0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TS4990IJT

TS4990IJT

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

  • 描述:

    TS4990IJT - 1.2 W audio power amplifier with active low standby mode - STMicroelectronics

  • 数据手册
  • 价格&库存
TS4990IJT 数据手册
TS4990 1.2 W audio power amplifier with active low standby mode Features ■ ■ ■ ■ ■ ■ ■ ■ TS4990IJT/TS4990EIJT - Flip-chip 9 bumps Operating range from VCC = 2.2 V to 5.5 V 1.2 W output power @ VCC = 5 V, THD = 1%, F = 1 kHz, with 8Ω load Ultra-low consumption in standby mode (10 nA) 62 dB PSRR at 217 Hz in grounded mode Near-zero pop and click Ultra-low distortion (0.1%) Unity gain stable Available in 9-bump flip-chip, miniSO-8 and DFN8 packages TS4990IST - MiniSO-8 VinGND BYPASS Vin+ VCC STBY VOUT1 GND VOUT2 Applications ■ ■ ■ ■ Mobile phones (cellular / cordless) Laptop / notebook computers PDAs Portable audio devices TS4990IQT - DFN8 STANDBY BYPASS VIN+ VIN- Description The TS4990 is designed for demanding audio applications such as mobile phones to reduce the number of external components. This audio power amplifier is capable of delivering 1.2 W of continuous RMS output power into an 8Ω load at 5 V. An externally controlled standby mode reduces the supply current to less than 10 nA. It also includes an internal thermal shutdown protection. The unity-gain stable amplifier can be configured by external gain setting resistors. 1 2 3 4 8 7 6 5 VOUT 2 GND Vcc VOUT 1 TS4990ID/TS4990IDT - SO-8 STBY BYPASS 1 8 VOUT2 GND VCC VOUT1 2 7 VIN+ VIN- 3 6 4 5 May 2008 Rev 12 1/32 www.st.com 32 Contents TS4990 Contents 1 2 3 4 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 3 Typical application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 BTL configuration principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Gain in a typical application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Low and high frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Power dissipation and efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Decoupling of the circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Wake-up time (tWU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Shutdown time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Pop performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Application example: differential input, BTL power amplifier . . . . . . . . . . 22 5 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.1 5.2 5.3 5.4 Flip-chip package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 MiniSO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 DFN8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6 7 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2/32 TS4990 Absolute maximum ratings and operating conditions 1 Table 1. Symbol VCC Vin Toper Tstg Tj Absolute maximum ratings and operating conditions Absolute maximum ratings (AMR) Parameter Supply voltage (1) Input voltage (2) Value 6 GND to VCC -40 to + 85 -65 to +150 150 250 215 120 Internally limited Unit V V °C °C °C Operating free-air temperature range Storage temperature Maximum junction temperature Thermal resistance junction to ambient Flip chip (3) MiniSO-8 DFN8 Power dissipation HBM: Human body model MM: Machine model(5) Latch-up immunity Lead temperature (soldering, 10sec) Lead temperature (soldering, 10sec) for lead-free version (4) Rthja °C/W Pdiss ESD 2 200 200 250 260 kV V mA °C 1. All voltage values are measured with respect to the ground pin. 2. The magnitude of the input signal must never exceed VCC + 0.3 V / GND - 0.3 V. 3. The device is protected in case of over temperature by a thermal shutdown active at 150° C. 4. Human body model: A 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating. 5. Machine model: A 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating. Table 2. Symbol VCC Vicm VSTBY RL TSD Operating conditions Parameter Supply voltage Common mode input voltage range Standby voltage input: Device ON Device OFF Load resistor Thermal shutdown temperature Thermal resistance junction to ambient Flip-chip (1) MiniSO-8 DFN8(2) Value 2.2 to 5.5 1.2V to VCC 1.35 ≤ VSTBY ≤ VCC GND ≤ VSTBY ≤ 0.4 ≥4 150 100 190 40 Unit V V V Ω °C Rthja °C/W 1. This thermal resistance is reached with a 100 mm2 copper heatsink surface. 2. When mounted on a 4-layer PCB. 3/32 Typical application schematics TS4990 2 Typical application schematics Figure 1. Typical application schematics Rfeed Cfeed Vcc + Cs VCC Audio In Cin Rin Vin- Vout 1 Vin+ + Speaker 8 Ohms AV = -1 Bypass Vout 2 + Standby Control Cb Standby Bias GND Table 3. Component descriptions Functional description Inverting input resistor that sets the closed loop gain in conjunction with Rfeed. This resistor also forms a high pass filter with Cin (Fc = 1 / (2 x Pi x Rin x Cin)). Input coupling capacitor that blocks the DC voltage at the amplifier input terminal. Feed back resistor that sets the closed loop gain in conjunction with Rin. Supply bypass capacitor that provides power supply filtering. Bypass pin capacitor that provides half supply filtering. Low pass filter capacitor allowing to cut the high frequency (low pass filter cut-off frequency 1/ (2 x Pi x Rfeed x Cfeed)). Closed loop gain in BTL configuration = 2 x (Rfeed / Rin). DFN8 exposed pad is electrically connected to pin 7. See DFN8 package information on page 28 for more information. Component Rin Cin Rfeed Cs Cb Cfeed AV Exposed pad 4/32 + TS4990 TS4990 Electrical characteristics 3 Electrical characteristics Table 4. Symbol ICC ISTBY Voo Pout THD + N Electrical characteristics when VCC = +5 V, GND = 0 V, Tamb = 25°C (unless otherwise specified) Parameter Supply current No input signal, no load Standby current (1) No input signal, VSTBY = GND, RL = 8Ω Output offset voltage No input signal, RL = 8Ω Output power THD = 1% max, F = 1kHz, RL = 8Ω Total harmonic distortion + noise Pout = 1Wrms, AV = 2, 20Hz ≤ F ≤ 20kHz, RL = 8Ω Power supply rejection ratio(2) RL = 8Ω, AV = 2, Vripple = 200mVpp, input grounded F = 217Hz F = 1kHz Wake-up time (Cb = 1µF) Standby time (Cb = 1µF) Standby voltage level high Standby voltage level low Phase margin at unity gain RL = 8Ω CL = 500pF , Gain margin RL = 8Ω CL = 500pF , Gain bandwidth product RL = 8Ω Resistor output to GND (VSTBY ≤VSTBYL) Vout1 Vout2 65 15 1.5 0.9 Min. Typ. 3.7 10 1 1.2 0.2 Max. 6 1000 10 Unit mA nA mV W % PSRR 55 55 62 64 90 10 1.3 0.4 130 dB tWU tSTBY VSTBYH VSTBYL ΦM GM GBP ms µs V V Degrees dB MHz ROUT-GND 3 43 kΩ 1. Standby mode is active when VSTBY is tied to GND. 2. All PSRR data limits are guaranteed by production sampling tests. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the sinusoidal signal superimposed upon VCC. 5/32 Electrical characteristics Table 5. Symbol ICC ISTBY Voo Pout THD + N TS4990 Electrical characteristics when VCC = +3.3 V, GND = 0 V, Tamb = 25°C (unless otherwise specified) Parameter Supply current No input signal, no load Standby current (1) No input signal, VSTBY = GND, RL = 8Ω Output offset voltage No input signal, RL = 8Ω Output power THD = 1% max, F = 1kHz, RL = 8Ω Total harmonic distortion + noise Pout = 400mWrms, AV = 2, 20Hz ≤ F ≤ 20kHz, RL = 8Ω Power supply rejection ratio(2) RL = 8Ω, AV = 2, Vripple = 200mVpp, input grounded F = 217Hz F = 1kHz Wake-up time (Cb = 1µF) Standby time (Cb = 1µF) Standby voltage level high Standby voltage level low Phase margin at unity gain , RL = 8Ω CL = 500pF Gain margin , RL = 8Ω CL = 500pF Gain bandwidth product RL = 8Ω Resistor output to GND (VSTBY ≤ VSTBYL) Vout1 Vout2 65 15 1.5 375 Min. Typ. 3.3 10 1 500 0.1 Max. 6 1000 10 Unit mA nA mV mW % PSRR 55 55 61 63 110 10 1.2 0.4 140 dB tWU tSTBY VSTBYH VSTBYL ΦM GM GBP ms µs V V Degrees dB MHz ROUT-GND 4 44 kΩ 1. Standby mode is active when VSTBY is tied to GND. 2. All PSRR data limits are guaranteed by production sampling tests. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the sinusoidal signal superimposed upon VCC. 6/32 TS4990 Table 6. Symbol ICC ISTBY Voo Pout THD + N Electrical characteristics Electrical characteristics when VCC = 2.6V, GND = 0V, Tamb = 25°C (unless otherwise specified) Parameter Supply current No input signal, no load Standby current (1) No input signal, VSTBY = GND, RL = 8Ω Output offset voltage No input signal, RL = 8Ω Output power THD = 1% max, F = 1kHz, RL = 8Ω Total harmonic distortion + noise Pout = 200mWrms, AV = 2, 20Hz ≤ F ≤ 20kHz, RL = 8Ω Power supply rejection ratio(2) RL = 8Ω, AV = 2, Vripple = 200mVpp, input grounded F = 217Hz F = 1kHz Wake-up time (Cb = 1µF) Standby time (Cb = 1µF) Standby voltage level high Standby voltage level low Phase margin at unity gain , RL = 8Ω CL = 500pF Gain margin , RL = 8Ω CL = 500pF Gain bandwidth product RL = 8Ω Resistor output to GND (VSTBY ≤VSTBYL) Vout1 Vout2 65 15 1.5 220 Min. Typ. 3.1 10 1 300 0.1 Max. 6 1000 10 Unit mA nA mV mW % PSRR 55 55 60 62 125 10 1.2 0.4 150 dB tWU tSTBY VSTBYH VSTBYL ΦM GM GBP ms µs V V Degrees dB MHz ROUT-GND 6 46 kΩ 1. Standby mode is active when VSTBY is tied to GND. 2. All PSRR data limits are guaranteed by production sampling tests. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the sinusoidal signal superimposed upon VCC. 7/32 Electrical characteristics TS4990 Figure 2. 60 40 20 Gain (dB) Open loop frequency response 0 Gain -40 Phase (°) Figure 3. 60 Open loop frequency response 0 Gain 40 20 Gain (dB) -40 Phase Phase (°) Phase -80 -80 0 -120 -20 -40 -60 0.1 Vcc = 5V RL = 8Ω Tamb = 25°C 1 10 100 1000 -160 0 -120 -20 -40 -60 0.1 Vcc = 3.3V RL = 8Ω Tamb = 25°C 1 10 100 1000 -160 -200 10000 -200 10000 Frequency (kHz) Frequency (kHz) Figure 4. 60 Open loop frequency response 0 Gain Figure 5. 100 80 Open loop frequency response 0 Gain 40 20 Gain (dB) -40 60 Phase (°) -40 Phase (°) Phase (°) Gain (dB) Phase -80 40 Phase 20 0 -80 0 -120 -20 -40 -60 0.1 Vcc = 2.6V RL = 8Ω Tamb = 25°C 1 10 100 1000 -160 -120 -20 -200 10000 -40 0.1 Vcc = 5V CL = 560pF Tamb = 25°C 1 10 100 1000 -160 -200 10000 Frequency (kHz) Frequency (kHz) Figure 6. 100 80 60 Gain (dB) Open loop frequency response 0 Gain Figure 7. 100 80 Open loop frequency response 0 Gain -40 60 Gain (dB) Phase (°) -40 40 Phase 20 0 -20 -40 0.1 Vcc = 3.3V CL = 560pF Tamb = 25°C 1 10 100 1000 -80 40 Phase 20 0 -80 -120 -120 -160 -20 -200 10000 -40 0.1 Vcc = 2.6V CL = 560pF Tamb = 25°C 1 10 100 1000 -160 -200 10000 Frequency (kHz) Frequency (kHz) 8/32 TS4990 Electrical characteristics Figure 8. 0 -10 -20 PSRR (dB) PSRR vs. power supply Figure 9. 0 PSRR vs. power supply -30 -40 -50 -60 PSRR (dB) Vripple = 200mVpp Av = 2 Input = Grounded Cb = Cin = 1μF RL >= 4Ω Tamb = 25°C -10 Vcc : 2.2V 2.6V 3.3V 5V -20 Vripple = 200mVpp Av = 10 Input = Grounded Cb = Cin = 1μF RL >= 4Ω Tamb = 25°C Vcc : 2.2V 2.6V 3.3V 5V -30 -40 -50 -70 100 1000 10000 Frequency (Hz) 100000 100 1000 10000 Frequency (Hz) 100000 Figure 10. PSRR vs. power supply 0 -10 -20 PSRR (dB) Figure 11. PSRR vs. power supply 0 -30 -40 -50 -60 -70 -80 PSRR (dB) Vripple = 200mVpp Rfeed = 22kΩ Input = Floating Cb = 1μF RL >= 4Ω Tamb = 25°C Vcc = 2.2, 2.6, 3.3, 5V -10 -20 -30 -40 -50 -60 Vripple = 200mVpp Av = 5 Input = Grounded Cb = Cin = 1μF RL >= 4Ω Tamb = 25°C Vcc : 2.2V 2.6V 3.3V 5V 100 1000 10000 Frequency (Hz) 100000 100 1000 10000 Frequency (Hz) 100000 Figure 12. PSRR vs. power supply 0 -10 -20 -30 -40 -50 -60 Vripple = 200mVpp Av = 2 Input = Grounded Cb = 0.1μF, Cin = 1μF RL >= 4Ω Tamb = 25°C Figure 13. PSRR vs. power supply 0 -10 -20 PSRR (dB) PSRR (dB) -30 -40 -50 -60 -70 Vripple = 200mVpp Rfeed = 22kΩ Input = Floating Cb = 0.1μF RL >= 4Ω Tamb = 25°C Vcc = 2.2, 2.6, 3.3, 5V Vcc = 5, 3.3, 2.5 & 2.2V 100 1000 10000 Frequency (Hz) 100000 -80 100 1000 10000 Frequency (Hz) 100000 9/32 Electrical characteristics TS4990 Figure 14. PSRR vs. DC output voltage 0 -10 -20 PSRR (dB) Figure 15. PSRR vs. DC output voltage 0 PSRR (dB) -30 -40 -50 Vcc = 5V Vripple = 200mVpp RL = 8Ω Cb = 1μF AV = 2 Tamb = 25°C -10 -20 Vcc = 5V Vripple = 200mVpp RL = 8Ω Cb = 1μF AV = 10 Tamb = 25°C -30 -40 -60 -70 -5 -50 -5 -4 -3 -2 -1 0 1 2 3 Differential DC Output Voltage (V) 4 5 -4 -3 -2 -1 0 1 2 3 Differential DC Output Voltage (V) 4 5 Figure 16. PSRR vs. DC output voltage 0 -10 -20 -30 -40 -50 -60 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Differential DC Output Voltage (V) Vcc = 3.3V Vripple = 200mVpp RL = 8Ω Cb = 1μF AV = 5 Tamb = 25°C Figure 17. PSRR vs. DC output voltage 0 -10 -20 -30 -40 -50 -60 -5 Vcc = 5V Vripple = 200mVpp RL = 8Ω Cb = 1μF AV = 5 Tamb = 25°C PSRR (dB) PSRR (dB) -4 -3 -2 -1 0 1 2 3 Differential DC Output Voltage (V) 4 5 Figure 18. PSRR vs. DC output voltage 0 -10 -20 Vcc = 3.3V Vripple = 200mVpp RL = 8Ω Cb = 1μF AV = 2 Tamb = 25°C Figure 19. PSRR vs. DC output voltage 0 Vcc = 3.3V Vripple = 200mVpp RL = 8Ω Cb = 1μF AV = 10 Tamb = 25°C -10 PSRR (dB) PSRR (dB) -30 -40 -50 -20 -30 -40 -60 -70 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Differential DC Output Voltage (V) -50 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Differential DC Output Voltage (V) 10/32 TS4990 Electrical characteristics Figure 20. PSRR vs. DC output voltage 0 -10 -20 Vcc = 2.6V Vripple = 200mVpp RL = 8Ω Cb = 1μF AV = 2 Tamb = 25°C Figure 21. PSRR vs. DC output voltage 0 Vcc = 2.6V Vripple = 200mVpp RL = 8Ω Cb = 1μF AV = 10 Tamb = 25°C -10 PSRR (dB) PSRR (dB) -30 -40 -50 -20 -30 -40 -60 -70 -2.5 -2.0 -1.5 -1.0 -0.5 -50 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5 Differential DC Output Voltage (V) Differential DC Output Voltage (V) Figure 22. Output power vs. power supply voltage 2.4 2.2 RL = 4Ω F = 1kHz 2.0 BW < 125kHz 1.8 Tamb = 25°C 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 THD+N=1% THD+N=10% Figure 23. PSRR vs. DC output voltage 0 -10 -20 -30 -40 -50 -60 -2.5 -2.0 -1.5 -1.0 -0.5 Vcc = 2.6V Vripple = 200mVpp RL = 8Ω Cb = 1μF AV = 5 Tamb = 25°C Output power (W) PSRR (dB) 0.0 0.5 1.0 1.5 2.0 2.5 Differential DC Output Voltage (V) Figure 24. PSRR at F = 217 Hz vs. bypass capacitor Figure 25. Output power vs. power supply voltage 2.0 -30 PSRR at 217Hz (dB) -40 Output power (W) Av=10 Vcc: 2.6V 3.3V 5V RL = 8Ω F = 1kHz 1.6 BW < 125kHz Tamb = 25°C 1.4 1.8 1.2 1.0 0.8 0.6 0.4 THD+N=1% THD+N=10% -50 Av=2 Vcc: 2.6V 3.3V 5V -60 -70 Av=5 Vcc: 2.6V 3.3V 5V 1 Bypass Capacitor Cb ( F) Tamb=25°C 0.2 0.0 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 -80 0.1 11/32 Electrical characteristics TS4990 Figure 26. Output power vs. power supply voltage 1.2 RL = 16Ω F = 1kHz 1.0 BW < 125kHz Tamb = 25°C 0.8 0.6 0.4 THD+N=1% 0.2 0.0 Figure 27. Output power vs. load resistor 2.2 2.0 1.8 THD+N=10% Output power (W) Output power (W) 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 THD+N=1% THD+N=10% Vcc = 5V F = 1kHz BW < 125kHz Tamb = 25°C 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 0.0 4 8 12 16 20 24 Load Resistance ( ) 28 32 Figure 28. Output power vs. load resistor Figure 29. Output power vs. power supply voltage 0.6 0.6 0.5 Vcc = 2.6V F = 1kHz BW < 125kHz Tamb = 25°C THD+N=10% 0.3 0.2 0.1 0.0 THD+N=1% 0.5 Output power (W) Output power (W) RL = 32Ω F = 1kHz BW < 125kHz Tamb = 25°C 0.4 0.4 0.3 0.2 THD+N=10% THD+N=1% 0.1 0.0 4 8 12 16 20 24 Load Resistance ( ) 28 32 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 Figure 30. Output power vs. load resistor 1.0 Vcc = 3.3V F = 1kHz BW < 125kHz Tamb = 25°C THD+N=10% 0.6 Figure 31. Power dissipation vs. Pout 1.4 Vcc=5V 1.2 F=1kHz THD+N
TS4990IJT 价格&库存

很抱歉,暂时无法提供与“TS4990IJT”相匹配的价格&库存,您可以联系我们找货

免费人工找货