently at a first channel level, and independently at a source and destination sub-level – TrustZone-aware AHB slave port, protecting any secure resource (register, register field) from a non-secure software access Privileged / unprivileged support: – Support for AHB privileged and unprivileged DMA transfers, independently at a channel level – Privileged-aware AHB slave port. Table 13. DMA1 and DMA2 implementation Feature DMA1 DMA2 Number of DMA channels 8 8 TrustZone 1 (supported) 1 (supported) DS12737 Rev 6 55/340 78 Functional overview 3.16 STM32L552xx DMA request router (DMAMUX) When a peripheral indicates a request for DMA transfer by setting its DMA request line, the DMA request is pending until it is served and the corresponding DMA request line is reset. The DMA request router allows to route the DMA control lines between the peripherals and the DMA controllers of the product. An embedded multi-channel DMA request generator can be considered as one of such peripherals. The routing function is ensured by a multi-channel DMA request line multiplexer. Each channel selects a unique set of DMA control lines, unconditionally or synchronously with events on synchronization inputs. DMAMUX main features • 16-channel programmable DMA request line multiplexer output • 4-channel DMA request generator • 23 trigger inputs to DMA request generator • 23 synchronization inputs • Per DMA request generator channel: • • • 56/340 – DMA request trigger input selector – DMA request counter – Event overrun flag for selected DMA request trigger input Per DMA request line multiplexer channel output: – 90 input DMA request lines from peripherals – One DMA request line output – Synchronization input selector – DMA request counter – Event overrun flag for selected synchronization input – One event output, for DMA request chaining TrustZone support: – Support for AHB secure and non-secure DMA transfers, independently at a channel level. – TrustZone-aware AHB slave port, protecting any secure resource (register, register field) from a non-secure software access, with configurable interrupt event. – Two secure and non-secure interrupt requests, resulting from any of the respectively secure and non-secure channels. Each channel event being caused from any of the two DMAMUX input events: trigger or synchronization overrun, associated with a respectively secure and non-secure channels. Privileged / Unprivileged support: – Support for AHB privileged and unprivileged DMA transfers, independently, at a channel level. – Privileged-aware AHB slave port. DS12737 Rev 6 STM32L552xx Functional overview 3.17 Interrupts and events 3.17.1 Nested vectored interrupt controller (NVIC) The devices embed a nested vectored interrupt controller which is able to manage 8 priority levels, and to handle up to 109 maskable interrupt channels plus the 16 interrupt lines of the Cortex®-M33. The NVIC benefits are the following: • Closely coupled NVIC gives low latency interrupt processing • Interrupt entry vector table address passed directly to the core • Allows early processing of interrupts • Processing of late arriving higher priority interrupts • Support for tail chaining • Processor state automatically saved • Interrupt entry restored on interrupt exit with no instruction overhead • TrustZone support. The NVIC registers are banked across secure and non-secure states The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency. 3.17.2 Extended interrupt/event controller (EXTI) The Extended interrupts and event controller (EXTI) manages the individual CPU and system wakeup through configurable and direct event inputs. It provides wakeup requests to the power control, and generates an interrupt request to the CPU NVIC and events to the CPU event input. For the CPU an additional Event Generation block (EVG) is needed to generate the CPU event signal. The EXTI wakeup requests allow the system to be woken up from Stop modes. The interrupt request and event request generation can also be used in RUN modes. The EXTI also includes the EXTI mux IOport selection. The EXTI main features are the following: The EXTI main features are the following: • 43 input events supported • All event inputs allow to wake up the system. • Events which do not have an associated wakeup flag in the peripheral, have a flag in the EXTI and generate an interrupt to the CPU from the EXTI. DS12737 Rev 6 57/340 78 Functional overview STM32L552xx The asynchronous event inputs are classified in 2 groups: • Configurable events (signals from I/Os or peripherals able to generate a pulse) – • Direct events (interrupt and wakeup sources from peripherals having an associated flag which requiring to be cleared in the peripheral) – • 3.18 Direct events have the following features: Fixed rising edge active trigger No interrupt pending status register bit in the EXTI. (The interrupt pending status flag is provided by the peripheral generating the event.) Individual interrupt and event generation mask, used for conditioning the CPU wakeup and event generation. No SW trigger possibility TrustZone secure events – • Configurable events have the following features: Selectable active trigger edge Interrupt pending status register bit independent for the rising and falling edge. Individual interrupt and event generation mask, used for conditioning the CPU wakeup, interrupt and event generation. SW trigger possibility The access to control and configuration bits of secure input events can be made secure. EXTI IO port selection Cyclic redundancy check calculation unit (CRC) The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator with polynomial value and size. Among other applications, the CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a mean to verify the Flash memory integrity. The CRC calculation unit helps to compute a signature of the software during runtime, which can be ulteriorly compared with a reference signature generated at link-time and which can be stored at a given memory location. 3.19 Flexible static memory controller (FSMC) The flexible static memory controller (FSMC) includes two memory controllers: • The NOR/PSRAM memory controller • The NAND/memory controller This memory controller is also named flexible memory controller (FMC). 58/340 DS12737 Rev 6 STM32L552xx Functional overview The main features of the FSMC controller are the following: • Interface with static-memory mapped devices including: – Static random access memory (SRAM) – NOR Flash memory/OneNAND Flash memory – PSRAM (four memory banks) – NAND Flash memory with ECC hardware to check up to 8 Kbytes of data – Ferroelectric RAM (FRAM) • 8-,16- bit data bus width • Independent chip select control for each memory bank • Independent configuration for each memory bank • Write FIFO LCD parallel interface The FMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost effective graphic applications using LCD modules with embedded controllers or highperformance solutions using external controllers with dedicated acceleration. TrustZone security When the TrustZone security is enabled, the whole FSMC banks are secure after reset. Non-secure area can be configured using the TZSC MPCWMx controller. • The FSMC NOR/PSRAM bank: – • Up to two non-secure area can be configured thought the TZSC MPCWM2 controller with a granularity of 64 Kbytes. The FSMC NAND bank: – Can be either configured as fully secure or fully non-secure using the TZSC MPCWM3 controller. The FSMC registers can be configured as secure through the TZSC controller. 3.20 Octo-SPI interface (OCTOSPI) The OCTOSPI is a specialized communication interface targetting single, dual, quad or octal SPI memories. It can operate in any of the three following modes: • Indirect mode: all the operations are performed using the OCTOSPI registers • Status polling mode: the external memory status register is periodically read and an interrupt can be generated in case of flag setting • Memory-mapped mode: the external memory is memory mapped and is seen by the system as if it were an internal memory supporting read and write operation The OCTOSPI supports two frame formats: • Classical frame format with command, address, alternate byte, dummy cycles and data phase over 1, 2, 4 or 8 data pins • HyperBusTM frame format The OCTOSPI offers the following features: DS12737 Rev 6 59/340 78 Functional overview STM32L552xx • Three functional modes: indirect, status-polling, and memory-mapped • Read and write support in memory-mapped mode • Supports for single, dual, quad and octal communication • Dual-quad mode, where 8 bits can be sent/received simultaneously by accessing two quad memories in parallel. • SDR and DTR support • Data strobe support • Fully programmable opcode for both indirect and memory mapped mode • Fully programmable frame format for both indirect and memory mapped mode • Each of the five following phases can be configured independently (enable, length, single/dual/quad communication) – Instruction phase – Address phase – Alternate bytes phase – Dummy cycles phase – Data phase • HyperBusTM support • Integrated FIFO for reception and transmission • 8, 16, and 32-bit data accesses are allowed • DMA channel for indirect mode operations • Timeout management • Interrupt generation on FIFO threshold, timeout, status match, operation complete, and access error TrustZone security When the TrustZone security is enabled, the whole OCTOSPI bank is secure after reset. Up to two non-secure area can be configured thought the TZSC MPCWM1 controller with a granularity of 64 Kbytes. The OCTOSPI registers can be configured as secure through the TZSC controller. 60/340 DS12737 Rev 6 STM32L552xx 3.21 Functional overview Analog-to-digital converter (ADC) The device embeds two successive approximation analog-to-digital converters with the following features: • 12-bit native resolution, with built-in calibration • 5.33 Msps maximum conversion rate with full resolution Down to 18.75 ns sampling time – Increased conversion rate for lower resolution (up to 8.88 Msps for 6-bit resolution) • Up to 16 external channels • 5 internal channels: internal reference voltage, temperature sensor, VBAT/3 and DAC1 outputs • One external reference pin is available on some package, allowing the input voltage range to be independent from the power supply • Single-ended and differential mode inputs • Low-power design • 3.21.1 – – Capable of low-current operation at low conversion rate (consumption decreases linearly with speed) – Dual clock domain architecture: ADC speed independent from CPU frequency Highly versatile digital interface – Single-shot or continuous/discontinuous sequencer-based scan mode: 2 groups of analog signals conversions can be programmed to differentiate background and high-priority real-time conversions – Each ADC support multiple trigger inputs for synchronization with on-chip timers and external signals – Results stored into a data register or in RAM with DMA controller support – Data pre-processing: left/right alignment and per channel offset compensation – Built-in oversampling unit for enhanced SNR – Channel-wise programmable sampling time – Analog watchdog for automatic voltage monitoring, generating interrupts and trigger for selected timers – Hardware assistant to prepare the context of the injected channels to allow fast context switching Temperature sensor The temperature sensor (TS) generates a voltage VTS that varies linearly with temperature. The temperature sensor is internally connected to the ADC1_IN17 input channels which is used to convert the sensor output voltage into a digital value. The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode. DS12737 Rev 6 61/340 78 Functional overview STM32L552xx Table 14. Temperature sensor calibration values 3.21.2 Calibration value name Description Memory address TS_CAL1 TS ADC raw data acquired at a temperature of 30 °C (± 5 °C), VDDA = VREF+ = 3.0 V (± 10 mV) 0x0BFA 05A8 - 0x0BFA 05A9 TS_CAL2 TS ADC raw data acquired at a temperature of 130 °C (± 5 °C), VDDA = VREF+ = 3.0 V (± 10 mV) 0x0BFA 05CA- 0x0BFA 05CB Internal voltage reference (VREFINT) The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC and the comparators. The VREFINT is internally connected to the ADC1_IN0 input channel. The precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode. Table 15. Internal voltage reference calibration values 3.21.3 Calibration value name Description Memory address VREFINT Raw data acquired at a temperature of 30 °C (± 5 °C), VDDA = VREF+ = 3.0 V (± 10 mV) 0x0BFA 05AA - 0x0BFA 05AB VBAT battery voltage monitoring This embedded hardware enables the application to measure the VBAT battery voltage using the internal ADC channel ADC1_IN18. As the VBAT voltage may be higher than the VDDA, and thus outside the ADC input range, the VBAT pin is internally connected to a bridge divider by 3. As a consequence, the converted digital value is one third of the VBAT voltage. 62/340 DS12737 Rev 6 STM32L552xx 3.22 Functional overview Digital to analog converter (DAC) Two 12-bit buffered DAC channels can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration. This digital interface supports the following features: • Up to two DAC output channels • 8-bit or 12-bit output mode • Buffer offset calibration (factory and user trimming) • Left or right data alignment in 12-bit mode • Synchronized update capability • Noise-wave generation • Triangular-wave generation • Dual DAC channel independent or simultaneous conversions • DMA capability for each channel • External triggers for conversion • Sample and hold low-power mode, with internal or external capacitor The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels. 3.23 Voltage reference buffer (VREFBUF) The devices embed a voltage reference buffer which can be used as voltage reference for ADC, DACs and also as voltage reference for external components through the VREF+ pin. The internal voltage reference buffer supports two voltages: • 2.048 V • 2.5 V An external voltage reference can be provided through the VREF+ pin when the internal voltage reference buffer is off. The VREF+ pin is double-bonded with VDDA on some packages. In these packages the internal voltage reference buffer is not available. Figure 9. Voltage reference buffer VREFBUF VDDA Bandgap + DAC, ADC VREF+ Low frequency cut-off capacitor 100 nF MSv40197V1 DS12737 Rev 6 63/340 78 Functional overview 3.24 STM32L552xx Comparators (COMP) The devices embed two rail-to-rail comparators with programmable reference voltage (internal or external), hysteresis and speed (low speed for low-power) and with selectable output polarity. The reference voltage can be one of the following: • External I/O • DAC output channels • Internal reference voltage or submultiple (1/4, 1/2, 3/4). All comparators can wake up from Stop mode, generate interrupts and breaks for the timers and can also be combined into a window comparator. 3.25 Operational amplifier (OPAMP) The devices embed two operational amplifiers with external or internal follower routing and PGA capability. The operational amplifier features: 3.26 • Low input bias current • Low offset voltage • Low-power mode • Rail-to-rail input Digital filter for sigma-delta modulators (DFSDM) The devices embed one DFSDM with four digital filters modules and eight external input serial channels (transceivers) or alternately eight internal parallel inputs support. The DFSDM peripheral is dedicated to interface the external Σ∆ modulators to the microcontroller and then to perform digital filtering of the received data streams (which represent analog value on Σ∆ modulators inputs). The DFSDM can also interface the PDM (pulse density modulation) microphones and perform PDM to PCM conversion and filtering in hardware. The DFSDM features optional parallel data stream inputs from microcontrollers memory (through DMA/CPU transfers into DFSDM). The DFSDM transceivers support several serial interface formats (to support various Σ∆ modulators) and the DFSDM digital filter modules perform digital processing according to the user’s selected filter parameters with up to 24-bit final ADC resolution. 64/340 DS12737 Rev 6 STM32L552xx Functional overview The DFSDM peripheral supports: • • • • Up to 4 multiplexed input digital serial channels: – Configurable SPI interface to connect various Σ∆ modulators – Configurable Manchester coded 1 wire interface support – Clock output for Σ∆ modulator(s) Alternative inputs from up to 4 internal digital parallel channels: – Inputs with up to 16 bit resolution – Internal sources: ADCs data or memory (CPU/DMA write) data streams Adjustable digital signal processing: – Sincx filter: filter order/type (1..5), oversampling ratio (up to 1..1024) – Integrator: oversampling ratio (1..256) Up to 24-bit output data resolution: – Right bit-shifter on final data (0..31 bits) • Signed output data format • Automatic data offset correction (offset stored in register by user) • Continuous or single conversion • Start-of-conversion synchronization with: • – Software trigger – Internal timers – External events – Start-of-conversion synchronously with first DFSDM filter (DFSDM_FLT0) Analog watchdog feature: – • Low value and high value data threshold registers – Own configurable Sincx digital filter (order = 1..3, oversampling ratio = 1..32) – Input from output data register or from one or more input digital serial channels – Continuous monitoring independently from standard conversion Short-circuit detector to detect saturated analog input values (bottom and top ranges): – Up to 8-bit counter to detect 1..256 consecutive 0’s or 1’s on input data stream – Mnitoring continuously each channel (4 serial channel transceiver outputs) • Break generation on analog watchdog event or short-circuit detector event • Extremes detector: – Store minimum and maximum values of output data values – Refreshed by software • DMA may be used to read the conversion data • Interrupts: end of conversion, overrun, analog watchdog, short-circuit, channel clock absence • “Regular” or “injected” conversions: – “Regular” conversions can be requested at any time or even in continuous mode without having any impact on the timing of “injected” conversions. DS12737 Rev 6 65/340 78 Functional overview 3.27 STM32L552xx Touch sensing controller (TSC) The touch sensing controller provides a simple solution to add capacitive sensing functionality to any application. A capacitive sensing technology is able to detect finger presence near an electrode that is protected from direct touch by a dielectric (glass, plastic or other). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. The touch sensing controller is fully supported by the STMTouch touch sensing firmware library which is free to use and allows touch sensing functionality to be implemented reliably in the end application. The main features of the touch sensing controller are the following: Note: 66/340 • Proven and robust surface charge transfer acquisition principle • Supports up to 22 capacitive sensing channels • Up to 3 capacitive sensing channels can be acquired in parallel offering a very good response time • Spread spectrum feature to improve system robustness in noisy environments • Full hardware management of the charge transfer acquisition sequence • Programmable charge transfer frequency • Programmable sampling capacitor I/O pin • Programmable channel I/O pin • Programmable max count value to avoid long acquisition when a channel is faulty • Dedicated end of acquisition and max count error flags with interrupt capability • One sampling capacitor for up to 3 capacitive sensing channels to reduce the system components • Compatible with proximity, touchkey, linear and rotary touch sensor implementation • Designed to operate with STMTouch touch sensing firmware library The number of capacitive sensing channels is dependent on the size of the packages and subject to I/O availability. DS12737 Rev 6 STM32L552xx 3.28 Functional overview True random number generator (RNG) The RNG is a true random number generator that provides full entropy outputs to the application as 32-bit samples. It is composed of a live entropy source (analog) and an internal conditioning component. The RNG is a NIST SP 800-90B compliant entropy source that can be used to construct a non-deterministic random bit generator (NDRBG). The true random number generator: 3.29 • delivers 32-bit true random numbers, produced by an analog entropy source conditioned by a NIST SP800-90B approved conditioning stage, • can be used as entropy source to construct a non-deterministic random bit generator (NDRBG), • produces four 32-bit random samples every 412 AHB clock cycles if fAHB < 77 MHz (256 RNG clock cycles otherwise), • embeds start-up and NIST SP800-90B approved continuous health tests (repetition count and adaptive proportion tests), associated with specific error management, • can be disabled to reduce power consumption, or enabled with an automatic low-power mode (default configuration), • has an AMBA AHB slave peripheral, accessible through 32-bit word single accesses only (else an AHB bus error is generated, and the write accesses are ignored). HASH hardware accelerator (HASH) The hash processor is a fully compliant implementation of the secure hash algorithm (SHA1, SHA-224, SHA-256), the MD5 (message-digest algorithm 5) hash algorithm and the HMAC (keyed-hash message authentication code) algorithm suitable for a variety of applications. It computes a message digest (160 bits for the SHA-1 algorithm, 256 bits for the SHA-256 algorithm and 224 bits for the SHA-224 algorithm,128 bits for the MD5 algorithm) for messages of up to (264 - 1) bits, while the HMAC algorithms provide a way of authenticating messages by means of hash functions. The HMAC algorithms consist in calling the SHA-1, SHA-224, SHA-256 or MD5 hash function twice. 3.30 Timers and watchdogs The devices include two advanced control timers, up to nine general-purpose timers, two basic timers, two low-power timers, two watchdog timers and a SysTick timer. Table 16 compares the features of the advanced control, general-purpose and basic timers. DS12737 Rev 6 67/340 78 Functional overview STM32L552xx Table 16. Timer feature comparison Timer type Timer Counter resolution Counter type Prescaler factor DMA request generation Capture/ compare channels Complementary outputs Advanced control TIM1, TIM8 16-bit Up, down, Up/down Any integer between 1 and 65536 Yes 4 3 Generalpurpose TIM2, TIM5 32-bit Up, down, Up/down Any integer between 1 and 65536 Yes 4 No Generalpurpose TIM3, TIM4 16-bit Up, down, Up/down Any integer between 1 and 65536 Yes 4 No Generalpurpose TIM15 16-bit Up Any integer between 1 and 65536 Yes 2 1 Generalpurpose TIM16, TIM17 16-bit Up Any integer between 1 and 65536 Yes 1 1 Basic TIM6, TIM7 16-bit Up Any integer between 1 and 65536 Yes 0 No 3.30.1 Advanced-control timer (TIM1, TIM8) The advanced-control timers can each be seen as a three-phase PWM multiplexed on six channels. They have complementary PWM outputs with programmable inserted deadtimes. They can also be seen as complete general-purpose timers. The four independent channels can be used for: • Input capture • Output compare • PWM generation (edge or center-aligned modes) with full modulation capability (0100%) • One-pulse mode output In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled in order to turn off any power switches driven by these outputs. Many features are shared with the general-purpose TIMx timers (described in Section 3.30.2) using the same architecture, so the advanced-control timers can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining. 68/340 DS12737 Rev 6 STM32L552xx 3.30.2 Functional overview General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM15, TIM16, TIM17) There are up to seven synchronizable general-purpose timers embedded in the STM32L552xx devices (see Table 16 for differences). Each general-purpose timer can be used to generate PWM outputs, or act as a simple time base. • TIM2, TIM3, TIM4 and TIM5 They are full-featured general-purpose timers: – TIM2 and TIM5 have a 32-bit auto-reload up/downcounter and 32-bit prescaler – TIM3 and TIM4 have 16-bit auto-reload up/downcounter and 16-bit prescaler. These timers feature four independent channels for input capture/output compare, PWM or one-pulse mode output. They can work together, or with the other generalpurpose timers via the Timer Link feature for synchronization or event chaining. The counters can be frozen in debug mode. All have independent DMA request generation and support quadrature encoders. • TIM15, 16 and 17 They are general-purpose timers with mid-range features: They have 16-bit auto-reload upcounters and 16-bit prescalers. – TIM15 has two channels and one complementary channel – TIM16 and TIM17 have one channel and one complementary channel All channels can be used for input capture/output compare, PWM or one-pulse mode output. The timers can work together via the Timer Link feature for synchronization or event chaining. The timers have independent DMA request generation. The counters can be frozen in debug mode. 3.30.3 Basic timers (TIM6 and TIM7) The basic timers are mainly used for DAC trigger generation. They can also be used as generic 16-bit timebases. 3.30.4 Low-power timers (LPTIM1, LPTIM2 and LPTIM3) The devices embed two low-power timers. These timers have an independent clock and are running in Stop mode if they are clocked by LSE, LSI or an external clock. They are able to wakeup the system from Stop mode. LPTIM1 and LPTIM3 are active in Stop 0, Stop 1 and Stop 2 modes. LPTIM2 is active in Stop 0 and Stop 1 mode. DS12737 Rev 6 69/340 78 Functional overview STM32L552xx This low-power timer supports the following features: 3.30.5 • 16-bit up counter with 16-bit autoreload register • 16-bit compare register • Configurable output: pulse, PWM • Continuous/ one shot mode • Selectable software/hardware input trigger • Selectable clock source – Internal clock sources: LSE, LSI, HSI16 or APB clock – External clock source over LPTIM input (working even with no internal clock source running, used by pulse counter application). • Programmable digital glitch filter • Encoder mode (LPTIM1 only). Independent watchdog (IWDG) The independent watchdog is based on a 12-bit downcounter and an 8-bit prescaler. It is clocked from an independent 32 kHz internal RC (LSI) and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode. 3.30.6 Window watchdog (WWDG) The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode. 3.30.7 SysTick timer The Cortex®-M33 with TrustZone embeds two SysTick timers. When TrustZone is activated, two SysTick timer are available: • SysTick, Secure instance. • SysTick, Non-secure instance. When TrustZone is disabled, only one SysTick timer is available. This timer (secure or non-secure) is dedicated to real-time operating systems, but could also be used as a standard down counter. It features: 70/340 • A 24-bit down counter • Autoreload capability • Maskable system interrupt generation when the counter reaches 0. • Programmable clock source DS12737 Rev 6 STM32L552xx 3.31 Functional overview Real-time clock (RTC) The RTC supports the following features: • Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format. • Automatic correction for 28, 29 (leap year), 30, and 31 days of the month. • Two programmable alarms. • On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock. • Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision. • Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal inaccuracy. • Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to VBAT mode. • 17-bit auto-reload wakeup timer (WUT) for periodic events with programmable resolution and period. • TrustZone support: – RTC fully securable – Alarm A, alarm B, wakeup Timer and timestamp individual secure or non-secure configuration The RTC is supplied through a switch that takes power either from the VDD supply when present or from the VBAT pin. The RTC clock sources can be: • A 32.768 kHz external crystal (LSE) • An external resonator or oscillator (LSE) • The internal low power RC oscillator (LSI, with typical frequency of 32 kHz) • The high-speed external clock (HSE), divided by a prescaler in the RCC. The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the LSE. When clocked by the LSI, the RTC is not functional in VBAT mode, but is functional in all low-power modes except Shutdown mode. All RTC events (Alarm, WakeUp Timer, Timestamp) can generate an interrupt and wakeup the device from the low-power modes. 3.32 Tamper and backup registers (TAMP) 32 32-bit backup registers are retained in all low-power modes and also in VBAT mode. They can be used to store sensitive data as their content is protected by an tamper detection circuit. 8 tamper pins and 7 internal tampers are available for anti-tamper detection. The external tamper pins can be configured for edge detection, or level detection with or without filtering, or active tamper which increases the security level by auto checking that the tamper pins are not externally opened or shorted. DS12737 Rev 6 71/340 78 Functional overview STM32L552xx TAMP main features: • 32 backup registers: – • The backup registers (TAMP_BKPxR) are implemented in the RTC domain that remains powered-on by VBAT when the VDD power is switched off 8 external tamper detection events – Each external event can be configured to be active or passive – External passive tampers with configurable filter and internal pull-up • 5 internal tamper events • Any tamper detection can generate a RTC timestamp event • Any tamper detection can erase the backup registers • TrustZone support: – Tamper secure or non-secure configuration. – Backup registers configuration in 3 configurable-size areas: 1 read/write secure area 1 write secure/read non-secure area 1 read/write non-secure area • 72/340 Monotonic counter. DS12737 Rev 6 STM32L552xx 3.33 Functional overview Inter-integrated circuit interface (I2C) The device embeds four I2C. Refer to Table 17: I2C implementation for the features implementation. The I2C bus interface handles communications between the microcontroller and the serial I2C bus. It controls all I2C bus-specific sequencing, protocol, arbitration and timing. The I2C peripheral supports: • • I2C-bus specification and user manual rev. 5 compatibility: – Slave and master modes, multimaster capability – Standard-mode (Sm), with a bitrate up to 100 kbit/s – Fast-mode (Fm), with a bitrate up to 400 kbit/s – Fast-mode plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os – 7-bit and 10-bit addressing mode, multiple 7-bit slave addresses – Programmable setup and hold times – Optional clock stretching System management bus (SMBus) specification rev 2.0 compatibility: – Hardware PEC (packet error checking) generation and verification with ACK control – Address resolution protocol (ARP) support – SMBus alert • Power system management protocol (PMBusTM) specification rev 1.1 compatibility • Independent clock: a choice of independent clock sources allowing the I2C communication speed to be independent from the PCLK reprogramming. Refer to Figure 7: STM32L552xx clock tree • Wakeup from Stop mode on address match • Programmable analog and digital noise filters • 1-byte buffer with DMA capability Table 17. I2C implementation I2C features(1) I2C1 I2C2 I2C3 I2C4 Standard-mode (up to 100 kbit/s) X X X X Fast-mode (up to 400 kbit/s) X X X X Fast-mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s) X X X X Programmable analog and digital noise filters X X X X SMBus/PMBus hardware support X X X X Independent clock X X X X Wakeup from Stop 0, Stop 1 mode on address match X X X X Wakeup from Stop 2 mode on address match - - X - 1. X: supported DS12737 Rev 6 73/340 78 Functional overview 3.34 STM32L552xx Universal synchronous/asynchronous receiver transmitter (USART) The devices have three embedded universal synchronous receiver transmitters (USART1, USART2 and USART3) and two universal asynchronous receiver transmitters (UART4, UART5). These interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN master/slave capability. They provide hardware management of the CTS and RTS signals, and RS485 driver enable. They are able to communicate at speeds of up to 10 Mbit/s. The USART1, USART2 and USART3 also provide a Smartcard mode (ISO 7816 compliant) and an SPI-like communication capability. All USART have a clock domain independent from the CPU clock, allowing the USARTx (x=1,2,3,4,5) to wake up the MCU from Stop mode using baudrates up to 200 Kbaud. The wake up events from Stop mode are programmable and can be: • Start bit detection • Any received data frame • A specific programmed data frame All USART interfaces can be served by the DMA controller. Table 18. USART/UART/LPUART features USART modes/features(1) USART1 USART2 USART3 UART4 UART5 LPUART1 Hardware flow control for modem X X X X X X Continuous communication using DMA X X X X X X Multiprocessor communication X X X X X X Synchronous mode X X X - - - Smartcard mode X X X - - - Single-wire half-duplex communication X X X X X X IrDA SIR ENDEC block X X X X X - LIN mode X X X X X - Dual clock domain X X X X X X Wakeup from Stop 0 / Stop 1 modes X X X X X X Wakeup from Stop 2 mode - - - - - X Receiver timeout interrupt X X X X X - Modbus communication X X X X X - Auto baud rate detection Driver enable X (4 modes) X X LPUART/USART data length X 7, 8 and 9 bits 1. X = supported. 74/340 X - DS12737 Rev 6 X X STM32L552xx 3.35 Functional overview Low-power universal asynchronous receiver transmitter (LPUART) The devices embed one low-power UART. The LPUART supports asynchronous serial communication with minimum power consumption. It supports half-duplex single-wire communication and modem operations (CTS/RTS). It allows multiprocessor communication. The LPUART has a clock domain independent from the CPU clock, and can wakeup the system from Stop mode using baudrates up to 220 Kbaud. The wake up events from Stop mode are programmable and can be: • Start bit detection • Any received data frame • A specific programmed data frame Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher speed clock can be used to reach higher baudrates. The LPUART interface can be served by the DMA controller. 3.36 Serial peripheral interface (SPI) Three SPI interfaces allow communication up to slave modes, in half-duplex, full-duplex and simplex modes. The 3-bit prescaler gives eight master mode frequencies and the frame size is configurable from 4 bits to 16 bits. The SPI interfaces support NSS pulse mode, TI mode and hardware CRC calculation. All SPI interfaces can be served by the DMA controller. 3.37 Serial audio interfaces (SAI) The devices embed two SAI. Refer to Table 19: SAI implementation for the features implementation. The SAI bus interface handles communications between the microcontroller and the serial audio protocol. The SAI peripheral supports: • Two independent audio sub-blocks which can be transmitters or receivers with their respective FIFO. • 8-word integrated FIFOs for each audio sub-block. • Synchronous or asynchronous mode between the audio sub-blocks. • Master or slave configuration independent for both audio sub-blocks. • Clock generator for each audio block to target independent audio frequency sampling when both audio sub-blocks are configured in master mode. • Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit. • Peripheral with large configurability and flexibility allowing to target as example the following audio protocol: I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF out. DS12737 Rev 6 75/340 78 Functional overview STM32L552xx • Up to 16 slots available with configurable size and with the possibility to select which ones are active in the audio frame. • Number of bits by frame may be configurable. • Frame synchronization active level configurable (offset, bit length, level). • First active bit position in the slot is configurable. • LSB first or MSB first for data transfer. • Mute mode. • Stereo/Mono audio frame capability. • Communication clock strobing edge configurable (SCK). • Error flags with associated interrupts if enabled respectively. • • – Overrun and underrun detection. – Anticipated frame synchronization signal detection in slave mode. – Late frame synchronization signal detection in slave mode. – Codec not ready for the AC’97 mode in reception. Interruption sources when enabled: – Errors. – FIFO requests. DMA interface with two dedicated channels to handle access to the dedicated integrated FIFO of each SAI audio sub-block. Table 19. SAI implementation SAI features(1) SAI1 SAI2 I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97 X X Mute mode X X Stereo/Mono audio frame capability. X X 16 slots X X Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit X X X (8 Word) X (8 Word) SPDIF X X PDM X - FIFO size 1. X: supported 3.38 Secure digital input/output and MultiMediaCards Interface (SDMMC) The SD/SDIO, MultiMediaCard (MMC) host interface (SDMMC) provides an interface between the AHB bus and SD memory cards, SDIO cards and MMC devices. 76/340 DS12737 Rev 6 STM32L552xx Functional overview The SDMMC features include the following: 3.39 • Full compliance with MultiMediaCard System Specification Version 4.51. Card support for three different databus modes: 1-bit (default), 4-bit and 8-bit • Full compatibility with previous versions of MultiMediaCards (backward compatibility) • Full compliance with SD Memory Card Specifications Version 4.1. (SDR104 SDMMC_CK speed limited to maximum allowed IO speed, SPI mode and UHS-II mode not supported) • Full compliance with SDIO Card Specification Version 4.0: card support for two different databus modes: 1-bit (default) and 4-bit. (SDR104 SDMMC_CK speed limited to maximum allowed IO speed, SPI mode and UHS-II mode not supported) • Data transfer up to 104 Mbyte/s for the 8-bit mode (depending maximum allowed IO speed) • Data and command output enable signals to control external bidirectional drivers. Controller area network (FDCAN) The controller area network (CAN) subsystem consists of one CAN modules and message RAM memory. The CAN module (FDCAN) is compliant with ISO 11898-1 (CAN protocol specification version 2.0 part A, B) and CAN FD protocol specification version 1.0. A 1 Kbyte message RAM memory implements filters, receive FIFOs, receive buffers, transmit event FIFOs, transmit buffers. 3.40 Universal serial bus (USB FS) The devices embed a full-speed USB device peripheral compliant with the USB specification version 2.0. The internal USB PHY supports USB FS signaling, embedded DP pull-up and battery charging detection according to Battery Charging Specification Revision 1.2. The USB interface implements a full-speed (12 Mbit/s) function interface with added support for USB 2.0 link power management. It has software-configurable endpoint setting with packet memory up-to 1 Kbyte and suspend/resume support. This interface requires a precise 48 MHz clock which can be generated from the internal main PLL (the clock source must use a HSE crystal oscillator) or by the internal 48 MHz oscillator (HSI48) in automatic trimming mode. The synchronization for this oscillator can be taken from the USB data stream itself (SOF signalization) which allows crystal less operation. 3.41 USB Type-C™ / USB Power Delivery controller (UCPD) The device embeds one controller (UCPD) compliant with USB Type-C Rev. 1.2 and USB Power Delivery Rev. 3.0 specifications. DS12737 Rev 6 77/340 78 Functional overview STM32L552xx The controller uses specific I/Os supporting the USB Type-C and USB Power Delivery requirements, featuring: • USB Type-C pull-up (Rp, all values) and pull-down (Rd) resistors • “Dead battery” support • USB Power Delivery message transmission and reception • FRS (fast role swap) support The digital controller handles notably: • USB Type-C level detection with debounce, generating interrupts • FRS detection, generating an interrupt • Byte-level interface for USB Power Delivery payload, generating interrupts (DMA compatible) • USB Power Delivery timing dividers (including a clock pre-scaler) • CRC generation/checking • 4b5b encode/decode • Ordered sets (with a programmable ordered set mask at receive) • Frequency recovery in receiver during preamble The interface offers low-power operation compatible with Stop mode, maintaining the capacity to detect incoming USB Power Delivery messages and FRS signaling. 3.42 Development support 3.42.1 Serial wire JTAG debug port (SWJ-DP) The Arm® SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. Debug is performed using two pins only instead of five required by the JTAG (JTAG pins could be re-used as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP. 3.42.2 Embedded Trace Macrocell™ The Arm® Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the devices through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. Real-time instruction and data flow activity be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors. The Embedded Trace Macrocell operates with third party debugger software tools. 78/340 DS12737 Rev 6 STM32L552xx Pinouts and pin description PA14 PB5 41 PA15 PB6 42 37 PB7 43 38 PH3-BOOT0 44 PB4 PB8 45 PB3 PB9 46 39 VSS 47 40 VDD 48 Figure 10. STM32L552xx LQFP48 pinout VBAT 1 36 VDD PC13 2 35 VSS PC14_OSC32_IN 3 34 PA13 PC15_OSC32_OUT 4 33 PA12 PH0-OSC_IN 5 32 PA11 PH1-OSC_OUT 6 31 PA10 NRST 7 30 PA9 VSSA/VREF- 8 29 PA8 VDDA/VREF+ 9 28 PB15 PA0 10 27 PB14 PA1 11 26 PB13 PA2 12 25 PB12 13 14 15 16 17 18 19 20 21 22 23 24 PA3 PA4 PA5 PA6 PA7 PB0 PB1 PB2 PB10 PB11 VSS VDD LQFP48 MSv49322V1 1. The above figure shows the package top view. PB6 PB5 PB4 42 41 40 PA14 PB7 43 37 PH3-BOOT0 44 PB3 PB8 45 PA15 VDD12_2 46 38 VSS 47 39 VDD 48 Figure 11. STM32L552xxxxP LQFP48 external SMPS pinout VBAT 1 36 VDD PC13 2 35 VSS PC14-OSC_IN 3 34 PA13 PC15-OSC_OUT 4 33 PA12 PH0-OSC_IN 5 32 PA11 PH1-OSC_OUT 6 31 PA10 NRST 7 30 PA9 VSSA/VREF- 8 29 PA8 VDDA/VREF+ 9 28 PB15 PA0 10 27 PB14 PA1 11 26 PB13 PA2 12 25 PB12 13 14 15 16 17 18 19 20 21 22 23 24 PA4 PA5 PA6 PA7 PB0 PB1 PB2 PB10 VDD12_1 VSS VDD LQFP48 PA3 4 Pinouts and pin description MSv49311V1 1. The above figure shows the package top view. DS12737 Rev 6 79/340 137 Pinouts and pin description STM32L552xx VDD VSS PB9 PB8 PH3-BOOT0 PB7 PB6 PB5 PB4 PB3 PA15 PA14 48 47 46 45 44 43 42 41 40 39 38 37 Figure 12. STM32L552xx UFQFPN48 pinout VBAT 1 36 VDD PC13 2 35 VSS PC14-OSC32_IN 3 34 PA13 PC15-OSC32_OUT 4 33 PA12 PH0-OSC_IN 5 32 PA11 PH1-OSC_OUT 6 31 PA10 NRST 7 30 PA9 VSSA/VREF- 8 29 PA8 VDDA/VREF+ 9 28 PB15 PA0 10 27 PB14 PA1 11 26 PB13 PA2 12 25 PB12 13 14 15 16 17 18 19 20 21 22 23 24 PA3 PA4 PA5 PA6 PA7 PB0 PB1 PB2 PB10 PB11 VSS VDD UFQFPN48 MSv49321V2 1. The above figure shows the package top view. VDD VSS VDD12_2 PB8 PH3-BOOT0 PB7 PB6 PB5 PB4 PB3 PA15 PA14 48 47 46 45 44 43 42 41 40 39 38 37 Figure 13. STM32L552xxxxP UFQFPN48 external SMPS pinout VBAT 1 36 VDD PC13 2 35 VSS PC14-OSC_IN 3 34 PA13 PC15-OSC_OUT 4 33 PA12 PH0-OSC_IN 5 32 PA11 PH1-OSC_OUT 6 31 PA10 NRST 7 30 PA9 VSSA/VREF- 8 29 PA8 VDDA/VREF+ 9 28 PB15 PA0 10 27 PB14 PA1 11 26 PB13 PA2 12 25 PB12 13 14 15 16 17 18 19 20 21 22 23 24 PA3 PA4 PA5 PA6 PA7 PB0 PB1 PB2 PB10 VDD12_1 VSS VDD UFQFPN48 MSv49310V2 1. The above figure shows the package top view. 80/340 DS12737 Rev 6 STM32L552xx Pinouts and pin description VDD VSS PB9 PB8 PH3-BOOT0 PB7 PB6 PB5 PB4 PB3 PD2 PC12 PC11 PC10 PA15 PA14 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 Figure 14. STM32L552xx LQFP64 pinout VBAT 1 48 VDDUSB PC13 2 47 VSS PC14-OSC32_IN 3 46 PA13 PC15-OSC32_OUT 4 45 PA12 PH0-OSC_IN 5 44 PA11 PH1-OSC_OUT 6 43 PA10 NRST 7 42 PA9 PC0 8 41 PA8 PC1 9 40 PC9 PC2 10 39 PC8 PC3 11 38 PC7 VSSA/VREF- 12 37 PC6 VDDA/VREF+ 13 36 PB15 PA0 14 35 PB14 PA1 15 34 PB13 PA2 16 33 PB12 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 PA3 VSS VDD PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PB10 PB11 VSS VDD LQFP64 MSv49323V1 1. The above figure shows the package top view. VDD V15SMPS_2 VSS PB8 PH3-BOOT0 PB7 PB6 PB5 PB4 PB3 PD2 PC12 PC11 PC10 PA15 PA14 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 Figure 15. STM32L552xxxxQ LQFP64 SMPS step down converter pinout VBAT 1 48 VDDUSB PC13 2 47 VSS PC14-OSC32_IN 3 46 PA13 PC15-OSC32_OUT 4 45 PA12 PH0-OSC_IN 5 44 PA11 PH1-OSC_OUT 6 43 PA10 NRST 7 42 PA9 PC0 8 41 PA8 PC1 9 40 PC9 PC2 10 39 PC8 PC3 11 38 PC7 VSSA/VREF- 12 37 PC6 VDDA/VREF+ 13 36 PB15 PA0 14 35 PB14 PA1 15 34 PB13 PA2 16 33 VDD 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 PA3 VSS VDD PA4 PA5 PA6 PA7 PB0 PB1 PB2 PB10 VDDSMPS VLXSMPS VSSSMPS VSS V15SMPS_1 LQFP64 MSv49316V1 1. The above figure shows the package top view. DS12737 Rev 6 81/340 137 Pinouts and pin description STM32L552xx VDD VSS VDD12_2 PB9 PB8 PH3-BOOT0 PB7 PB6 PB5 PB4 PB3 PC12 PC11 PC10 PA15 PA14 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 Figure 16. STM32L552xxxxP LQFP64 external SMPS pinout VBAT 1 48 VDDUSB PC13 2 47 VSS PC14-OSC32_IN 3 46 PA13 PC15-OSC32_OUT 4 45 PA12 PH0-OSC_IN 5 44 PA11 PH1-OSC_OUT 6 43 PA10 NRST 7 42 PA9 PC0 8 41 PA8 PC1 9 40 PC9 PC2 10 39 PC8 PC3 11 38 PC7 VSSA/VREF- 12 37 PC6 VDDA/VREF+ 13 36 PB15 PA0 14 35 PB14 PA1 15 34 PB13 PA2 16 33 PB12 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 PA3 VSS VDD PA4 PA5 PA6 PA7 PC4 PB0 PB1 PB2 PB10 PB11 VDD12_1 VSS VDD LQFP64 MSv49312V2 1. The above figure shows the package top view. Figure 17. STM32L552xxxxQ WLCSP81 SMPS step down converter ballout 1 2 3 4 5 6 7 8 9 A VDD PC10 PD2 PG13 VDDIO2 PB5 PB9 V15SMPS_2 VDD B VDDUSB VSS PC12 PG12 VSS PB4 PC13 VSS VBAT C PA11 PA12 PC11 PG10 PG15 PB6 PB8 PC15OSC32_OUT PC14OSC32_IN D PA9 PA13 PA14 PG9 PG14 PB7 PH3-BOOT0 PH1OSC_OUT PH0-OSC_IN E PC6 PC7 PA10 PA15 PG11 PB3 PC0 VSS NRST F PB15 PB13 PC8 PA8 PA3 PA1 PC2 PC1 VDD G PB14 PB12 PC9 PC4 PA6 PA2 PC3 VREF+ VSSA/VREF- H VDD VSS VLXSMPS PB11 PB1 PA5 PA4 PA0 VDDA J V15SMPS_1 VSSSMPS VDDSMPS PB10 PB2 PB0 PA7 VDD VSS MSv49317V1 1. The above figure shows the package top view. 82/340 DS12737 Rev 6 STM32L552xx Pinouts and pin description Figure 18. STM32L552xxxxP WLCSP81 external SMPS ballout 1 2 3 4 5 6 7 8 9 A VDD PC10 PD2 PG13 VDDIO2 PB5 PB9 VDD12_2 VDD B VDDUSB VSS PC12 PG12 VSS PB4 PC13 VSS VBAT C PA11 PA12 PC11 PG10 PG15 PB6 PB8 PC15OSC32_OUT PC14OSC32_IN D PA9 PA13 PA14 PG9 PG14 PB7 PH3-BOOT0 PH1OSC_OUT PH0-OSC_IN E PC6 PC7 PA10 PA15 PG11 PB3 PC0 VSS NRST F PB15 PB13 PC8 PA8 PA3 PA1 PC2 PC1 VDD G PB14 PB12 PC9 PC4 PA6 PA2 PC3 VREF+ VSSA/VREF- H VDD VSS PE15 PE14 PB1 PA5 PA4 PA0 VDDA J VDD12_1 PB11 PB10 PE13 PB2 PB0 PA7 VDD VSS MSv49313V1 1. The above figure shows the package top view. VDD VSS PE1 PE0 PB9 PB8 PH3-BOOT0 PB7 PB6 PB5 PB4 PB3 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 Figure 19. STM32L552xx LQFP100 pinout PE2 1 75 VDD PE3 2 74 VSS PE4 3 73 VDDUSB PE5 4 72 PA13 PE6 5 71 PA12 VBAT 6 70 PA11 PC13 7 69 PA10 PC14-OSC32_IN 8 68 PA9 PC15-OSC32_OUT 9 67 PA8 VSS 10 66 PC9 VDD 11 65 PC8 PH0-OSC_IN 12 64 PC7 PH1-OSC_OUT 13 63 PC6 NRST 14 62 PD15 PC0 15 61 PD14 PC1 16 60 PD13 PC2 17 59 PD12 PC3 18 58 PD11 VSSA 19 57 PD10 VREF- 20 56 PD9 VREF+ 21 55 PD8 VDDA 22 54 PB15 PA0 23 53 PB14 PA1 24 52 PB13 PA2 25 51 PB12 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 PA3 VSS VDD PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PE7 PE8 PE9 PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VSS VDD LQFP100 MSv49324V1 1. The above figure shows the package top view. DS12737 Rev 6 83/340 137 Pinouts and pin description STM32L552xx V15SMPS_2 VSS PE0 PB9 PB8 PH3-BOOT0 PB7 PB6 PB5 PB4 PB3 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 VDD 100 99 Figure 20. STM32L552xxxxQ LQFP100 SMPS step down converter pinout PE2 1 75 VDD PE3 2 74 VSS PE4 3 73 VDDUSB PE5 4 72 PA13 PE6 5 71 PA12 VBAT 6 70 PA11 PC13 7 69 PA10 PC14-OSC32_IN 8 68 PA9 PC15-OSC32_OUT 9 67 PA8 VSS 10 66 PC9 VDD 11 65 PC8 PH0-OSC_IN 12 64 PC7 PH1-OSC_OUT 13 63 PC6 NRST 14 62 PD15 PC0 15 61 PD14 PC1 16 60 PD13 PC2 17 59 PD12 PC3 18 58 PD11 VSSA/VREF- 19 57 PD10 VREF+ 20 56 PD9 VDDA 21 55 PD8 PA0 22 54 PB15 PA1 23 53 PB14 PA2 24 52 PB13 PA3 25 51 VDD 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 VSS VDD PA4 PA5 PA6 PA7 PB0 PB1 PB2 PE7 PE8 PE9 PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VDDSMPS VLXSMPS VSSSMPS VSS V15SMPS_1 LQFP100 MSv49318V1 1. The above figure shows the package top view. 84/340 DS12737 Rev 6 STM32L552xx Pinouts and pin description Figure 21. STM32L552xx UFBGA132 ballout 1 2 3 4 5 6 7 8 9 10 11 12 A PE5 PE3 PE1 PB9 PB6 PG12 PD6 PD5 PD2 PC11 PA15 VDDUSB B VBAT PE4 PE2 PG15 PH3-BOOT0 PB4 PG9 PD4 PD1 PC12 PC10 PA12 C PC14OSC32_IN PE6 PC13 PE0 PB8 PB3 PG10 PD3 PD0 PA13 PA14 PA11 D PC15OSC32_OUT PF0 PF3 VDD PB7 PB5 PD7 VDDIO2 VDD PA9 PA10 PA8 E PF2 PF1 PF4 VSS VSS PC7 PC9 PC8 F PH0-OSC_IN PF5 PC2 PC3 VSS VDD PG6 PG7 PC6 PG8 G PH1OSC_OUT NRST PC1 PA1 VDD VSS PG4 PG2 PG3 PG5 VSS VSS PD14 PD13 PD15 H VSSA/VREF- PC0 OPAMP1_VI NM J VREF+ PA0 PC5 VDD PF14 PE8 PE10 PE12 VDD PD9 PD11 PD12 K VDDA PA2 PA7 PB2 PF11 PG1 PE7 PE14 PB10 PB13 PB14 PB15 L PA3 PA6 PA4 PB1 PF12 PF15 PE11 PE15 PB11 VSS PB12 PD8 PA5 OPAMP2_VI NM PC4 PB0 PF13 PG0 PE9 PE13 PG14 PG13 PG11 PD10 M MSv49325V1 1. The above figure shows the package top view. Figure 22. STM32L552xxxxQ UFBGA132 SMPS step down converter ballout 1 2 3 4 5 6 7 8 9 10 11 12 A PE5 PE3 PE1 PB9 PB6 PG12 PD6 PD5 PD2 PC11 PA15 VDDUSB B VBAT PE4 PE2 V15SMPS_2 PH3-BOOT0 PB4 PG9 PD4 PD1 PC12 PC10 PA12 C PC14OSC32_IN PE6 PC13 PE0 PB8 PB3 PG10 PD3 PD0 PA13 PA14 PA11 D PC15OSC32_OUT PF0 PF3 VDD PB7 PB5 PD7 VDDIO2 VDD PA9 PA10 PA8 E PF2 PF1 PF4 VSS VSS PC7 PC9 PC8 F PH0-OSC_IN PF5 PC2 PC3 VSS VDD PG6 PG7 PC6 PG8 G PH1OSC_OUT NRST PC1 PA1 VDD VSS PG4 PG2 PG3 PG5 H VSSA/VREF- PC0 OPAMP1_VI NM VSS VSS PD14 PD13 PD15 J VREF+ PA0 PC5 VDD PF14 PE8 PE10 PE12 VDD PD9 PD11 PD12 K VDDA PA2 PA7 PB2 PF11 PG1 PE7 PE14 PB10 PB13 PB14 PB15 L PA3 PA6 PA4 PB1 PF12 PF15 PE11 PE15 PB11 VSSSMPS PB12 PD8 M PA5 OPAMP2_VI NM PC4 PB0 PF13 PG0 PE9 PE13 VDDSMPS VLXSMPS V15SMPS_1 PD10 MSv49319V1 1. The above figure shows the package top view. DS12737 Rev 6 85/340 137 Pinouts and pin description STM32L552xx 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 VDD VSS PE1 PE0 PB9 PB8 PH3-BOOT0 PB7 PB6 PB5 PB4 PB3 PG15 VDDIO2 VSS PG14 PG13 PG12 PG11 PG10 PG9 PD7 PD6 VDD VSS PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 Figure 23. STM32L552xx LQFP144 pinout 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 LQFP144 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 VDD VSS VDDUSB PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 VDDIO2 VSS PG8 PG7 PG6 PG5 PG4 PG3 PG2 PD15 PD14 VDD VSS PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 PB12 PA3 VSS VDD PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PF11 PF12 VSS VDD PF13 PF14 PF15 PG0 PG1 PE7 PE8 PE9 VSS VDD PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VSS VDD 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 PE2 PE3 PE4 PE5 PE6 VBAT PC13 PC14-OSC32_IN PC15-OSC32_OUT PF0 PF1 PF2 PF3 PF4 PF5 VSS VDD PF6 PF7 PF8 PF9 PF10 PH0-OSC_IN PH1-OSC_OUT NRST PC0 PC1 PC2 PC3 VSSA VREFVREF+ VDDA PA0 PA1 PA2 MSv49326V1 1. The above figure shows the package top view. 86/340 DS12737 Rev 6 STM32L552xx Pinouts and pin description 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 VDD V15SMPS_2 VSS PE1 PE0 PB9 PB8 PH3-BOOT0 PB7 PB6 PB5 PB4 PB3 PG15 VDDIO2 VSS PG14 PG13 PG12 PG10 PG9 PD7 PD6 VDD VSS PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 Figure 24. STM32L552xxxxQ LQFP144 SMPS step down converter pinout 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 LQFP144 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 VDD VSS VDDUSB PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 VDDIO2 VSS PG8 PG7 PG6 PG5 PG4 PG3 PG2 PD15 PD14 VDD VSS PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 VDD VSS VDD PA4 PA5 PA6 PA7 PB0 PB1 PB2 PF11 PF12 VSS VDD PF13 PF14 PF15 PG0 PG1 PE7 PE8 PE9 VSS VDD PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VDDSMPS VLXSMPS VSSSMPS VSS V15SMPS_1 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 PE2 PE3 PE4 PE5 PE6 VBAT PC13 PC14-OSC32_IN PC15-OSC32_OUT PF0 PF1 PF2 PF3 PF4 PF5 VSS VDD PF6 PF7 PF8 PF9 PF10 PH0-OSC_IN PH1-OSC_OUT NRST PC0 PC1 PC2 PC3 VSSA/VREFVREF+ VDDA PA0 PA1 PA2 PA3 MSv49320V1 1. The above figure shows the package top view. DS12737 Rev 6 87/340 137 Name Pin name Abbreviation Definition Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name Pin type S Supply pin I Input only pin I/O Input / output pin FT 5 V tolerant I/O TT 3.6 V tolerant I/O B Dedicated BOOT0 pin RST Pinouts and pin description 88/340 Table 20. Legend/abbreviations used in the pinout table Bidirectional reset pin with embedded weak pull-up resistor Option for TT or FT I/Os DS12737 Rev 6 I/O structure _f (1) _u _a (2) (3)(4) _s (5) Notes I/O, Fm+ capable I/O, with USB function supplied by VDDUSB I/O, with Analog switch function supplied by VDDA I/O supplied only by VDDIO2 _c I/O, USB Type-C PD capable _d I/O, USB Type-C PD dead battery function Unless otherwise specified by a note, all I/Os are set as analog inputs during and after reset. Alternate Functions selected through GPIOx_AFR registers functions Pin functions Additional Functions directly selected/enabled through peripheral registers functions 2. The related I/O structures in Table 21 are: FT_u. 3. The related I/O structures in Table 21 are: FT_a, FT_fa, TT_a. 4. The analog switch for the TSC function is supplied by VDD. 5. The related I/O structures in Table 21 are: FT_s, FT_fs. STM32L552xx 1. The related I/O structures in Table 21 are: FT_f, FT_fa. STM32L552xx Table 21. STM32L552xx pin definitions DS12737 Rev 6 - - - - - - - - - - - - - - - - - - - - 1 2 3 4 B3 A2 B2 A1 1 2 3 4 - - - - - - - - - - - - 1 2 3 4 B3 A2 B2 A1 1 2 3 4 PE2 PE3 PE4 PE5 I/O I/O I/O I/O I/O structure Pin type LQFP144 UFBGA132 LQFP100 LQFP64 LQFP48 UFQFPN48 LQFP144_SMPS UFBGA132_SMPS LQFP100_SMPS WLCSP81_SMPS LQFP64_SMPS WLCSP81_Ext-SMPS LQFP64_Ext-SMPS - STM32L552xx FT FT FT FT 89/340 Alternate functions Additional functions - TRACECK, TIM3_ETR, SAI1_CK1, TSC_G7_IO1, FMC_A23, SAI1_MCLK_A, EVENTOUT - - TRACED0, TIM3_CH1, OCTOSPI1_DQS, TSC_G7_IO2, FMC_A19, SAI1_SD_B, EVENTOUT - - TRACED1, TIM3_CH2, SAI1_D2, DFSDM1_DATIN3, TSC_G7_IO3, FMC_A20, SAI1_FS_A, EVENTOUT - - TRACED2, TIM3_CH3, SAI1_CK2, DFSDM1_CKIN3, TSC_G7_IO4, FMC_A21, SAI1_SCK_A, EVENTOUT - Pinouts and pin description - - STM32L552xxxxQ Notes - LQFP48_Ext-SMPS UFQFPN48_ExtSMPS STM32L552xxxxP Pin name (function after reset) Pin Number DS12737 Rev 6 - 5 C2 5 - - - 5 C2 5 PE6 I/O FT - 1 1 1 B9 1 B9 6 B1 6 1 1 1 6 B1 6 VBAT S - - - - EVENTOUT WKUP2, RTC_TS/RTC_ OUT1, TAMP_IN1/TAMP_ OUT2 EVENTOUT OSC32_IN (2) EVENTOUT OSC32_OUT 2 3 2 3 2 3 B7 C9 2 3 B7 C9 7 8 C3 C1 7 8 2 3 2 3 2 3 7 8 C3 C1 LQFP144 - UFBGA132 - LQFP100 - LQFP64 - LQFP48 - TRACED3, TIM3_CH4, SAI1_D1, FMC_A22, SAI1_SD_A, EVENTOUT UFQFPN48 Alternate functions LQFP64_SMPS Notes I/O structure Pin type STM32L552xx LQFP144_SMPS UFBGA132_SMPS LQFP100_SMPS STM32L552xxxxQ WLCSP81_SMPS WLCSP81_Ext-SMPS LQFP64_Ext-SMPS LQFP48_Ext-SMPS UFQFPN48_ExtSMPS STM32L552xxxxP Pin name (function after reset) Pin Number 7 PC13 I/O FT 8 PC14OSC3 I/O 2_IN (PC14) FT PC15OSC3 I/O 2_OUT (PC15) FT (1) (2) (1) (2) (1) Additional functions WKUP3, TAMP_IN3/TAMP_ OUT6 4 4 C8 4 C8 9 D1 9 4 4 4 9 D1 9 - - - - - - - D2 10 - - - - D2 10 PF0 I/O FT _f - I2C2_SDA, FMC_A0, EVENTOUT - - - - - - - - E2 11 - - - - E2 11 PF1 I/O FT _f - I2C2_SCL, FMC_A1, EVENTOUT - STM32L552xx 4 Pinouts and pin description 90/340 Table 21. STM32L552xx pin definitions (continued) STM32L552xx Table 21. STM32L552xx pin definitions (continued) Pin Number LQFP64_SMPS WLCSP81_SMPS LQFP100_SMPS UFBGA132_SMPS LQFP144_SMPS UFQFPN48 LQFP48 LQFP64 LQFP100 UFBGA132 LQFP144 Pin name (function after reset) Pin type I/O structure Notes Alternate functions - - - - - - - E1 12 - - - - E1 12 PF2 I/O FT - I2C2_SMBA, FMC_A2, EVENTOUT - - - - - - - - D3 13 - - - - D3 13 PF3 I/O FT - LPTIM3_IN1, FMC_A3, EVENTOUT - - - - - - - - E3 14 - - - - E3 14 PF4 I/O FT - LPTIM3_ETR, FMC_A4, EVENTOUT - - - - - - - - F2 15 - - - - F2 15 PF5 I/O FT - LPTIM3_OUT, FMC_A5, EVENTOUT - - - - - - - 10 F6 16 - - - 10 F6 16 VSS S - - - - - - - - - - 11 F7 17 - - - 11 F7 17 VDD S - - - - - TIM5_ETR, TIM5_CH1, OCTOSPI1_IO3, SAI1_SD_B, EVENTOUT - - TIM5_CH2, OCTOSPI1_IO2, SAI1_MCLK_B, EVENTOUT TAMP_IN6/TAMP_ OUT3 - TIM5_CH3, OCTOSPI1_IO0, SAI1_SCK_B, EVENTOUT TAMP_IN7/TAMP_ OUT8 - - - - - - - - - - - - - - - - - - - - - - - - 18 19 20 - - - - - - - - - - - - - - - 18 19 20 PF6 PF7 PF8 I/O I/O I/O FT FT FT Additional functions 91/340 Pinouts and pin description WLCSP81_Ext-SMPS DS12737 Rev 6 LQFP64_Ext-SMPS STM32L552xx LQFP48_Ext-SMPS STM32L552xxxxQ UFQFPN48_ExtSMPS STM32L552xxxxP DS12737 Rev 6 - 5 - - 5 - 5 - - D9 - - 5 - - D9 - - 12 - - F1 21 22 23 - - 5 - - 5 - - 5 - - 12 - - F1 21 PF9 I/O I/O structure Pin type LQFP144 UFBGA132 LQFP100 LQFP64 LQFP48 UFQFPN48 STM32L552xx LQFP144_SMPS UFBGA132_SMPS LQFP100_SMPS WLCSP81_SMPS LQFP64_SMPS WLCSP81_Ext-SMPS LQFP64_Ext-SMPS - STM32L552xxxxQ FT Notes - LQFP48_Ext-SMPS UFQFPN48_ExtSMPS STM32L552xxxxP Pin name (function after reset) Pin Number Alternate functions Additional functions - TIM5_CH4, OCTOSPI1_IO1, SAI1_FS_B, TIM15_CH1, EVENTOUT TAMP_IN8/TAMP_ OUT7 - I/O FT - OCTOSPI1_CLK, DFSDM1_CKOUT, SAI1_D3, TIM15_CH2, EVENTOUT 23 PH0OSC_I I/O N (PH0) FT - EVENTOUT OSC_IN I/O FT - EVENTOUT OSC_OUT I-O RS T - - - 22 PF10 6 6 6 D8 6 D8 13 G1 24 6 6 6 13 G1 24 PH1OSC_ OUT (PH1) 7 7 7 E9 7 E9 14 G2 25 7 7 7 14 G2 25 NRST Pinouts and pin description 92/340 Table 21. STM32L552xx pin definitions (continued) STM32L552xx STM32L552xx Table 21. STM32L552xx pin definitions (continued) - - - 9 10 E7 F8 F7 8 9 10 E7 F8 F7 15 16 17 H2 G3 F3 26 27 28 - - - - - - 8 9 10 15 16 17 H2 G3 F3 26 27 28 PC0 PC1 PC2 I/O I/O I/O I/O structure Pin type LQFP144 UFBGA132 LQFP100 LQFP64 LQFP48 UFQFPN48 LQFP144_SMPS UFBGA132_SMPS LQFP100_SMPS WLCSP81_SMPS LQFP64_SMPS WLCSP81_Ext-SMPS LQFP64_Ext-SMPS 8 STM32L552xx FT _fa FT _fa FT _a Alternate functions Additional functions - LPTIM1_IN1, OCTOSPI1_IO7, I2C3_SCL, LPUART1_RX, SDMMC1_D5, SAI2_FS_A, LPTIM2_IN1, EVENTOUT ADC12_IN1 - TRACED0, LPTIM1_OUT, SPI2_MOSI, I2C3_SDA, LPUART1_TX, OCTOSPI1_IO4, SAI1_SD_A, EVENTOUT ADC12_IN2 - LPTIM1_IN2, SPI2_MISO, DFSDM1_CKOUT, OCTOSPI1_IO5, EVENTOUT ADC12_IN3 93/340 Pinouts and pin description - - STM32L552xxxxQ Notes DS12737 Rev 6 - LQFP48_Ext-SMPS UFQFPN48_ExtSMPS STM32L552xxxxP Pin name (function after reset) Pin Number DS12737 Rev 6 G7 18 F4 29 - - 11 18 F4 29 PC3 I/O FT _a - - - - - - - - - - - - - 19 - 30 VSSA S - - - - - - - - - - - - - - - - 20 - 31 VREF- S - - - - 8 8 12 G9 12 G9 19 H1 30 8 8 12 - H1 - VSSA/ VREF- S - - - - - - - G8 - G8 20 J1 31 - - - 21 J1 32 VREF + S - - - VREFBUF_OUT - - - H9 - H9 21 K1 32 - - - 22 K1 33 VDDA S - - - - 9 9 13 - 13 - - - - 9 9 13 - - - VDDA/ VREF + S - - - - LQFP144 11 UFBGA132 G7 LQFP100 11 LQFP64 - LQFP48 - LPTIM1_ETR, LPTIM3_OUT, SAI1_D1, SPI2_MOSI, OCTOSPI1_IO6, SAI1_SD_A, LPTIM2_ETR, EVENTOUT UFQFPN48 Alternate functions LQFP64_SMPS Notes I/O structure Pin type STM32L552xx LQFP144_SMPS UFBGA132_SMPS LQFP100_SMPS STM32L552xxxxQ WLCSP81_SMPS WLCSP81_Ext-SMPS LQFP64_Ext-SMPS LQFP48_Ext-SMPS UFQFPN48_ExtSMPS STM32L552xxxxP Pin name (function after reset) Pin Number Additional functions ADC12_IN4 Pinouts and pin description 94/340 Table 21. STM32L552xx pin definitions (continued) STM32L552xx STM32L552xx Table 21. STM32L552xx pin definitions (continued) DS12737 Rev 6 22 J2 33 10 10 14 23 J2 34 PA0 I/O FT _a - - - - - - - - H3 - - - - - H3 - OPAM P1_VI NM I TT - - - - TIM2_CH2, TIM5_CH2, I2C1_SMBA, SPI1_SCK, USART2_RTS/USART 2_DE, UART4_RX, OCTOSPI1_DQS, TIM15_CH1N, EVENTOUT OPAMP1_VINM, ADC12_IN6, TAMP_IN5/TAMP_ OUT4 11 11 15 F6 15 F6 23 G4 34 11 11 15 24 G4 LQFP144 H8 UFBGA132 14 LQFP100 H8 LQFP64 14 LQFP48 10 UFQFPN48 10 TIM2_CH1, TIM5_CH1, TIM8_ETR, USART2_CTS/USART 2_NSS, UART4_TX, SAI1_EXTCLK, TIM2_ETR, EVENTOUT LQFP64_SMPS Alternate functions 35 PA1 I/O FT _a Additional functions OPAMP1_VINP, ADC12_IN5, WKUP1, TAMP_IN2/TAMP_ OUT1 95/340 Pinouts and pin description Notes I/O structure Pin type STM32L552xx LQFP144_SMPS UFBGA132_SMPS LQFP100_SMPS STM32L552xxxxQ WLCSP81_SMPS WLCSP81_Ext-SMPS LQFP64_Ext-SMPS LQFP48_Ext-SMPS UFQFPN48_ExtSMPS STM32L552xxxxP Pin name (function after reset) Pin Number 12 G6 16 G6 24 K2 35 12 12 16 25 K2 36 PA2 I/O I/O structure Pin type LQFP144 UFBGA132 LQFP100 LQFP64 LQFP48 UFQFPN48 STM32L552xx LQFP144_SMPS UFBGA132_SMPS LQFP100_SMPS WLCSP81_SMPS LQFP64_SMPS WLCSP81_Ext-SMPS LQFP64_Ext-SMPS 16 STM32L552xxxxQ FT _a Notes DS12737 Rev 6 12 LQFP48_Ext-SMPS UFQFPN48_ExtSMPS STM32L552xxxxP Pin name (function after reset) Pin Number Alternate functions Additional functions - TIM2_CH3, TIM5_CH3, USART2_TX, LPUART1_TX, OCTOSPI1_NCS, UCPD1_FRSTX1, SAI2_EXTCLK, TIM15_CH1, EVENTOUT ADC12_IN7, WKUP4/LSCO, COMP1_INP OPAMP1_VOUT, ADC12_IN8 13 17 F5 17 F5 25 L1 36 13 13 17 26 L1 37 PA3 I/O TT _a - - - 18 H2 18 H2 26 G7 37 - - 18 27 G7 38 VSS S - - - - - - 19 - 19 - 27 G6 38 - - 19 28 G6 39 VDD S - - - - - OCTOSPI1_NCS, SPI1_NSS, SPI3_NSS, USART2_CK, SAI1_FS_B, LPTIM2_OUT, EVENTOUT ADC12_IN9, DAC1_OUT1 14 14 20 H7 20 H7 28 L3 39 14 14 20 29 L3 40 PA4 I/O TT _a STM32L552xx 13 TIM2_CH4, TIM5_CH4, SAI1_CK1, USART2_RX, LPUART1_RX, OCTOSPI1_CLK, SAI1_MCLK_A, TIM15_CH2, EVENTOUT Pinouts and pin description 96/340 Table 21. STM32L552xx pin definitions (continued) STM32L552xx Table 21. STM32L552xx pin definitions (continued) 15 H6 21 H6 29 M1 40 15 15 21 30 M1 41 PA5 I/O I/O structure Pin type LQFP144 UFBGA132 LQFP100 LQFP64 LQFP48 UFQFPN48 STM32L552xx LQFP144_SMPS UFBGA132_SMPS LQFP100_SMPS WLCSP81_SMPS LQFP64_SMPS WLCSP81_Ext-SMPS LQFP64_Ext-SMPS 21 STM32L552xxxxQ TT _a DS12737 Rev 6 Alternate functions Additional functions - TIM2_CH1, TIM2_ETR, TIM8_CH1N, SPI1_SCK, LPTIM2_ETR, EVENTOUT ADC12_IN10, DAC1_OUT2 OPAMP2_VINP, ADC12_IN11 - 16 16 22 G5 22 G5 30 L2 41 16 16 22 31 L2 42 PA6 I/O FT _a - TIM1_BKIN, TIM3_CH1, TIM8_BKIN, SPI1_MISO, USART3_CTS/USART 3_NSS, LPUART1_CTS, OCTOSPI1_IO3, TIM16_CH1, EVENTOUT - - - - - - - M2 - - - - - M2 - OPAM P2_VI NM I TT - - 97/340 Pinouts and pin description Notes 15 LQFP48_Ext-SMPS UFQFPN48_ExtSMPS STM32L552xxxxP Pin name (function after reset) Pin Number DS12737 Rev 6 31 K3 42 17 17 23 32 K3 43 PA7 I/O FT _fa - - - 24 G4 - G4 - M3 - - - 24 33 M3 44 PC4 I/O FT _a - USART3_TX, OCTOSPI1_IO7, EVENTOUT COMP1_INM, ADC12_IN13 - SAI1_D3, USART3_RX, EVENTOUT ADC12_IN14, WKUP5, TAMP_IN4/TAMP_ OUT5, COMP1_INP - TIM1_CH2N, TIM3_CH3, TIM8_CH2N, SPI1_NSS, USART3_CK, OCTOSPI1_IO1, COMP1_OUT, SAI1_EXTCLK, EVENTOUT OPAMP2_VOUT, ADC12_IN15 - 18 - 18 - 25 - J6 - 24 - J6 - 32 J3 M4 - 43 - 18 - 18 25 26 34 35 J3 M4 LQFP144 J7 UFBGA132 23 LQFP100 J7 LQFP64 23 LQFP48 17 UFQFPN48 17 TIM1_CH1N, TIM3_CH2, TIM8_CH1N, I2C3_SCL, SPI1_MOSI, OCTOSPI1_IO2, TIM17_CH1, EVENTOUT LQFP64_SMPS Alternate functions 45 46 PC5 PB0 I/O I/O FT _a TT _a Additional functions OPAMP2_VINM, ADC12_IN12 STM32L552xx Notes I/O structure Pin type STM32L552xx LQFP144_SMPS UFBGA132_SMPS LQFP100_SMPS STM32L552xxxxQ WLCSP81_SMPS WLCSP81_Ext-SMPS LQFP64_Ext-SMPS LQFP48_Ext-SMPS UFQFPN48_ExtSMPS STM32L552xxxxP Pin name (function after reset) Pin Number Pinouts and pin description 98/340 Table 21. STM32L552xx pin definitions (continued) STM32L552xx Table 21. STM32L552xx pin definitions (continued) 19 H5 25 H5 33 L4 44 19 19 27 36 L4 47 PB1 I/O I/O structure Pin type LQFP144 UFBGA132 LQFP100 LQFP64 LQFP48 UFQFPN48 STM32L552xx LQFP144_SMPS UFBGA132_SMPS LQFP100_SMPS WLCSP81_SMPS LQFP64_SMPS WLCSP81_Ext-SMPS LQFP64_Ext-SMPS 26 STM32L552xxxxQ FT _a Notes DS12737 Rev 6 19 LQFP48_Ext-SMPS UFQFPN48_ExtSMPS STM32L552xxxxP Pin name (function after reset) Pin Number Alternate functions Additional functions - TIM1_CH3N, TIM3_CH4, TIM8_CH3N, DFSDM1_DATIN0, USART3_RTS/USART 3_DE, LPUART1_RTS/LPUA RT1_DE, OCTOSPI1_IO0, LPTIM2_IN1, EVENTOUT COMP1_INM, ADC12_IN16 RTC_OUT2, COMP1_INP 20 27 J5 26 J5 34 K4 45 20 20 28 37 K4 48 PB2 I/O FT _a - - - - - - - - K5 46 - - - - K5 49 PF11 I/O FT - OCTOSPI1_NCLK, EVENTOUT - - - - - - - - L5 47 - - - - L5 50 PF12 I/O FT - FMC_A6, EVENTOUT - - - - J9 - J9 - - 48 - - - - - 51 VSS S - - - - - - - J8 - J8 - - 49 - - - - - 52 VDD S - - - - - - - - - - - M5 50 - - - - M5 53 PF13 I/O FT - I2C4_SMBA, FMC_A7, EVENTOUT - Pinouts and pin description 99/340 20 LPTIM1_OUT, I2C3_SMBA, DFSDM1_CKIN0, OCTOSPI1_DQS, UCPD1_FRSTX1, EVENTOUT Pin Number LQFP64_SMPS WLCSP81_SMPS LQFP100_SMPS UFBGA132_SMPS LQFP144_SMPS UFQFPN48 LQFP48 LQFP64 LQFP100 UFBGA132 LQFP144 Pin name (function after reset) Pin type I/O structure Notes Alternate functions - - - - - - - J5 51 - - - - J5 54 PF14 I/O FT _f - I2C4_SCL, TSC_G8_IO1, FMC_A8, EVENTOUT - - - - - - - - L6 52 - - - - L6 55 PF15 I/O FT _f - I2C4_SDA, TSC_G8_IO2, FMC_A9, EVENTOUT - - - - - - - - M6 53 - - - - M6 56 PG0 I/O FT - TSC_G8_IO3, FMC_A10, EVENTOUT - - - - - - - - K6 54 - - - - K6 57 PG1 I/O FT - TSC_G8_IO4, FMC_A11, EVENTOUT - - TIM1_ETR, DFSDM1_DATIN2, FMC_D4, SAI1_SD_B, EVENTOUT - - TIM1_CH1N, DFSDM1_CKIN2, FMC_D5, SAI1_SCK_B, EVENTOUT - - TIM1_CH1, DFSDM1_CKOUT, OCTOSPI1_NCLK, FMC_D6, SAI1_FS_B, EVENTOUT - - - - - - - - - - - - - - - - - - - 35 36 37 K7 J6 M7 55 56 57 - - - - - - - - - 38 39 40 K7 J6 M7 58 59 60 PE7 PE8 PE9 I/O I/O I/O FT FT FT Additional functions STM32L552xx WLCSP81_Ext-SMPS DS12737 Rev 6 LQFP64_Ext-SMPS STM32L552xx LQFP48_Ext-SMPS STM32L552xxxxQ UFQFPN48_ExtSMPS STM32L552xxxxP Pinouts and pin description 100/340 Table 21. STM32L552xx pin definitions (continued) STM32L552xx Table 21. STM32L552xx pin definitions (continued) Pin Number LQFP64_SMPS WLCSP81_SMPS LQFP100_SMPS UFBGA132_SMPS LQFP144_SMPS UFQFPN48 LQFP48 LQFP64 LQFP100 UFBGA132 LQFP144 Pin name (function after reset) Pin type I/O structure Notes Alternate functions - - - - - - - - 58 - - - - L10 61 VSS S - - - - - - - H1 - H1 - J4 59 - - - - J4 62 VDD S - - - - - TIM1_CH2N, TSC_G5_IO1, OCTOSPI1_CLK, FMC_D7, SAI1_MCLK_B, EVENTOUT - - TIM1_CH2, TSC_G5_IO2, OCTOSPI1_NCS, FMC_D8, EVENTOUT - - TIM1_CH3N, SPI1_NSS, TSC_G5_IO3, OCTOSPI1_IO0, FMC_D9, EVENTOUT - - TIM1_CH3, SPI1_SCK, TSC_G5_IO4, OCTOSPI1_IO1, FMC_D10, EVENTOUT - - - - - - - - - - - - - - - - J4 - - - - - - - - 38 39 40 41 J7 L7 J8 M8 60 61 62 63 - - - - - - - - - - - - 41 42 43 44 J7 L7 J8 M8 63 64 65 66 PE10 PE11 PE12 PE13 I/O I/O I/O I/O FT FT FT FT Additional functions 101/340 Pinouts and pin description WLCSP81_Ext-SMPS DS12737 Rev 6 LQFP64_Ext-SMPS STM32L552xx LQFP48_Ext-SMPS STM32L552xxxxQ UFQFPN48_ExtSMPS STM32L552xxxxP DS12737 Rev 6 - 21 - - 21 - 28 H4 H3 J3 - - 27 - - J4 42 43 44 K8 L8 K9 64 65 66 - - 21 - - 21 - - 29 45 46 47 K8 L8 K9 67 68 69 PE14 PE15 PB10 I/O I/O I/O I/O structure Pin type LQFP144 UFBGA132 LQFP100 LQFP64 LQFP48 UFQFPN48 STM32L552xx LQFP144_SMPS UFBGA132_SMPS LQFP100_SMPS WLCSP81_SMPS LQFP64_SMPS WLCSP81_Ext-SMPS LQFP64_Ext-SMPS - STM32L552xxxxQ FT FT FT _f Notes - LQFP48_Ext-SMPS UFQFPN48_ExtSMPS STM32L552xxxxP Pin name (function after reset) Pin Number Alternate functions Additional functions - TIM1_CH4, TIM1_BKIN2, SPI1_MISO, OCTOSPI1_IO2, FMC_D11, EVENTOUT - - TIM1_BKIN, SPI1_MOSI, OCTOSPI1_IO3, FMC_D12, EVENTOUT - - TIM2_CH3, LPTIM3_OUT, I2C4_SCL, I2C2_SCL, SPI2_SCK, USART3_TX, LPUART1_RX, TSC_SYNC, OCTOSPI1_CLK, COMP1_OUT, SAI1_SCK_A, EVENTOUT - Pinouts and pin description 102/340 Table 21. STM32L552xx pin definitions (continued) STM32L552xx STM32L552xx Table 21. STM32L552xx pin definitions (continued) DS12737 Rev 6 45 L9 67 22 22 30 48 L9 70 PB11 I/O FT _f - - - - - 28 J3 46 M9 68 - - - - - - VDDS MPS S - - - - - - - - 29 H3 47 M1 0 69 - - - - - - VLXS MPS S - - - - - - - - 30 J2 48 L10 70 - - - - - - VSSS MPS S - - - - 22 22 30 J1 - - - - - - - - - - - VDD12 _1 S - - - - 23 23 31 B2 31 B2 49 E9 71 23 23 31 49 E9 71 VSS S - - - - - - - - 32 J1 50 M11 72 - - - - - - V15S MPS_ 1 S - - - - 24 24 32 A1 33 A1 51 D4 73 24 24 32 50 D4 72 VDD S - - - - LQFP144 H4 UFBGA132 - LQFP100 J2 LQFP64 29 LQFP48 - UFQFPN48 - TIM2_CH4, I2C4_SDA, I2C2_SDA, USART3_RX, LPUART1_TX, OCTOSPI1_NCS, COMP2_OUT, EVENTOUT LQFP64_SMPS Alternate functions Additional functions - 103/340 Pinouts and pin description Notes I/O structure Pin type STM32L552xx LQFP144_SMPS UFBGA132_SMPS LQFP100_SMPS STM32L552xxxxQ WLCSP81_SMPS WLCSP81_Ext-SMPS LQFP64_Ext-SMPS LQFP48_Ext-SMPS UFQFPN48_ExtSMPS STM32L552xxxxP Pin name (function after reset) Pin Number 26 25 26 34 G2 F2 - 34 G2 F2 - 52 L11 K10 - 74 25 26 25 26 33 34 51 52 L11 K10 73 74 PB12 PB13 I/O I/O I/O structure Pin type LQFP144 UFBGA132 LQFP100 LQFP64 LQFP48 UFQFPN48 STM32L552xx LQFP144_SMPS UFBGA132_SMPS LQFP100_SMPS WLCSP81_SMPS LQFP64_SMPS WLCSP81_Ext-SMPS LQFP64_Ext-SMPS 33 STM32L552xxxxQ FT FT _f Alternate functions Additional functions - TIM1_BKIN, I2C2_SMBA, SPI2_NSS, DFSDM1_DATIN1, USART3_CK, LPUART1_RTS/LPUA RT1_DE, TSC_G1_IO1, OCTOSPI1_NCLK, SAI2_FS_A, TIM15_BKIN, EVENTOUT - - TIM1_CH1N, LPTIM3_IN1, I2C2_SCL, SPI2_SCK, DFSDM1_CKIN1, USART3_CTS/USART 3_NSS, LPUART1_CTS, TSC_G1_IO2, UCPD1_FRSTX2, SAI2_SCK_A, TIM15_CH1N, EVENTOUT - STM32L552xx Notes DS12737 Rev 6 25 LQFP48_Ext-SMPS UFQFPN48_ExtSMPS STM32L552xxxxP Pin name (function after reset) Pin Number Pinouts and pin description 104/340 Table 21. STM32L552xx pin definitions (continued) STM32L552xx Table 21. STM32L552xx pin definitions (continued) 27 G1 35 G1 53 K11 75 27 27 35 53 K11 75 PB14 I/O I/O structure Pin type LQFP144 UFBGA132 LQFP100 LQFP64 LQFP48 UFQFPN48 STM32L552xx LQFP144_SMPS UFBGA132_SMPS LQFP100_SMPS WLCSP81_SMPS LQFP64_SMPS WLCSP81_Ext-SMPS LQFP64_Ext-SMPS 35 STM32L552xxxxQ FT _fd Alternate functions Additional functions - TIM1_CH2N, LPTIM3_ETR, TIM8_CH2N, I2C2_SDA, SPI2_MISO, DFSDM1_DATIN2, USART3_RTS/USART 3_DE, TSC_G1_IO3, SAI2_MCLK_A, TIM15_CH1, EVENTOUT UCPD1_DB2 UCPD1_CC2 105/340 28 28 36 F1 36 F1 54 K12 76 28 28 36 54 K12 76 PB15 I/O FT _c - RTC_REFIN, TIM1_CH3N, TIM8_CH3N, SPI2_MOSI, DFSDM1_CKIN2, SAI2_SD_A, TIM15_CH2, EVENTOUT - - - - - - 55 L12 77 - - - 55 L12 77 PD8 I/O FT - USART3_TX, FMC_D13, EVENTOUT - - USART3_RX, FMC_D14, SAI2_MCLK_A, EVENTOUT - - - - - - - 56 J10 78 - - - 56 J10 78 PD9 I/O FT Pinouts and pin description Notes DS12737 Rev 6 27 LQFP48_Ext-SMPS UFQFPN48_ExtSMPS STM32L552xxxxP Pin name (function after reset) Pin Number DS12737 Rev 6 - - - - - - - - - - - - - - - - 57 58 59 M1 2 J11 J12 79 80 81 - - - - - - - - - 57 58 59 M1 2 J11 J12 79 80 81 PD10 PD11 PD12 I/O I/O I/O I/O structure Pin type LQFP144 UFBGA132 LQFP100 LQFP64 LQFP48 UFQFPN48 STM32L552xx LQFP144_SMPS UFBGA132_SMPS LQFP100_SMPS WLCSP81_SMPS LQFP64_SMPS WLCSP81_Ext-SMPS LQFP64_Ext-SMPS - STM32L552xxxxQ FT FT FT _f Alternate functions Additional functions - USART3_CK, TSC_G6_IO1, FMC_D15, SAI2_SCK_A, EVENTOUT - - I2C4_SMBA, USART3_CTS/USART 3_NSS, TSC_G6_IO2, FMC_A16, SAI2_SD_A, LPTIM2_ETR, EVENTOUT - - TIM4_CH1, I2C4_SCL, USART3_RTS/USART 3_DE, TSC_G6_IO3, FMC_A17, SAI2_FS_A, LPTIM2_IN1, EVENTOUT - - - - - - - - - 60 H11 82 - - - 60 H11 82 PD13 I/O FT _f - TIM4_CH2, I2C4_SDA, TSC_G6_IO4, FMC_A18, LPTIM2_OUT, EVENTOUT - - - - - - - - 83 - - - - - 83 VSS S - - - STM32L552xx Notes - LQFP48_Ext-SMPS UFQFPN48_ExtSMPS STM32L552xxxxP Pin name (function after reset) Pin Number Pinouts and pin description 106/340 Table 21. STM32L552xx pin definitions (continued) STM32L552xx Table 21. STM32L552xx pin definitions (continued) Pin Number LQFP64_SMPS WLCSP81_SMPS LQFP100_SMPS UFBGA132_SMPS LQFP144_SMPS UFQFPN48 LQFP48 LQFP64 LQFP100 UFBGA132 LQFP144 Pin name (function after reset) Pin type I/O structure Notes Alternate functions - - - - - - - - 84 - - - - - 84 VDD S - - - - - - - - - - 61 H10 85 - - - 61 H10 85 PD14 I/O FT - TIM4_CH3, FMC_D0, EVENTOUT - - - - - - - 62 H12 86 - - - 62 H12 86 PD15 I/O FT - TIM4_CH4, FMC_D1, EVENTOUT - - - - - - - - G10 87 - - - - G10 87 PG2 I/O FT _s - SPI1_SCK, FMC_A12, SAI2_SCK_B, EVENTOUT - - - - - - - - G11 88 - - - - G11 88 PG3 I/O FT _s - SPI1_MISO, FMC_A13, SAI2_FS_B, EVENTOUT - - - - - - - - G9 89 - - - - G9 89 PG4 I/O FT _s - SPI1_MOSI, FMC_A14, SAI2_MCLK_B, EVENTOUT - - SPI1_NSS, LPUART1_CTS, FMC_A15, SAI2_SD_B, EVENTOUT - - - - - - - - G12 90 - - - - G12 90 PG5 I/O FT _s Additional functions 107/340 Pinouts and pin description WLCSP81_Ext-SMPS DS12737 Rev 6 LQFP64_Ext-SMPS STM32L552xx LQFP48_Ext-SMPS STM32L552xxxxQ UFQFPN48_ExtSMPS STM32L552xxxxP - - - - - F9 91 - - - - F9 91 PG6 I/O I/O structure Pin type LQFP144 UFBGA132 LQFP100 LQFP64 LQFP48 UFQFPN48 STM32L552xx LQFP144_SMPS UFBGA132_SMPS LQFP100_SMPS WLCSP81_SMPS LQFP64_SMPS WLCSP81_Ext-SMPS LQFP64_Ext-SMPS - STM32L552xxxxQ FT _s DS12737 Rev 6 Notes - LQFP48_Ext-SMPS UFQFPN48_ExtSMPS STM32L552xxxxP Pin name (function after reset) Pin Number Alternate functions Additional functions - OCTOSPI1_DQS, I2C3_SMBA, LPUART1_RTS/LPUA RT1_DE, UCPD1_FRSTX1, EVENTOUT - - - - - - - - - F10 92 - - - - F10 92 PG7 I/O FT _fs - SAI1_CK1, I2C3_SCL, DFSDM1_CKOUT, LPUART1_TX, UCPD1_FRSTX2, FMC_INT, SAI1_MCLK_A, EVENTOUT - - - - - - - F12 93 - - - - F12 93 PG8 I/O FT _fs - I2C3_SDA, LPUART1_RX, EVENTOUT - - - - - - - - - 94 - - - - - 94 VSS S - - - - - - - - - - - - 95 - - - - - 95 VDDIO 2 S - - - - Pinouts and pin description 108/340 Table 21. STM32L552xx pin definitions (continued) STM32L552xx STM32L552xx Table 21. STM32L552xx pin definitions (continued) - E1 37 E1 63 F11 96 - - 37 63 F11 96 PC6 I/O I/O structure Pin type LQFP144 UFBGA132 LQFP100 LQFP64 LQFP48 UFQFPN48 STM32L552xx LQFP144_SMPS UFBGA132_SMPS LQFP100_SMPS WLCSP81_SMPS LQFP64_SMPS WLCSP81_Ext-SMPS LQFP64_Ext-SMPS 37 STM32L552xxxxQ FT Additional functions - TIM3_CH1, TIM8_CH1, DFSDM1_CKIN3, SDMMC1_D0DIR, TSC_G4_IO1, SDMMC1_D6, SAI2_MCLK_A, EVENTOUT - - TIM3_CH2, TIM8_CH2, DFSDM1_DATIN3, SDMMC1_D123DIR, TSC_G4_IO2, SDMMC1_D7, SAI2_MCLK_B, EVENTOUT - - - - 38 39 E2 F3 38 39 E2 F3 64 65 E10 E12 97 98 - - - - 38 39 64 65 E10 E12 97 98 PC7 PC8 I/O I/O FT - - TIM3_CH3, TIM8_CH3, TSC_G4_IO3, SDMMC1_D0, EVENTOUT FT - 109/340 Pinouts and pin description Alternate functions DS12737 Rev 6 Notes - LQFP48_Ext-SMPS UFQFPN48_ExtSMPS STM32L552xxxxP Pin name (function after reset) Pin Number 29 30 29 30 31 41 42 43 G3 F4 D1 E3 40 41 42 43 G3 F4 D1 E3 66 67 68 69 E11 99 D12 100 D10 101 D11 102 - 29 30 31 - 29 30 31 40 41 42 43 66 67 68 69 E11 99 D12 100 D10 101 D11 102 PC9 PA8 PA9 PA10 I/O I/O I/O I/O I/O structure Pin type LQFP144 UFBGA132 LQFP100 LQFP64 LQFP48 UFQFPN48 LQFP144_SMPS UFBGA132_SMPS LQFP100_SMPS WLCSP81_SMPS LQFP64_SMPS WLCSP81_Ext-SMPS LQFP64_Ext-SMPS 40 STM32L552xx FT _f FT _f FT _fu FT _fu Alternate functions Additional functions - TRACED0, TIM8_BKIN2, TIM3_CH4, TIM8_CH4, TSC_G4_IO4, USB_NOE, SDMMC1_D1, SAI2_EXTCLK, EVENTOUT - - MCO, TIM1_CH1, SAI1_CK2, USART1_CK, SAI1_SCK_A, LPTIM2_OUT, EVENTOUT - - TIM1_CH2, SPI2_SCK, USART1_TX, SAI1_FS_A, TIM15_BKIN, EVENTOUT - - TIM1_CH3, SAI1_D1, USART1_RX, CRS_SYNC, SAI1_SD_A, TIM17_BKIN, EVENTOUT - STM32L552xx 31 - STM32L552xxxxQ Notes DS12737 Rev 6 - LQFP48_Ext-SMPS UFQFPN48_ExtSMPS STM32L552xxxxP Pin name (function after reset) Pin Number Pinouts and pin description 110/340 Table 21. STM32L552xx pin definitions (continued) STM32L552xx Table 21. STM32L552xx pin definitions (continued) DS12737 Rev 6 33 32 33 45 C1 C2 44 45 C1 C2 70 71 C12 103 B12 104 34 46 D2 46 D2 72 C10 105 - - 47 - 47 - - - - 48 B1 48 B1 73 A12 106 35 35 - B5 - B5 74 H4 36 36 - A9 - A9 75 D9 - 32 33 33 44 45 70 C12 103 B12 104 PA13 (JTMS/ C10 105 I/O SWDI O) 34 46 72 - - 47 - - - 48 73 A12 106 107 35 35 - 74 H4 108 36 36 - 75 D9 - - PA12 I/O 71 34 - PA11 I/O I/O structure Pin type LQFP144 UFBGA132 LQFP100 LQFP64 LQFP48 32 Alternate functions Additional functions - TIM1_CH4, TIM1_BKIN2, SPI1_MISO, USART1_CTS/USART 1_NSS, FDCAN1_RX, USB_DM, EVENTOUT - - TIM1_ETR, SPI1_MOSI, USART1_RTS/USART 1_DE, FDCAN1_TX, USB_DP, EVENTOUT - FT (3) JTMS/SWDIO, IR_OUT, USB_NOE, SAI1_SD_B, EVENTOUT - FT _u FT _u VSS S - - - - VDDU SB S - - - - 107 VSS S - - - - 108 VDD S - - - - 111/340 Pinouts and pin description 34 UFQFPN48 STM32L552xx LQFP144_SMPS UFBGA132_SMPS LQFP100_SMPS WLCSP81_SMPS LQFP64_SMPS WLCSP81_Ext-SMPS LQFP64_Ext-SMPS 44 STM32L552xxxxQ Notes 32 LQFP48_Ext-SMPS UFQFPN48_ExtSMPS STM32L552xxxxP Pin name (function after reset) Pin Number 49 76 C11 109 37 37 49 DS12737 Rev 6 38 - 38 - 50 51 E4 A2 50 51 E4 A2 77 78 A11 110 B11 111 38 - 38 - 50 51 77 78 A11 110 B11 111 PA15 (JTDI) PC10 I/O I/O I/O structure Pin type 76 LQFP144 LQFP64 LQFP48 UFQFPN48 LQFP144_SMPS UFBGA132_SMPS LQFP100_SMPS WLCSP81_SMPS D3 PA14 (JTCK/ C11 109 I/O SWCL K) FT FT _c FT Alternate functions Additional functions (3) JTCK/SWCLK, LPTIM1_OUT, I2C1_SMBA, I2C4_SMBA, SAI1_FS_B, EVENTOUT - (3) JTDI, TIM2_CH1, TIM2_ETR, USART2_RX, SPI1_NSS, SPI3_NSS, USART3_RTS/USART 3_DE, UART4_RTS/UART4_ DE, SAI2_FS_B, EVENTOUT UCPD1_CC1 - TRACED1, LPTIM3_ETR, SPI3_SCK, USART3_TX, UART4_TX, TSC_G3_IO2, SDMMC1_D2, SAI2_SCK_B, EVENTOUT - STM32L552xx Notes D3 LQFP64_SMPS WLCSP81_Ext-SMPS LQFP64_Ext-SMPS 49 STM32L552xx UFBGA132 37 STM32L552xxxxQ LQFP100 37 LQFP48_Ext-SMPS UFQFPN48_ExtSMPS STM32L552xxxxP Pin name (function after reset) Pin Number Pinouts and pin description 112/340 Table 21. STM32L552xx pin definitions (continued) STM32L552xx Table 21. STM32L552xx pin definitions (continued) - C3 52 C3 79 A10 112 - - 52 79 A10 112 PC11 I/O I/O structure Pin type LQFP144 UFBGA132 LQFP100 LQFP64 LQFP48 UFQFPN48 STM32L552xx LQFP144_SMPS UFBGA132_SMPS LQFP100_SMPS WLCSP81_SMPS LQFP64_SMPS WLCSP81_Ext-SMPS LQFP64_Ext-SMPS 52 STM32L552xxxxQ FT Notes DS12737 Rev 6 - LQFP48_Ext-SMPS UFQFPN48_ExtSMPS STM32L552xxxxP Pin name (function after reset) Pin Number Alternate functions Additional functions - LPTIM3_IN1, OCTOSPI1_NCS, SPI3_MISO, USART3_RX, UART4_RX, TSC_G3_IO3, UCPD1_FRSTX2, SDMMC1_D3, SAI2_MCLK_B, EVENTOUT - - - 53 B3 53 B3 80 B10 113 - - 53 80 B10 113 PC12 I/O FT - - - - - - - 81 C9 114 - - - 81 C9 114 PD0 I/O FT - SPI2_NSS, FDCAN1_RX, FMC_D2, EVENTOUT - - - - - - - 82 B9 115 - - - 82 B9 115 PD1 I/O FT - SPI2_SCK, FDCAN1_TX, FMC_D3, EVENTOUT - Pinouts and pin description 113/340 - TRACED3, SPI3_MOSI, USART3_CK, UART5_TX, TSC_G3_IO4, SDMMC1_CK, SAI2_SD_B, EVENTOUT DS12737 Rev 6 - - - - - - - A3 - - 54 - - A3 - - 83 84 85 A9 C8 B8 116 117 118 - - - - - - 54 - - 83 84 85 A9 C8 B8 116 117 118 PD2 PD3 PD4 I/O I/O I/O I/O structure Pin type LQFP144 UFBGA132 LQFP100 LQFP64 LQFP48 UFQFPN48 STM32L552xx LQFP144_SMPS UFBGA132_SMPS LQFP100_SMPS WLCSP81_SMPS LQFP64_SMPS WLCSP81_Ext-SMPS LQFP64_Ext-SMPS - STM32L552xxxxQ FT FT FT Alternate functions Additional functions - TRACED2, TIM3_ETR, USART3_RTS/USART 3_DE, UART5_RX, TSC_SYNC, SDMMC1_CMD, EVENTOUT - - SPI2_SCK, SPI2_MISO, DFSDM1_DATIN0, USART2_CTS/USART 2_NSS, FMC_CLK, EVENTOUT - - SPI2_MOSI, DFSDM1_CKIN0, USART2_RTS/USART 2_DE, OCTOSPI1_IO4, FMC_NOE, EVENTOUT - - - - - - - - 86 A8 119 - - - 86 A8 119 PD5 I/O FT - USART2_TX, OCTOSPI1_IO5, FMC_NWE, EVENTOUT - - - - - - - - 120 - - - - - 120 VSS S - - - - - - - - - - - - 121 - - - - - 121 VDD S - - - - STM32L552xx Notes - LQFP48_Ext-SMPS UFQFPN48_ExtSMPS STM32L552xxxxP Pin name (function after reset) Pin Number Pinouts and pin description 114/340 Table 21. STM32L552xx pin definitions (continued) STM32L552xx Table 21. STM32L552xx pin definitions (continued) DS12737 Rev 6 - - - - - - - - - - D4 C4 - - - - - - D4 C4 87 88 - - A7 D7 B7 C7 122 123 124 125 - - - - - - - - - - - - 87 88 - - A7 D7 B7 C7 122 123 124 125 PD6 PD7 PG9 PG10 I/O I/O I/O I/O I/O structure Pin type LQFP144 UFBGA132 LQFP100 LQFP64 LQFP48 UFQFPN48 LQFP144_SMPS UFBGA132_SMPS LQFP100_SMPS WLCSP81_SMPS LQFP64_SMPS WLCSP81_Ext-SMPS LQFP64_Ext-SMPS - STM32L552xx FT FT FT _s FT _s 115/340 Alternate functions Additional functions - SAI1_D1, SPI3_MOSI, DFSDM1_DATIN1, USART2_RX, OCTOSPI1_IO6, FMC_NWAIT, SAI1_SD_A, EVENTOUT - - DFSDM1_CKIN1, USART2_CK, OCTOSPI1_IO7, FMC_NCE/FMC_NE1, EVENTOUT - - SPI3_SCK, USART1_TX, FMC_NCE/FMC_NE2, SAI2_SCK_A, TIM15_CH1N, EVENTOUT - - LPTIM1_IN1, SPI3_MISO, USART1_RX, FMC_NE3, SAI2_FS_A, TIM15_CH1, EVENTOUT - Pinouts and pin description - - STM32L552xxxxQ Notes - LQFP48_Ext-SMPS UFQFPN48_ExtSMPS STM32L552xxxxP Pin name (function after reset) Pin Number - E5 - E5 - - - - - - - M11 126 PG11 I/O I/O structure Pin type LQFP144 UFBGA132 LQFP100 LQFP64 LQFP48 UFQFPN48 STM32L552xx LQFP144_SMPS UFBGA132_SMPS LQFP100_SMPS WLCSP81_SMPS LQFP64_SMPS WLCSP81_Ext-SMPS LQFP64_Ext-SMPS - STM32L552xxxxQ FT _s Notes DS12737 Rev 6 - LQFP48_Ext-SMPS UFQFPN48_ExtSMPS STM32L552xxxxP Pin name (function after reset) Pin Number Alternate functions Additional functions - LPTIM1_IN2, OCTOSPI1_IO5, SPI3_MOSI, USART1_CTS/USART 1_NSS, SAI2_MCLK_A, TIM15_CH2, EVENTOUT - - - - B4 - B4 - A6 126 - - - - A6 127 PG12 I/O FT _s - - - - A4 - A4 - - 127 - - - - M1 0 128 PG13 I/O FT _fs - I2C1_SDA, USART1_CK, FMC_A24, EVENTOUT - - - - D5 - D5 - - 128 - - - - M9 129 PG14 I/O FT _fs - I2C1_SCL, FMC_A25, EVENTOUT - - - - B8 - B8 - H9 129 - - - - H9 130 VSS S - - - - - - - A5 - A5 - D8 130 - - - - D8 131 VDDIO 2 S - - - - STM32L552xx - LPTIM1_ETR, SPI3_NSS, USART1_RTS/USART 1_DE, FMC_NE4, SAI2_SD_A, EVENTOUT Pinouts and pin description 116/340 Table 21. STM32L552xx pin definitions (continued) STM32L552xx Table 21. STM32L552xx pin definitions (continued) Pin Number LQFP64_Ext-SMPS WLCSP81_Ext-SMPS LQFP64_SMPS WLCSP81_SMPS LQFP100_SMPS UFBGA132_SMPS LQFP144_SMPS UFQFPN48 LQFP48 LQFP64 LQFP100 UFBGA132 LQFP144 Pin name (function after reset) Pin type I/O structure Notes STM32L552xx LQFP48_Ext-SMPS STM32L552xxxxQ UFQFPN48_ExtSMPS STM32L552xxxxP Alternate functions - - - C5 - C5 - - 131 - - - - B4 132 PG15 I/O FT _s - LPTIM1_OUT, I2C1_SMBA, EVENTOUT DS12737 Rev 6 39 40 54 55 E6 B6 55 56 E6 B6 89 90 C6 B6 132 133 39 40 39 40 55 56 89 90 C6 B6 PB4 134 (NJTR ST) I/O FT _a FT _fa - - JTDO/TRACESWO, TIM2_CH2, SPI1_SCK, SPI3_SCK, USART1_RTS/USART 1_DE, CRS_SYNC, SAI1_SCK_B, EVENTOUT COMP2_INM (3) NJTRST, TIM3_CH1, I2C3_SDA, SPI1_MISO, SPI3_MISO, USART1_CTS/USART 1_NSS, UART5_RTS/UART5_ DE, TSC_G2_IO1, SAI1_MCLK_B, TIM17_BKIN, EVENTOUT COMP2_INP 117/340 Pinouts and pin description 40 39 PB3 (JTDO/ 133 TRAC I/O ESWO ) Additional functions 42 41 42 57 A6 C6 57 58 A6 C6 91 92 D6 A5 134 135 41 42 41 42 57 58 91 92 D6 A5 135 136 PB5 PB6 I/O I/O I/O structure Pin type LQFP144 UFBGA132 LQFP100 LQFP64 LQFP48 UFQFPN48 STM32L552xx LQFP144_SMPS UFBGA132_SMPS LQFP100_SMPS WLCSP81_SMPS LQFP64_SMPS WLCSP81_Ext-SMPS LQFP64_Ext-SMPS 56 STM32L552xxxxQ FT _d FT _fa Alternate functions Additional functions - LPTIM1_IN1, TIM3_CH2, OCTOSPI1_NCLK, I2C1_SMBA, SPI1_MOSI, SPI3_MOSI, USART1_CK, UART5_CTS/UART5_ NSS, TSC_G2_IO2, COMP2_OUT, SAI1_SD_B, TIM16_BKIN, EVENTOUT UCPD1_DB1 - LPTIM1_ETR, TIM4_CH1, TIM8_BKIN2, I2C1_SCL, I2C4_SCL, USART1_TX, TSC_G2_IO3, SAI1_FS_B, TIM16_CH1N, EVENTOUT COMP2_INP STM32L552xx Notes DS12737 Rev 6 41 LQFP48_Ext-SMPS UFQFPN48_ExtSMPS STM32L552xxxxP Pin name (function after reset) Pin Number Pinouts and pin description 118/340 Table 21. STM32L552xx pin definitions (continued) STM32L552xx Table 21. STM32L552xx pin definitions (continued) 43 58 D6 59 D6 93 D5 136 43 43 59 93 D5 137 44 44 59 D7 60 D7 94 B5 137 44 44 60 94 B5 PH3138 BOOT 0 45 60 C7 61 C7 95 C5 138 45 45 61 95 C5 139 PB8 I/O structure Alternate functions I/O FT _fa - LPTIM1_IN2, TIM4_CH2, TIM8_BKIN, I2C1_SDA, I2C4_SDA, USART1_RX, UART4_CTS, TSC_G2_IO4, FMC_NL, TIM17_CH1N, EVENTOUT I/O FT - EVENTOUT - - TIM4_CH3, SAI1_CK1, I2C1_SCL, DFSDM1_CKOUT, SDMMC1_CKIN, FDCAN1_RX, SDMMC1_D4, SAI1_MCLK_A, TIM16_CH1, EVENTOUT - I/O FT _f Additional functions COMP2_INM, PVD_IN 119/340 Pinouts and pin description 45 PB7 Notes DS12737 Rev 6 43 Pin type LQFP144 UFBGA132 LQFP100 LQFP64 LQFP48 UFQFPN48 STM32L552xx LQFP144_SMPS UFBGA132_SMPS LQFP100_SMPS WLCSP81_SMPS STM32L552xxxxQ LQFP64_SMPS WLCSP81_Ext-SMPS LQFP64_Ext-SMPS LQFP48_Ext-SMPS UFQFPN48_ExtSMPS STM32L552xxxxP Pin name (function after reset) Pin Number - A7 - A7 96 A4 139 46 46 62 96 A4 140 PB9 I/O I/O structure Pin type LQFP144 UFBGA132 LQFP100 LQFP64 LQFP48 UFQFPN48 STM32L552xx LQFP144_SMPS UFBGA132_SMPS LQFP100_SMPS WLCSP81_SMPS LQFP64_SMPS WLCSP81_Ext-SMPS LQFP64_Ext-SMPS 61 STM32L552xxxxQ FT _f Notes DS12737 Rev 6 - LQFP48_Ext-SMPS UFQFPN48_ExtSMPS STM32L552xxxxP Pin name (function after reset) Pin Number Alternate functions Additional functions - IR_OUT, TIM4_CH4, SAI1_D2, I2C1_SDA, SPI2_NSS, SDMMC1_CDIR, FDCAN1_TX, SDMMC1_D5, SAI1_FS_A, TIM17_CH1, EVENTOUT - - - - - - - 97 C4 140 - - - 97 C4 141 PE0 I/O FT - - - - - - - - A3 141 - - - 98 A3 142 PE1 I/O FT - FMC_NBL1, TIM17_CH1, EVENTOUT - 46 46 62 A8 - - - - - - - - - - - VDD12 _2 S - - - - 47 47 63 E8 62 E8 98 E4 142 47 47 63 99 E4 143 VSS S - - - - - - - - 63 A8 99 B4 143 - - - - - - V15S MPS_ 2 S - - - - 48 48 64 F9 64 F9 100 J9 144 48 48 64 100 J9 144 VDD S - - - - STM32L552xx - TIM4_ETR, FMC_NBL0, TIM16_CH1, EVENTOUT Pinouts and pin description 120/340 Table 21. STM32L552xx pin definitions (continued) 2. After a Backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the Backup domain and RTC register descriptions in the RM0438 reference manual. 3. After reset, these pins are configured as JTAG/SW debug alternate functions, and the internal pull-up on PA15, PA13, PB4 pins and the internal pull-down on PA14 pin are activated. STM32L552xx 1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: - The speed should not exceed 2 MHz with a maximum load of 30 pF - These GPIOs must not be used as current sources (for example to drive a LED). DS12737 Rev 6 Pinouts and pin description 121/340 AF1 AF2 AF3 AF4 AF5 AF6 AF7 SYS_AF TIM1/2/5/8/L PTIM1 TIM1/2/3/4/5/ LPTIM3 SPI2/SAI1/I2C4/ USART2/TIM1/8/ OCTOSPI1 I2C1/2/3/4 SPI1/2/3/I2C4/ DFSDM1/ OCTOSPI1 SPI3/I2C3/DFS DM1/COMP1/ USART1/2/3 PA0 - TIM2_CH1 TIM5_CH1 TIM8_ETR - - - USART2_CTS_ NSS PA1 - TIM2_CH2 TIM5_CH2 - I2C1_SMBA SPI1_SCK - USART2_RTS_ DE PA2 - TIM2_CH3 TIM5_CH3 - - - - USART2_TX PA3 - TIM2_CH4 TIM5_CH4 SAI1_CK1 - - - USART2_RX PA4 - - - OCTOSPI1_NCS - SPI1_NSS SPI3_NSS USART2_CK PA5 - TIM2_CH1 TIM2_ETR TIM8_CH1N - SPI1_SCK - - PA6 - TIM1_BKIN TIM3_CH1 TIM8_BKIN - SPI1_MISO - USART3_CTS_ NSS PA7 - TIM1_CH1N TIM3_CH2 TIM8_CH1N I2C3_SCL SPI1_MOSI - - PA8 MCO TIM1_CH1 - SAI1_CK2 - - - USART1_CK PA9 - TIM1_CH2 - SPI2_SCK - - - USART1_TX PA10 - TIM1_CH3 - SAI1_D1 - - - USART1_RX PA11 - TIM1_CH4 TIM1_BKIN2 - - SPI1_MISO - USART1_CTS_ NSS PA12 - TIM1_ETR - - - SPI1_MOSI - USART1_RTS_ DE IR_OUT - - - - - - - - I2C1_SMBA I2C4_SMBA - - TIM2_ETR USART2_RX - SPI1_NSS SPI3_NSS USART3_RTS_ DE Port DS12737 Rev 6 Port A PA13 JTMS/SWDIO PA14 JTCK/SWCLK LPTIM1_OUT PA15 JTDI TIM2_CH1 STM32L552xx AF0 Pinouts and pin description 122/340 Table 22. Alternate function AF0 to AF7(1) AF1 AF2 AF3 AF4 AF5 AF6 AF7 SYS_AF TIM1/2/5/8/L PTIM1 TIM1/2/3/4/5/ LPTIM3 SPI2/SAI1/I2C4/ USART2/TIM1/8/ OCTOSPI1 I2C1/2/3/4 SPI1/2/3/I2C4/ DFSDM1/ OCTOSPI1 SPI3/I2C3/DFS DM1/COMP1/ USART1/2/3 PB0 - TIM1_CH2N TIM3_CH3 TIM8_CH2N - SPI1_NSS - USART3_CK PB1 - TIM1_CH3N TIM3_CH4 TIM8_CH3N - - DFSDM1_DATI USART3_RTS_ N0 DE PB2 - LPTIM1_OUT - - I2C3_SMBA - DFSDM1_CKI N0 - PB3 JTDO/TRACE SWO TIM2_CH2 - - - SPI1_SCK SPI3_SCK USART1_RTS_ DE PB4 NJTRST - TIM3_CH1 - I2C3_SDA SPI1_MISO SPI3_MISO USART1_CTS_ NSS PB5 - LPTIM1_IN1 TIM3_CH2 OCTOSPI1_NCLK I2C1_SMBA SPI1_MOSI SPI3_MOSI USART1_CK PB6 - LPTIM1_ETR TIM4_CH1 TIM8_BKIN2 I2C1_SCL I2C4_SCL - USART1_TX PB7 - LPTIM1_IN2 TIM4_CH2 TIM8_BKIN I2C1_SDA I2C4_SDA - USART1_RX PB8 - - TIM4_CH3 SAI1_CK1 I2C1_SCL DFSDM1_CKOU T - - PB9 - IR_OUT TIM4_CH4 SAI1_D2 I2C1_SDA SPI2_NSS - - PB10 - TIM2_CH3 LPTIM3_OUT I2C4_SCL I2C2_SCL SPI2_SCK - USART3_TX PB11 - TIM2_CH4 - I2C4_SDA I2C2_SDA - - USART3_RX PB12 - TIM1_BKIN - TIM1_BKIN I2C2_SMBA SPI2_NSS DFSDM1_DATI N1 USART3_CK PB13 - TIM1_CH1N LPTIM3_IN1 - I2C2_SCL SPI2_SCK DFSDM1_CKI N1 USART3_CTS_ NSS PB14 - TIM1_CH2N LPTIM3_ETR TIM8_CH2N I2C2_SDA SPI2_MISO DFSDM1_DATI USART3_RTS_ N2 DE PB15 RTC_REFIN TIM1_CH3N - TIM8_CH3N - SPI2_MOSI DFSDM1_CKI N2 Port DS12737 Rev 6 Port B 123/340 - Pinouts and pin description AF0 STM32L552xx Table 22. Alternate function AF0 to AF7(1) (continued) AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 SYS_AF TIM1/2/5/8/L PTIM1 TIM1/2/3/4/5/ LPTIM3 SPI2/SAI1/I2C4/ USART2/TIM1/8/ OCTOSPI1 I2C1/2/3/4 SPI1/2/3/I2C4/ DFSDM1/ OCTOSPI1 SPI3/I2C3/DFS DM1/COMP1/ USART1/2/3 PC0 - LPTIM1_IN1 - OCTOSPI1_IO7 I2C3_SCL - - - PC1 TRACED0 LPTIM1_OUT - SPI2_MOSI I2C3_SDA - - - PC2 - LPTIM1_IN2 - - - SPI2_MISO DFSDM1_CKO UT - PC3 - LPTIM1_ETR LPTIM3_OUT SAI1_D1 - SPI2_MOSI - - PC4 - - - - - - - USART3_TX PC5 - - - SAI1_D3 - - - USART3_RX PC6 - - TIM3_CH1 TIM8_CH1 - - DFSDM1_CKI N3 - PC7 - - TIM3_CH2 TIM8_CH2 - - DFSDM1_DATI N3 - PC8 - - TIM3_CH3 TIM8_CH3 - - - - PC9 TRACED0 TIM8_BKIN2 TIM3_CH4 TIM8_CH4 - - - - PC10 TRACED1 - LPTIM3_ETR - - - SPI3_SCK USART3_TX PC11 - - LPTIM3_IN1 - - OCTOSPI1_NCS SPI3_MISO USART3_RX PC12 TRACED3 - - - - - SPI3_MOSI USART3_CK PC13 - - - - - - - - PC14 - - - - - - - - PC15 - - - - - - - - Port DS12737 Rev 6 Port C Pinouts and pin description 124/340 Table 22. Alternate function AF0 to AF7(1) (continued) STM32L552xx AF1 AF2 AF3 AF4 AF5 AF6 AF7 SYS_AF TIM1/2/5/8/L PTIM1 TIM1/2/3/4/5/ LPTIM3 SPI2/SAI1/I2C4/ USART2/TIM1/8/ OCTOSPI1 I2C1/2/3/4 SPI1/2/3/I2C4/ DFSDM1/ OCTOSPI1 SPI3/I2C3/DFS DM1/COMP1/ USART1/2/3 PD0 - - - - - SPI2_NSS - - PD1 - - - - - SPI2_SCK - - PD2 TRACED2 - TIM3_ETR - - - - USART3_RTS_ DE PD3 - - - SPI2_SCK - SPI2_MISO DFSDM1_DATI USART2_CTS_ N0 NSS PD4 - - - - - SPI2_MOSI DFSDM1_CKI N0 USART2_RTS_ DE PD5 - - - - - - - USART2_TX PD6 - - - SAI1_D1 - SPI3_MOSI DFSDM1_DATI N1 USART2_RX PD7 - - - - - - DFSDM1_CKI N1 USART2_CK PD8 - - - - - - - USART3_TX PD9 - - - - - - - USART3_RX PD10 - - - - - - - USART3_CK PD11 - - - - I2C4_SMBA - - USART3_CTS_ NSS PD12 - - TIM4_CH1 - I2C4_SCL - - USART3_RTS_ DE PD13 - - TIM4_CH2 - I2C4_SDA - - - PD14 - - TIM4_CH3 - - - - - PD15 - - TIM4_CH4 - - - - - Port DS12737 Rev 6 Port D 125/340 Pinouts and pin description AF0 STM32L552xx Table 22. Alternate function AF0 to AF7(1) (continued) AF1 AF2 AF3 AF4 AF5 AF6 AF7 SYS_AF TIM1/2/5/8/L PTIM1 TIM1/2/3/4/5/ LPTIM3 SPI2/SAI1/I2C4/ USART2/TIM1/8/ OCTOSPI1 I2C1/2/3/4 SPI1/2/3/I2C4/ DFSDM1/ OCTOSPI1 SPI3/I2C3/DFS DM1/COMP1/ USART1/2/3 PE0 - - TIM4_ETR - - - - - PE1 - - - - - - - - PE2 TRACECK - TIM3_ETR SAI1_CK1 - - - - PE3 TRACED0 - TIM3_CH1 OCTOSPI1_DQS - - - - PE4 TRACED1 - TIM3_CH2 SAI1_D2 - - DFSDM1_DATI N3 - PE5 TRACED2 - TIM3_CH3 SAI1_CK2 - - DFSDM1_CKI N3 - PE6 TRACED3 - TIM3_CH4 SAI1_D1 - - - - PE7 - TIM1_ETR - - - - DFSDM1_DATI N2 - PE8 - TIM1_CH1N - - - - DFSDM1_CKI N2 - PE9 - TIM1_CH1 - - - - DFSDM1_CKO UT - PE10 - TIM1_CH2N - - - - - - PE11 - TIM1_CH2 - - - - - - PE12 - TIM1_CH3N - - - SPI1_NSS - - PE13 - TIM1_CH3 - - - SPI1_SCK - - PE14 - TIM1_CH4 TIM1_BKIN2 TIM1_BKIN2 - SPI1_MISO - - PE15 - TIM1_BKIN - TIM1_BKIN - SPI1_MOSI - - Port DS12737 Rev 6 Port E STM32L552xx AF0 Pinouts and pin description 126/340 Table 22. Alternate function AF0 to AF7(1) (continued) AF1 AF2 AF3 AF4 AF5 AF6 AF7 SYS_AF TIM1/2/5/8/L PTIM1 TIM1/2/3/4/5/ LPTIM3 SPI2/SAI1/I2C4/ USART2/TIM1/8/ OCTOSPI1 I2C1/2/3/4 SPI1/2/3/I2C4/ DFSDM1/ OCTOSPI1 SPI3/I2C3/DFS DM1/COMP1/ USART1/2/3 PF0 - - - - I2C2_SDA - - - PF1 - - - - I2C2_SCL - - - PF2 - - - - I2C2_SMBA - - - PF3 - - LPTIM3_IN1 - - - - - PF4 - - LPTIM3_ETR - - - - - PF5 - - LPTIM3_OUT - - - - - PF6 - TIM5_ETR TIM5_CH1 - - - - - PF7 - - TIM5_CH2 - - - - - PF8 - - TIM5_CH3 - - - - - PF9 - - TIM5_CH4 - - - - - PF10 - - - OCTOSPI1_CLK - - DFSDM1_CKO UT - PF11 - - - OCTOSPI1_NCLK - - - - PF12 - - - - - - - - PF13 - - - - I2C4_SMBA - - - PF14 - - - - I2C4_SCL - - - PF15 - - - - I2C4_SDA - - - Port DS12737 Rev 6 Port F 127/340 Pinouts and pin description AF0 STM32L552xx Table 22. Alternate function AF0 to AF7(1) (continued) AF1 AF2 AF3 AF4 AF5 AF6 AF7 SYS_AF TIM1/2/5/8/L PTIM1 TIM1/2/3/4/5/ LPTIM3 SPI2/SAI1/I2C4/ USART2/TIM1/8/ OCTOSPI1 I2C1/2/3/4 SPI1/2/3/I2C4/ DFSDM1/ OCTOSPI1 SPI3/I2C3/DFS DM1/COMP1/ USART1/2/3 PG0 - - - - - - - - PG1 - - - - - - - - PG2 - - - - - SPI1_SCK - - PG3 - - - - - SPI1_MISO - - PG4 - - - - - SPI1_MOSI - - PG5 - - - - - SPI1_NSS - - PG6 - - - OCTOSPI1_DQS I2C3_SMBA - - - PG7 - - - SAI1_CK1 I2C3_SCL - DFSDM1_CKO UT - PG8 - - - - I2C3_SDA - - - PG9 - - - - - - SPI3_SCK USART1_TX PG1 0 - LPTIM1_IN1 - - - - SPI3_MISO USART1_RX PG11 - LPTIM1_IN2 - OCTOSPI1_IO5 - - SPI3_MOSI USART1_CTS_ NSS PG1 2 - LPTIM1_ETR - - - - SPI3_NSS USART1_RTS_ DE PG1 3 - - - - I2C1_SDA - - USART1_CK PG1 4 - - - - I2C1_SCL - - - PG1 5 - LPTIM1_OUT - - I2C1_SMBA - - - Port DS12737 Rev 6 Port G STM32L552xx AF0 Pinouts and pin description 128/340 Table 22. Alternate function AF0 to AF7(1) (continued) AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 SYS_AF TIM1/2/5/8/L PTIM1 TIM1/2/3/4/5/ LPTIM3 SPI2/SAI1/I2C4/ USART2/TIM1/8/ OCTOSPI1 I2C1/2/3/4 SPI1/2/3/I2C4/ DFSDM1/ OCTOSPI1 SPI3/I2C3/DFS DM1/COMP1/ USART1/2/3 PH0 - - - - - - - - PH1 - - - - - - - - PH3 - - - - - - - - Port Port H - STM32L552xx Table 22. Alternate function AF0 to AF7(1) (continued) 1. Refer to Table 23 for AF8 to AF15. DS12737 Rev 6 Pinouts and pin description 129/340 AF8 Port DS12737 Rev 6 Port A AF9 UART4/5/LPUA FDCAN1/ RT1/SDMMC1 TSC AF10 AF11 AF12 AF13 USB/OCTOSPI1 UCPD1 SDMMC1/COMP1 /2/TIM1/8/FMC SAI1/2/TIM8 AF14 AF15 TIM2/8/15/16/17/ EVENTOUT LPTIM2 PA0 UART4_TX - - - - SAI1_EXTCLK TIM2_ETR EVENTOUT PA1 UART4_RX - OCTOSPI1_DQS - - - TIM15_CH1N EVENTOUT PA2 LPUART1_TX - OCTOSPI1_NCS UCPD1_FRSTX1 - SAI2_EXTCLK TIM15_CH1 EVENTOUT PA3 LPUART1_RX - OCTOSPI1_CLK - - SAI1_MCLK_A TIM15_CH2 EVENTOUT PA4 - - - - - SAI1_FS_B LPTIM2_OUT EVENTOUT PA5 - - - - - - LPTIM2_ETR EVENTOUT PA6 LPUART1_CTS _NSS - OCTOSPI1_IO3 - TIM1_BKIN TIM8_BKIN TIM16_CH1 EVENTOUT PA7 - - OCTOSPI1_IO2 - - - TIM17_CH1 EVENTOUT PA8 - - - - - SAI1_SCK_A LPTIM2_OUT EVENTOUT PA9 - - - - - SAI1_FS_A TIM15_BKIN EVENTOUT PA10 - - CRS_SYNC - - SAI1_SD_A TIM17_BKIN EVENTOUT PA11 - FDCAN1_ RX USB_DM - TIM1_BKIN2 - - EVENTOUT PA12 - FDCAN1_ TX USB_DP - - - - EVENTOUT PA13 - - USB_NOE - - SAI1_SD_B - EVENTOUT PA14 - - - - - SAI1_FS_B - EVENTOUT PA15 UART4_RTS_D E - - - - SAI2_FS_B - EVENTOUT Pinouts and pin description 130/340 Table 23. Alternate function AF8 to AF15(1) STM32L552xx AF8 Port UART4/5/LPUA FDCAN1/ RT1/SDMMC1 TSC AF10 AF11 AF12 AF13 USB/OCTOSPI1 UCPD1 SDMMC1/COMP1 /2/TIM1/8/FMC SAI1/2/TIM8 AF14 AF15 TIM2/8/15/16/17/ EVENTOUT LPTIM2 PB0 - - OCTOSPI1_IO1 - COMP1_OUT SAI1_EXTCLK - EVENTOUT PB1 LPUART1_RTS_ DE - OCTOSPI1_IO0 - - - LPTIM2_IN1 EVENTOUT PB2 - - OCTOSPI1_DQS UCPD1_FRSTX1 - - - EVENTOUT PB3 - - CRS_SYNC - - SAI1_SCK_B - EVENTOUT DS12737 Rev 6 UART5_RTS_D TSC_G2_ E IO1 - - - SAI1_MCLK_B TIM17_BKIN EVENTOUT PB5 UART5_CTS_N TSC_G2_ SS IO2 - - COMP2_OUT SAI1_SD_B TIM16_BKIN EVENTOUT TSC_G2_ IO3 - - TIM8_BKIN2 SAI1_FS_B TIM16_CH1N EVENTOUT PB7 UART4_CTS_N TSC_G2_ SS IO4 - - FMC_NL TIM8_BKIN TIM17_CH1N EVENTOUT PB8 SDMMC1_CKIN FDCAN1_ RX - - SDMMC1_D4 SAI1_MCLK_A TIM16_CH1 EVENTOUT PB9 SDMMC1_CDIR FDCAN1_ TX - - SDMMC1_D5 SAI1_FS_A TIM17_CH1 EVENTOUT PB10 LPUART1_RX TSC_SY NC OCTOSPI1_CLK - COMP1_OUT SAI1_SCK_A - EVENTOUT PB11 LPUART1_TX - OCTOSPI1_NCS - COMP2_OUT - - EVENTOUT PB12 LPUART1_RTS_ TSC_G1_ OCTOSPI1_NCLK DE IO1 - - SAI2_FS_A TIM15_BKIN EVENTOUT PB13 LPUART1_CTS _NSS TSC_G1_ IO2 - UCPD1_FRSTX2 - SAI2_SCK_A TIM15_CH1N EVENTOUT PB14 - TSC_G1_ IO3 - - - SAI2_MCLK_A TIM15_CH1 EVENTOUT PB15 - - - - - SAI2_SD_A TIM15_CH2 EVENTOUT - Pinouts and pin description 131/340 PB4 PB6 Port B AF9 STM32L552xx Table 23. Alternate function AF8 to AF15(1) (continued) AF8 Port DS12737 Rev 6 Port C AF9 UART4/5/LPUA FDCAN1/ RT1/SDMMC1 TSC AF10 AF11 AF12 AF13 USB/OCTOSPI1 UCPD1 SDMMC1/COMP1 /2/TIM1/8/FMC SAI1/2/TIM8 AF14 AF15 TIM2/8/15/16/17/ EVENTOUT LPTIM2 PC0 LPUART1_RX - - - SDMMC1_D5 SAI2_FS_A LPTIM2_IN1 EVENTOUT PC1 LPUART1_TX - OCTOSPI1_IO4 - - SAI1_SD_A - EVENTOUT PC2 - TSC_G3_ IO1 OCTOSPI1_IO5 - - - - EVENTOUT PC3 - TSC_G1_ IO4 OCTOSPI1_IO6 - - SAI1_SD_A LPTIM2_ETR EVENTOUT PC4 - - OCTOSPI1_IO7 - - - - EVENTOUT PC5 - - - - - - - EVENTOUT PC6 SDMMC1_D0DI TSC_G4_ R IO1 - - SDMMC1_D6 SAI2_MCLK_A - EVENTOUT PC7 SDMMC1_D123 TSC_G4_ DIR IO2 - - SDMMC1_D7 SAI2_MCLK_B - EVENTOUT - TSC_G4_ IO3 - - SDMMC1_D0 - - EVENTOUT PC9 - TSC_G4_ IO4 USB_NOE - SDMMC1_D1 SAI2_EXTCLK TIM8_BKIN2 EVENTOUT PC10 UART4_TX TSC_G3_ IO2 - - SDMMC1_D2 SAI2_SCK_B - EVENTOUT PC11 UART4_RX TSC_G3_ IO3 - UCPD1_FRSTX2 SDMMC1_D3 SAI2_MCLK_B - EVENTOUT PC12 UART5_TX TSC_G3_ IO4 - - SDMMC1_CK SAI2_SD_B - EVENTOUT PC13 - - - - - - - EVENTOUT PC14 - - - - - - - EVENTOUT PC15 - - - - - - - EVENTOUT STM32L552xx PC8 Pinouts and pin description 132/340 Table 23. Alternate function AF8 to AF15(1) (continued) AF8 Port DS12737 Rev 6 Port D AF9 UART4/5/LPUA FDCAN1/ RT1/SDMMC1 TSC AF10 AF11 AF12 AF13 USB/OCTOSPI1 UCPD1 SDMMC1/COMP1 /2/TIM1/8/FMC SAI1/2/TIM8 AF14 AF15 TIM2/8/15/16/17/ EVENTOUT LPTIM2 - FDCAN1_ RX - - FMC_D2 - - EVENTOUT PD1 - FDCAN1_ TX - - FMC_D3 - - EVENTOUT PD2 UART5_RX TSC_SY NC - - SDMMC1_CMD - - EVENTOUT PD3 - - - - FMC_CLK - - EVENTOUT PD4 - - OCTOSPI1_IO4 - FMC_NOE - - EVENTOUT PD5 - - OCTOSPI1_IO5 - FMC_NWE - - EVENTOUT PD6 - - OCTOSPI1_IO6 - FMC_NWAIT SAI1_SD_A - EVENTOUT PD7 - - OCTOSPI1_IO7 - FMC_NCE/FMC_ NE1 - - EVENTOUT PD8 - - - - FMC_D13 - - EVENTOUT PD9 - - - - FMC_D14 SAI2_MCLK_A - EVENTOUT PD10 - TSC_G6_ IO1 - - FMC_D15 SAI2_SCK_A - EVENTOUT PD11 - TSC_G6_ IO2 - - FMC_A16 SAI2_SD_A LPTIM2_ETR EVENTOUT PD12 - TSC_G6_ IO3 - - FMC_A17 SAI2_FS_A LPTIM2_IN1 EVENTOUT PD13 - TSC_G6_ IO4 - - FMC_A18 - LPTIM2_OUT EVENTOUT PD14 - - - - FMC_D0 - - EVENTOUT PD15 - - - - FMC_D1 - - EVENTOUT 133/340 Pinouts and pin description PD0 STM32L552xx Table 23. Alternate function AF8 to AF15(1) (continued) AF8 Port DS12737 Rev 6 Port E AF9 UART4/5/LPUA FDCAN1/ RT1/SDMMC1 TSC AF10 AF11 AF12 AF13 USB/OCTOSPI1 UCPD1 SDMMC1/COMP1 /2/TIM1/8/FMC SAI1/2/TIM8 AF14 AF15 TIM2/8/15/16/17/ EVENTOUT LPTIM2 - - - - FMC_NBL0 - TIM16_CH1 EVENTOUT PE1 - - - - FMC_NBL1 - TIM17_CH1 EVENTOUT PE2 - TSC_G7_ IO1 - - FMC_A23 SAI1_MCLK_A - EVENTOUT PE3 - TSC_G7_ IO2 - - FMC_A19 SAI1_SD_B - EVENTOUT PE4 - TSC_G7_ IO3 - - FMC_A20 SAI1_FS_A - EVENTOUT PE5 - TSC_G7_ IO4 - - FMC_A21 SAI1_SCK_A - EVENTOUT PE6 - - - - FMC_A22 SAI1_SD_A - EVENTOUT PE7 - - - - FMC_D4 SAI1_SD_B - EVENTOUT PE8 - - - - FMC_D5 SAI1_SCK_B - EVENTOUT PE9 - - OCTOSPI1_NCLK - FMC_D6 SAI1_FS_B - EVENTOUT PE10 - TSC_G5_ IO1 OCTOSPI1_CLK - FMC_D7 SAI1_MCLK_B - EVENTOUT PE11 - TSC_G5_ IO2 OCTOSPI1_NCS - FMC_D8 - - EVENTOUT PE12 - TSC_G5_ IO3 OCTOSPI1_IO0 - FMC_D9 - - EVENTOUT PE13 - TSC_G5_ IO4 OCTOSPI1_IO1 - FMC_D10 - - EVENTOUT PE14 - - OCTOSPI1_IO2 - FMC_D11 - - EVENTOUT PE15 - - OCTOSPI1_IO3 - FMC_D12 - - EVENTOUT STM32L552xx PE0 Pinouts and pin description 134/340 Table 23. Alternate function AF8 to AF15(1) (continued) AF8 Port DS12737 Rev 6 Port F AF9 UART4/5/LPUA FDCAN1/ RT1/SDMMC1 TSC AF10 AF11 AF12 AF13 USB/OCTOSPI1 UCPD1 SDMMC1/COMP1 /2/TIM1/8/FMC SAI1/2/TIM8 AF14 AF15 TIM2/8/15/16/17/ EVENTOUT LPTIM2 - - - - FMC_A0 - - EVENTOUT PF1 - - - - FMC_A1 - - EVENTOUT PF2 - - - - FMC_A2 - - EVENTOUT PF3 - - - - FMC_A3 - - EVENTOUT PF4 - - - - FMC_A4 - - EVENTOUT PF5 - - - - FMC_A5 - - EVENTOUT PF6 - - OCTOSPI1_IO3 - - SAI1_SD_B - EVENTOUT PF7 - - OCTOSPI1_IO2 - - SAI1_MCLK_B - EVENTOUT PF8 - - OCTOSPI1_IO0 - - SAI1_SCK_B - EVENTOUT PF9 - - OCTOSPI1_IO1 - - SAI1_FS_B TIM15_CH1 EVENTOUT PF10 - - - - - SAI1_D3 TIM15_CH2 EVENTOUT PF11 - - - - - - - EVENTOUT PF12 - - - - FMC_A6 - - EVENTOUT PF13 - - - - FMC_A7 - - EVENTOUT PF14 - TSC_G8_ IO1 - - FMC_A8 - - EVENTOUT PF15 - TSC_G8_ IO2 - - FMC_A9 - - EVENTOUT 135/340 Pinouts and pin description PF0 STM32L552xx Table 23. Alternate function AF8 to AF15(1) (continued) AF8 Port DS12737 Rev 6 Port G AF9 UART4/5/LPUA FDCAN1/ RT1/SDMMC1 TSC AF10 AF11 AF12 AF13 USB/OCTOSPI1 UCPD1 SDMMC1/COMP1 /2/TIM1/8/FMC SAI1/2/TIM8 AF14 AF15 TIM2/8/15/16/17/ EVENTOUT LPTIM2 PG0 - TSC_G8_ IO3 - - FMC_A10 - - EVENTOUT PG1 - TSC_G8_ IO4 - - FMC_A11 - - EVENTOUT PG2 - - - - FMC_A12 SAI2_SCK_B - EVENTOUT PG3 - - - - FMC_A13 SAI2_FS_B - EVENTOUT PG4 - - - - FMC_A14 SAI2_MCLK_B - EVENTOUT PG5 LPUART1_CTS _NSS - - - FMC_A15 SAI2_SD_B - EVENTOUT PG6 LPUART1_RTS_ DE - - UCPD1_FRSTX1 - - - EVENTOUT PG7 LPUART1_TX - - UCPD1_FRSTX2 FMC_INT SAI1_MCLK_A - EVENTOUT PG8 LPUART1_RX - - - - - - EVENTOUT PG9 - - - - FMC_NCE/FMC_ NE2 SAI2_SCK_A TIM15_CH1N EVENTOUT PG10 - - - - FMC_NE3 SAI2_FS_A TIM15_CH1 EVENTOUT PG11 - - - - - SAI2_MCLK_A TIM15_CH2 EVENTOUT PG12 - - - - FMC_NE4 SAI2_SD_A - EVENTOUT PG13 - - - - FMC_A24 - - EVENTOUT PG14 - - - - FMC_A25 - - EVENTOUT PG15 - - - - - - - EVENTOUT Pinouts and pin description 136/340 Table 23. Alternate function AF8 to AF15(1) (continued) STM32L552xx AF8 Port Port H AF9 UART4/5/LPUA FDCAN1/ RT1/SDMMC1 TSC AF10 AF11 AF12 AF13 USB/OCTOSPI1 UCPD1 SDMMC1/COMP1 /2/TIM1/8/FMC SAI1/2/TIM8 AF14 AF15 TIM2/8/15/16/17/ EVENTOUT LPTIM2 PH0 - - - - - - - EVENTOUT PH1 - - - - - - - EVENTOUT PH3 - - - - - - - EVENTOUT STM32L552xx Table 23. Alternate function AF8 to AF15(1) (continued) 1. Refer to Table 22 for AF0 to AF7. DS12737 Rev 6 Pinouts and pin description 137/340 Electrical characteristics STM32L552xx 5 Electrical characteristics 5.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 5.1.1 Minimum and maximum values Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean ±3σ). 5.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = 3 V. They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean ±2σ). 5.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 5.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 25. 5.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 26. Figure 25. Pin loading conditions Figure 26. Pin input voltage MCU pin MCU pin C = 50 pF VIN MS19210V1 138/340 DS12737 Rev 6 MS19211V1 STM32L552xx Power supply scheme Figure 27. STM32L552xx and STM32L562xx power supply overview VBAT Backup circuitry (LSE, RTC, Backup registers) 1.55 – 3.6 V Power switch VDD VCORE n x VDD Regulator OUT n x 100 nF GPIOs IN +1 x 4.7 μF Level shifter VDDIO1 IO logic Level shifter 5.1.6 Electrical characteristics IO logic Kernel logic (CPU, Digital & Memories) n x VSS VDDIO2 m x VDDIO2 VDDIO2 OUT m x100 nF +4.7 μF GPIOs IN m x VSS VDDA VDDA VREF 10 nF +1 μF 100 nF +1 μF VREF+ VREF- ADCs/ DACs/ OPAMPs/ COMPs/ VREFBUF VSSA MSv62917V1 DS12737 Rev 6 139/340 307 Electrical characteristics STM32L552xx Figure 28. STM32L552xxxP and STM32L562xxxP power supply overview VBAT Backup circuitry (LSE, RTC, Backup registers) 1.55 – 3.6 V Power switch 2 x VDD12 1.05 – 1.32 V VDD VCORE n x VDD Regulator n x 100 nF GPIOs IN +1 x 4.7 μF Level shifter OUT IO logic Level shifter VDDIO1 IO logic Kernel logic (CPU, Digital & Memories) n x VSS VDDIO2 m x VDDIO2 VDDIO2 OUT m x100 nF +4.7 μF GPIOs IN m x VSS VDDA VDDA VREF 10 nF +1 μF 100 nF +1 μF VREF+ VREF- ADCs/ DACs/ OPAMPs/ COMPs/ VREFBUF VSSA MSv62918V1 Note: 140/340 If the selected package has the external SMPS option but no external SMPS is used by the application (the embedded LDO is used instead), the VDD12 pins are kept unconnected. DS12737 Rev 6 STM32L552xx Electrical characteristics Figure 29. STM32L552xxxQ and STM32L562xxxQ power supply overview VBAT Backup circuitry (LSE, RTC, Backup registers) 1.55 – 3.6 V Power switch VDD VDDSMPS SMPS VLXSMPS 2 x V15SMPS VSSSMPS VDD VCORE n x VDD Regulator n x 100 nF GPIOs IN +1 x 4.7 μF Level shifter OUT IO logic Level shifter VDDIO1 IO logic Kernel logic (CPU, Digital & Memories) n x VSS VDDIO2 m x VDDIO2 VDDIO2 OUT m x100 nF +4.7 μF GPIOs IN m x VSS VDDA VDDA VREF 10 nF +1 μF 100 nF +1 μF VREF+ VREF- ADCs/ DACs/ OPAMPs/ COMPs/ VREFBUF VSSA MSv62919V1 1. Refer to Figure 3 for SMPS step down converter power supply scheme. Note: If the selected package has the SMPS step down converter option but the application does not ever use the SMPS, it is recommended to set the SMPS power supply pins as follows: VDDSMPS and VLXSMPS connected to VSS V15SMPSconnected to VDD. Caution: Each power supply pair (VDD/VSS, VDDA/VSSA etc.) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device. DS12737 Rev 6 141/340 307 Electrical characteristics 5.1.7 STM32L552xx Current consumption measurement The IDD_ALL parameters given in Table 33 to Table 96 represent the total MCU consumption including the current supplying VDD, VDDIO2, VDDA, VDDUSB, VBAT and VDDSMPS if the device embeds the SMPS. Figure 30. Current consumption measurement IDD_VBAT VBAT IDD VDD VDDA VDDUSB VDDSMPS VDDIO2 MSv62920V1 5.2 Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 24: Voltage characteristics, Table 25: Current characteristics and Table 26: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Device mission profile (application conditions) is compliant with JEDEC JESD47 qualification standard, extended mission profiles are available on demand. Table 24. Voltage characteristics(1) Symbol Ratings Min Max VDDX - VSS External main supply voltage (including VDD, VDDA, VDDIO2, VDDUSB, VBAT, VDDSMPS, VREF+) -0.3 4.0 VDD12 - VSS External SMPS supply voltage VIN 142/340 (2) All ranges 0/1/2 -0.3 -0.3 1.4 Input voltage on FT_xxx pins except FT_c pins VSS-0.3 min (VDD, VDDA, VDDIO2, VDDUSB, VDDSMPS) + 4.0(3)(4) Input voltage on FT_c pins VSS-0.3 5.5 Input voltage on any other pins VSS-0.3 4.0 DS12737 Rev 6 Unit V STM32L552xx Electrical characteristics Table 24. Voltage characteristics(1) (continued) Symbol Ratings Min Max Unit - 0.4 V Variations between different VDDX power pins of the same domain - 50 Variations between all the different ground pins(5) - VREF+ - VDDA Allowed voltage difference for VREF+ > VDDA |∆VDDx| |VSSx-VSS| mV 50 1. All main power (VDD, VDDA, VDDIO2, VDDUSB, VBAT) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. VIN maximum must always be respected. Refer to Table 25: Current characteristics for the maximum allowed injected current values. 3. This formula has to be applied only on the power supplies related to the IO structure described in the pin definition table. 4. To sustain a voltage higher than 4 V the internal pull-up/pull-down resistors must be disabled. 5. Include VREF- pin. Table 25. Current characteristics Symbol Ratings Max ∑IVDD Total current into sum of all VDD power lines (source)(1) (2) 160 ∑IVSS Total current out of sum of all VSS ground lines (sink)(1) (2) 160 IVDD(PIN) Maximum current into each VDD power pin (source)(1) 100 IVSS(PIN) (sink)(1) 100 IIO(PIN) ∑IIO(PIN) IINJ(PIN)(4) ∑|IINJ(PIN)| Maximum current out of each VSS ground pin Output current sunk by any I/O and control pin except FT_f 20 Output current sunk by any FT_f pin 20 Output current sourced by any I/O and control pin 20 Total output current sunk by sum of all I/Os and control pins(3) Unit mA 100 (3) Total output current sourced by sum of all I/Os and control pins 100 Injected current on FT_xxx, TT_xx, RST and B pins, except PA4, PA5 -5/+0(5) Injected current on PA4, PA5 Total injected current (sum of all I/Os and control pins) -5/0 (6) +/-25 1. All main power (VDD, VDDA, VDDIO2, VDDUSB, VBAT) and ground (VSS, VSSA) pins must always be connected to the external power supplies, in the permitted range. 2. Valid also for VDD12 on SMPS package. 3. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages. 4. Positive injection (when VIN > VDDIOx) is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value. 5. A negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer also to Table 24: Voltage characteristics for the minimum allowed input voltage values. 6. When several inputs are submitted to a current injection, the maximum ∑|IINJ(PIN)| is the absolute sum of the negative injected currents (instantaneous values). DS12737 Rev 6 143/340 307 Electrical characteristics STM32L552xx Table 26. Thermal characteristics Symbol TSTG TJ Ratings Storage temperature range Value Unit -65 to +150 °C 150 °C Maximum junction temperature 5.3 Operating conditions 5.3.1 General operating conditions Table 27. General operating conditions Symbol Parameter Conditions Min Max fHCLK Internal AHB clock frequency - 0 110 fPCLK1 Internal APB1 clock frequency - 0 110 fPCLK2 Internal APB2 clock frequency - 0 110 Standard operating voltage - VDD VDDSMPS VDD12 Supply voltage for the internal SMPS step-down converter Standard operating voltage VDDIO2 VDDA Analog supply voltage V (1) 3.6 V Up to 110 MHz 1.14 1.32 Up to 80 MHz 1.08 1.32 VDDSMPS = VDD (1) 1.71 1.05 (2) 1.32 At least one I/O in PG[15:2] used 1.08 3.6 PG[15:2] not used 0 3.6 ADC or COMP used 1.62 DAC or OPAMP used 1.8 VREFBUF used 2.4 ADC, DAC, OPAMP, COMP, VREFBUF not used 144/340 MHz 3.6 Up to 26 MHz PG[15:2] I/Os supply voltage 1.71 Unit DS12737 Rev 6 0 3.6 V V V STM32L552xx Electrical characteristics Table 27. General operating conditions (continued) Symbol VBAT Parameter Conditions Min Max Unit - 1.55 3.6 V 3.0 3.6 Backup operating voltage USB used VDDUSB USB supply voltage V USB not used VIN 0 3.6 TT_xx I/O -0.3 VDDIOx+0.3 FT_c I/O -0.3 5 -0.3 MIN(MIN(VDD, VDDA, VDDIO2, VDDUSB) +3.6 V, 5.5 V)(3)(4) I/O input voltage All I/O except FT_c and TT_xx LQFP48 UFQFPN48 LQFP64 PD Power dissipation at TA = 85 °C for suffix 6(5) WLCSP81 LQFP100 UFBGA132 LQFP144 LQFP48 UFQFPN48 LQFP64 PD Power dissipation at TA = 125 °C for suffix 3(5) WLCSP81 LQFP100 UFBGA132 LQFP144 DS12737 Rev 6 V See Section 6.8: Thermal characteristics for application appropriate thermal resistance and package. Power dissipation is then calculated according ambient temperature (TA) and maximum junction temperature (TJ) and selected thermal resistance. mW See Section 6.8: Thermal characteristics for application appropriate thermal resistance and package. Power dissipation is then calculated according ambient temperature (TA) and maximum junction temperature (TJ) and selected thermal resistance. mW 145/340 307 Electrical characteristics STM32L552xx Table 27. General operating conditions (continued) Symbol Parameter Conditions Ambient temperature for the suffix 6 version TA Ambient temperature for the suffix 3 version TJ Junction temperature range Min Max Maximum power dissipation –40 85 Low-power dissipation(6) –40 105 Maximum power dissipation –40 125 Low-power dissipation(6) –40 130 Suffix 6 version –40 105 Suffix 3 version –40 130 Unit °C °C 1. When RESET is released functionality is guaranteed down to VBOR0 Min. 2. For Flash erase and program operation, VDD12 min must be 1.08 V. 3. This formula has to be applied only on the power supplies related to the IO structure described by the pin definition table. Maximum I/O input voltage is the smallest value between MIN(VDD, VDDA, VDDIO2, VDDUSB)+3.6 V and 5.5V. 4. For operation with voltage higher than Min (VDD, VDDA, VDDIO2, VDDUSB) +0.3 V, the internal Pull-up and Pull-Down resistors must be disabled. 5. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Section 7.7: Thermal characteristics). 6. In low-power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.7: Thermal characteristics). 5.3.2 SMPS step-down converter The device embeds an SMPS step down converter which requires the external components shown in below figure. Figure 31. External components for SMPS step down converter VDD VDDSMPS SMPS Regulator VCORE VLXSMPS L = 4.7 μH typ C = 4.7 μF typ 2 x V15SMPS VSSSMPS MSv62972V2 The following table summarizes the SMPS behavior depending on the main regulator range, VDD and consumption. 146/340 DS12737 Rev 6 STM32L552xx Electrical characteristics Table 28. SMPS modes summary SMPS mode Ranges Max AHB clock VCORE VDD ≤ 2.05 V VDD > 2.05 V Range 0 110 MHz 1.28 V Automatic Bypass mode V15SMPS = VDD HP mode Max current consumption = 120 mA V15SMPS = 1.6 V Range 1 80 MHz 1.2 V Automatic Bypass mode V15SMPS = VDD HP mode Max current consumption = 80 mA V15SMPS = 1.5 V Range 2 26 MHz 1.0 V LP mode or HP mode Software Bypass mode(1) Max current consumption = 30 mA V15SMPS = VDD V15SMPS = 1.3 V 1. There is no automatic SMPS bypass in Range 2. The user application should use PVD0 to monitor VDD supply and request the SMPS Bypass mode. Table 29. SMPS characteristics(1) Symbol VDDSMPS V15SMPS SR Parameter Conditions SMPS output slew rate Typ 1.71(2) SMPS power supply SMPS output voltage Min Max Unit 3.6 V Range 0 1.55 1.6 1.65 Range 1 1.45 1.5 1.55 Range 2 1.25 1.3 1.35 Fast startup disabled SMPSFSTEN = 0 - 600 - Fast startup enabled SMPSFSTEN = 1 V µs/V - 120 - 1. Guaranteed by design. 2. When VDDSMPS is less than 2.05V, the SMPS bypass mode is forced by hardware in Range 0 and Range 1. In Range 2, there is no automatic switch into SMPS bypass mode. It should be requested by software. Refer to Table 28: SMPS modes summary. DS12737 Rev 6 147/340 307 Electrical characteristics 5.3.3 STM32L552xx Operating conditions at power-up / power-down The parameters given in Table 30 are derived from tests performed under the ambient temperature condition summarized in Table 27. Table 30. Operating conditions at power-up / power-down(1) Symbol Parameter VDD rise time rate tVDD VDDA rise time rate VDDUSB rise time rate 5.3.4 0 ∞ 10 ∞ 0 ∞ 10 ∞ 0 ∞ 10 ∞ 0 ∞ 10 ∞ - VDDUSB fall time rate VDDIO2 rise time rate tVDDIO2 Max - VDDA fall time rate tVDDUSB Min - VDD fall time rate tVDDA 1. Conditions - VDDIO2 fall time rate Unit µs/V At power-up, the VDD12 voltage should not be forced externally. Embedded reset and power control block characteristics The parameters given in Table 31 are derived from tests performed under the ambient temperature conditions summarized in Table 27: General operating conditions. Table 31. Embedded reset and power control block characteristics Symbol tRSTTEMPO(2) 148/340 Parameter Reset temporization after BOR0 is detected VBOR0(2) Brown-out reset threshold 0 VBOR1 Brown-out reset threshold 1 VBOR2 Brown-out reset threshold 2 VBOR3 Brown-out reset threshold 3 VBOR4 Brown-out reset threshold 4 VPVD0 Programmable voltage detector threshold 0 VPVD1 PVD threshold 1 Conditions(1) Min Typ Max Unit - 250 400 μs Rising edge 1.62 1.66 1.7 Falling edge 1.6 1.64 1.69 Rising edge 2.06 2.1 2.14 Falling edge 1.96 2 2.04 Rising edge 2.26 2.31 2.35 Falling edge 2.16 2.20 2.24 Rising edge 2.56 2.61 2.66 Falling edge 2.47 2.52 2.57 Rising edge 2.85 2.90 2.95 Falling edge 2.76 2.81 2.86 Rising edge 2.1 2.15 2.19 Falling edge 2 2.05 2.1 Rising edge 2.26 2.31 2.36 Falling edge 2.15 2.20 2.25 VDD rising DS12737 Rev 6 V V V V V V V STM32L552xx Electrical characteristics Table 31. Embedded reset and power control block characteristics (continued) Conditions(1) Min Typ Max Rising edge 2.41 2.46 2.51 Falling edge 2.31 2.36 2.41 Rising edge 2.56 2.61 2.66 Falling edge 2.47 2.52 2.57 Rising edge 2.69 2.74 2.79 Falling edge 2.59 2.64 2.69 Rising edge 2.85 2.91 2.96 Falling edge 2.75 2.81 2.86 Rising edge 2.92 2.98 3.04 Falling edge 2.84 2.90 2.96 Hysteresis in continuous Hysteresis voltage of BORH0 mode - 20 - Hysteresis in other mode - 30 - Symbol Parameter VPVD2 PVD threshold 2 VPVD3 PVD threshold 3 VPVD4 PVD threshold 4 VPVD5 PVD threshold 5 VPVD6 PVD threshold 6 Vhyst_BORH0 Unit V V V V V mV Hysteresis voltage of BORH (except BORH0) and PVD - - 100 - mV BOR(3) (except BOR0) and IDD (BOR_PVD)(2) PVD consumption from VDD - - 1.1 1.6 µA Vhyst_BOR_PVD VPVM3 VDDA peripheral voltage monitoring Rising edge 1.61 1.65 1.69 Falling edge 1.6 1.64 1.68 VPVM4 VDDA peripheral voltage monitoring Rising edge 1.78 1.82 1.86 Falling edge 1.77 1.81 1.85 V V Vhyst_PVM3 PVM3 hysteresis - - 10 - mV Vhyst_PVM4 PVM4 hysteresis - - 10 - mV IDD PVM1 and PVM2 (PVM1/PVM2) consumption from VDD (2) - - 0.2 - µA IDD PVM3 and PVM4 (PVM3/PVM4) consumption from VDD (2) - - 2 - µA 1. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes. 2. Guaranteed by design. 3. BOR0 is enabled in all modes (except shutdown) and its consumption is therefore included in the supply current characteristics tables. DS12737 Rev 6 149/340 307 Electrical characteristics 5.3.5 STM32L552xx Embedded voltage reference The parameters given in Table 32 are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 27: General operating conditions. Table 32. Embedded internal voltage reference Symbol VREFINT Parameter Internal reference voltage Conditions –40 °C < TA < +130 °C Min Typ 1.182 1.212 Unit 1.232 V ADC sampling time when reading the internal reference voltage - 4(2) - - µs Start time of reference voltage buffer when ADC is enable - - 8 12(2) µs VREFINT buffer consumption from VDD IDD(VREFINTBUF) when converted by ADC - - 12.5 20(2) µA Internal reference voltage spread over VDD = 3 V the temperature range - 5 7.5(2) mV TCoeff Average temperature coefficient –40°C < TA < +130°C - 30 50(2) ppm/°C ACoeff Long term stability 1000 hours, T = 25°C - 300 1000(2) ppm Average voltage coefficient 3.0 V < VDD < 3.6 V - 250 1200(2) ppm/V 24 25 26 49 50 51 74 75 76 tS_vrefint (1) tstart_vrefint ∆VREFINT VDDCoeff VREFINT_DIV1 1/4 reference voltage VREFINT_DIV2 1/2 reference voltage VREFINT_DIV3 3/4 reference voltage - 1. The shortest sampling time can be determined in the application by multiple iterations. 2. Guaranteed by design. 150/340 Max DS12737 Rev 6 % VREFINT STM32L552xx Electrical characteristics Figure 32. VREFINT versus temperature V 1.235 1.23 1.225 1.22 1.215 1.21 1.205 1.2 1.195 1.19 1.185 -40 -20 0 20 40 Mean 60 Min 80 100 120 °C Max MSv40169V2 DS12737 Rev 6 151/340 307 Electrical characteristics 5.3.6 STM32L552xx Supply current characteristics The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code The current consumption is measured as described in Section 5.1.7: Current consumption measurement. Typical and maximum current consumption The MCU is placed under the following conditions: • All I/O pins are in analog input mode • All peripherals are disabled except when explicitly mentioned • The Flash memory access time is adjusted with the minimum wait states number, depending on the fHCLK frequency (refer to the table “Number of wait states according to CPU clock (HCLK) frequency” available in the RM0438 reference manual). • When the peripherals are enabled fPCLK = fHCLK • The voltage scaling range is adjusted to fHCLK frequency as follows: – Voltage Range 0 for 80 MHz < fHCLK
STM32L552RET6Q 价格&库存

很抱歉,暂时无法提供与“STM32L552RET6Q”相匹配的价格&库存,您可以联系我们找货

免费人工找货