0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TSA1005-40IFT

TSA1005-40IFT

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    LQFP-48_7X7MM

  • 描述:

    IC ADC 10BIT PIPELINED 48TQFP

  • 数据手册
  • 价格&库存
TSA1005-40IFT 数据手册
IG N TSA1005 DUAL-CHANNEL, 10-BIT, 20/40MSPS A/D CONVERTER S NOT FOR NEW DESIGN P 10-bit, dual-channel A/D converter in deep D NC NC VCCBE 44 43 42 GNDBE VCCBI VCCBI OEB 48 47 46 45 AVCC INCMI REFMI index corner AVCC E PIN CONNECTIONS (top view) REFPI P submicron CMOS technology, 20/40Msps Single supply voltage: 2.5V Independent supply for CMOS output stage with 2.5V/3.3V capability ENOB=9.67 @ 20Msps, ENOB=9.4 @ 40Msps, Fin=10MHz SFDR typically up to 62.5dB @ 40Msps, Fin=10MHz. 1GHz analog bandwidth Track-and-Hold Common clocking between channels Multiplexed outputs 41 40 39 38 37 ) s ( t c u d o s) r ( P t c e u t e l od o s Pr b O ete l ) o s ( s t b c u -O d o s) r P ( t e uc t e l od o s Pr b O te e l o s b P P P 35 D1 AGND 3 34 D2 INIB 4 33 D3 32 D4 IPOL 6 31 D5 29 D7 28 D8 AGND 10 27 D9(MSB) INBQ 11 26 VCCBE 25 GNDBE AGND 12 13 14 15 16 R F T O N GNDBI DVCC DGND SELECT CLK CLK SELECT OEB VCCBE Timing VINI AD 10 I channel VINBI VINCMI VREFPI common mode REF I VREFMI IPOL 10 M U X Polar. VREFPQ VREFMQ 10 10 Buffers D0 TO D9 REF Q common mode AD 10 Q channel 10 GNDBE PACKAGE Status Conditioning TSA1005-20IF -40 C to +85 C Sample Tray TSA1005-20IFT -40 C to +85 C Sample Tape & Reel TSA1005I-40IF 0 C to +85 C Production Tray TSA1005-40IFT 0 C to +85 C Production Tape & Reel April 2004 23 24 GND Temperature Range EVAL1005-20/BA EVAL1005-40/BA DGND +2.5V/3.3V VINQ VINBQ ORDER CODE Part Number DVCC O Medical imaging and ultrasound I/Q signal processing applications High speed data acquisition system Portable instrumentation High resolution fax and scanners AVCC AGND INCMQ P P P P P 17 18 19 20 21 22 BLOCK DIAGRAM VINCMQ APPLICATIONS 30 D6 INQ 9 REFMQ O TSA1005 AGND 8 REFPQ The TSA1005 belongs to a new generation of high speed, dual-channel Analog to Digital converters, processed in a mainstream 0.25 µm CMOS technology and yielding high performances. The TSA1005 is specifically designed for applications requiring a very low noise floor, high SFDR and good isolation between channels. It is based on a pipeline structure and digital error correction, providing high static linearity at 20/40 Msp, and Fin = 10 MHz. For each channel, a voltage reference is integrated to simplify the design and minimize external components. It is nevertheless possible to use the circuit with external references. Each ADC output is multiplexed on a common bus with small number of pins. A tri-state capability is available for the output signals, allowing for chip selection. The input signals of the ADC must be differentially driven. The TSA1005 is supports an extended (0 to +85 C) temperature range, and is available in the small 48-pin TQFP package. AGND 5 AVCCB 7 N DESCRIPTION 2 INI W P 36 D0(LSB) AGND 1 E P 7 × 7 mm TQFP48 Evaluation board 1/22 TSA1005 ABSOLUTE MAXIMUM RATINGS AVCC Analog Supply voltage (1) DVCC Digital Supply voltage 1) ESD Digital buffer Supply voltage Digital output current Storage temperature HBM: Human Body Model(2) CDM: Charged Device Model Unit 0 to 3.3 V 0 to 3.3 V 0 to 3.6 V 0 to 3.3 V -100 to 100 +150 mA C S IDout Tstg 1) E VCCBI Digital buffer Supply voltage (3) 2 kV 1.5 D VCCBE 1) Values N Parameter IG Symbol ) s ( t c u d o s) r ( P t c e u t e l od o s Pr b O ete l ) o s ( s t b c u -O d o s) r P ( t e uc t e l od o s Pr b O te e l o s b Latch-up Class(4) A E W 1 All voltage values, except for differential voltage, are with respect to the network ground terminal. The magnitude of input and output voltages must not exceed -0.3 V or VCC 2 ElectroStatic Discharge pulse (ESD pulse) simulating a human body discharge of 100 pF through 1.5 kΩ 3 Discharge to Ground of a device that has been previously charged. 4 Corporate ST Microelectronics procedure number 0018695 Parameter R Symbol Analog Supply voltage Digital Supply voltage External Digital buffer Supply voltage Internal Digital buffer Supply voltage F O AVCC DVCC VCCBE VCCBI VREFPI Forced top voltage reference T VREFPQ VREFMI O VREFMQ INCMI N INCMQ O 2/22 N OPERATING CONDITIONS Forced bottom reference voltage Forced input common mode voltage TSA1005-20(1) TSA1005-40 Min. Typ. Max. Min. Typ. Max. Unit 2.25 2.25 2.25 2.25 2.5 2.5 2.5 2.5 2.7 2.7 3.5 2.7 2.25 2.25 2.25 2.25 2.5 2.5 2.5 2.5 2.7 2.7 3.5 2.7 V V V V 0.94 1.4 0.94 1.4 V 0 0.4 0 0.4 V 0.2 1 0.2 1 V TSA1005 41 40 39 38 37 36 D0(LSB) AGND 1 35 D1 AGND 3 34 D2 INIB 4 33 D3 E S 2 INI IG NC NC VCCBE GNDBE 44 43 42 VCCBI VCCBI 47 46 45 OEB AVCC AVCC 48 INCMI REFMI REFPI index corner N PIN CONNECTIONS (top view) AGND 5 IPOL 6 D 32 D4 31 D5 ) s ( t c u d o s) r ( P t c e u t e l od o s Pr b O ete l ) o s ( s t b c u -O d o s) r P ( t e uc t e l od o s Pr b O te e l o s b TSA1005 AVCCB 7 AGND 8 INQ 9 AGND 12 R GNDBI DVCC DGND SELECT CLK O 1 AGND 2 INI 3 AGND 4 INBI 5 AGND 6 IPOL Analog bias current input AVCC Analog power supply AGND Analog ground Description F Analog ground Observation Pin No Name 25 GNDBE Digital buffer ground 0V 26 VCCBE Digital Buffer power supply 2.5V/3.3V 27 D9(MSB) Most Significant Bit output CMOS output (2.5V/3.3V) 28 D8 Digital output CMOS output (2.5V/3.3V) 29 D7 Digital output CMOS output (2.5V/3.3V) 30 D6 Digital output CMOS output (2.5V/3.3V) 2.5V 31 D5 Digital output CMOS output (2.5V/3.3V) 0V 32 D4 Digital output CMOS output (2.5V/3.3V) 33 D3 Digital output CMOS output (2.5V/3.3V) 34 D2 Digital output CMOS output (2.5V/3.3V) 0V I channel analog input Analog ground 0V I channel inverted analog input T O 26 VCCBE 25 GNDBE DGND DVCC AVCC Name N 27 D9(MSB) 17 18 19 20 21 22 23 24 AGND O INCMQ Pin No 8 REFMQ REFPQ PIN DESCRIPTION 7 14 15 16 N 13 E INBQ 11 29 D7 28 D8 W AGND 10 30 D6 Analog ground 9 INQ 10 AGND Analog ground 11 INBQ Q channel inverted analog input 12 AGND Analog ground 0V Q channel analog input 0V 0V Description 35 D1 36 D0(LSB) 37 NC Non connected 38 NC Non connected 39 VCCBE Digital Buffer power supply Observation Digital output CMOS output (2.5V/3.3V) Least Significant Bit output CMOS output (2.5V/3.3V) 13 REFPQ Q channel top reference voltage 14 REFMQ Q channel bottom reference voltage 15 INCMQ Q channel input common mode 16 AGND Analog ground 0V 40 GNDBE Digital buffer ground 0V 17 AVCC Analog power supply 2.5V 41 VCCBI Digital Buffer power supply 2.5V 18 DVCC Digital power supply 2.5V 42 VCCBI Digital Power Supply 2.5V 19 DGND Digital ground 0V 43 OEB Output Enable input 2.5V/3.3V CMOS input 20 CLK Clock input 2.5V CMOS input 44 AVCC Analog power supply 2.5V 21 SELECT Channel selection 2.5V CMOS input 45 AVCC Analog power supply 2.5V 22 DGND Digital ground 0V 46 INCMI I channel input common mode 23 DVCC Digital power supply 2.5V 47 REFMI I channel bottom reference voltage 0V 24 GNDBI Digital buffer ground 0V 48 REFPI I channel top reference voltage 0V 2.5V/3.3V - See Application Note 3/22 TSA1005 N ELECTRICAL CHARACTERISTICS AVCC = DVCC = VCCB = 2.5 V, Fs = 20/40 Msps, Fin = 10.13 MHz, Vin@ -1 dBFS, VREFP = 0.8 V, VREFM = 0 V IG Tamb = 25 C (unless otherwise specified) TIMING CHARACTERISTICS TSA1005-20(1) S TSA1005-40 Parameter. Min. Sampling Frequency 0.5 Max. Min. 20 0.5 D FS Typ. E Symbol Typ. Max. Unit 40 MHz ) s ( t c u d o s) r ( P t c e u t e l od o s Pr b O ete l ) o s ( s t b c u -O d o s) r P ( t e uc t e l od o s Pr b O te e l o s b Clock Duty Cycle 50 TC1 Clock pulse width (high) 25 12.5 ns TC2 Clock pulse width (low) 25 12.5 ns Tod Data Output Delay (Clock edge to Data Valid) - 10pF load capacitance 5 5 ns Data Pipeline delay for Q channel E Data Pipeline delay for I channel N Tpd I Tpd Q W DC 45 50 55 7 7 cycles 7.5 7.5 cycles Falling edge of OEB to digital output valid data 1 1 ns Toff Rising edge of OEB to digital output tri-state 1 1 ns R Ton O 1 Preliminary data. F TIMING DIAGRAM T Simultaneous sampling on I/Q channels N+4 O N+3 N N N+13 N+12 N+11 N+7 N+2 N-1 N+5 N+6 I N+1 N+8 N+9 Q N+10 CLK Tpd I + Tod Tod SELECT CLOCK AND SELECT CONNECTED TOGETHER O OEB sample N-8 I channel sample N-6 Q channel sample N Q channel sample N+1 Q channel sample N+2 Q channel DATA OUTPUT sample N-9 I channel 4/22 % sample N-7 Q channel sample N+1 sample N+2 I channel I channel sample N+3 I channel TSA1005 N CONDITIONS AVCC = DVCC = VCCB = 2.5V, Fs= 20/40Msps, Fin=2MHz, Vin@ -1dBFS, VREFM=0V Tamb = 25 C (unless otherwise specified) TSA1005-20(1) Full scale reference voltage Input capacitance Equivalent input resistor Analog Input Bandwidth Min. Typ. Max. 1.1 2.0 7.0 3.3 2.8 Min. Typ. Max. Unit 1.1 2.0 7 1.6 2.8 Vpp pF KΩ D VIN-VINB Cin Req TSA1005-40 S Parameter E Symbol IG ANALOG INPUTS ) s ( t c u d o s) r ( P t c e u t e l od o s Pr b O ete l ) o s ( s t b c u -O d o s) r P ( t e uc t e l od o s Pr b O te e l o s b BW Vin Full scale, Fs max Effective Resolution Bandwidth ERB Parameter Logic "1" voltage Min 2.0 O OEB input Logic "0" voltage VIH Logic "1" voltage Digital Outputs Logic "0" voltage Iol=10µA VOH Logic "1" voltage IOZ High Impedance leakage current OEB set to VIH CL Output Load Capacitance T Max Unit 0 0.8 V 2.5 V 0.25 x VCCBE 0.75 x VCCBE VCCBE VOL 0 Ioh=10µA O Typ 0 F VIL N MHz N VIH 70 R Logic "0" voltage 70 Test conditions Clock and Select inputs VIL MHz E DIGITAL INPUTS AND OUTPUTS Symbol 1000 W 1 Preliminary data 1000 V V 0.1 x VCCBE 0.9 x VCCBE VCCBE -1.67 0 V V 1.67 µA 15 pF REFERENCE VOLTAGE Symbol VREFPI O VREFPQ VINCMI VINCMQ Parameter TSA1005-20(1) TSA1005-40 Min. Typ. Max. Min. Typ. Max. Unit Top internal reference voltage 0.81 0.88 0.94 0.81 0.88 0.94 V Input common mode voltage 0.41 0.46 0.50 0.41 0.46 0.50 V 5/22 TSA1005 N CONDITIONS AVCC = DVCC = VCCB = 2.5V, Fs= 20/40Msps, Fin=2MHz, Vin@ -1dBFS, VREFP=0.8V, VREFM=0V Tamb = 25 C (unless otherwise specified) TSA1005-20(1) Min. Typ. Analog Supply current 30 Digital Supply Current 4 Digital Buffer Supply Current (10pF load) 6 ICCBE Max. Min. D ICCA ICCD TSA1005-40 S Parameter E Symbol IG POWER CONSUMPTION Typ. Max. Unit 69.5 77.1 mA 3.5 3.77 mA 6.5 7.66 mA ) s ( t c u d o s) r ( P t c e u t e l od o s Pr b O ete l ) o s ( s t b c u -O d o s) r P ( t e uc t e l od o s Pr b O te e l o s b Pd Rthja Digital Buffer Supply Current 274 131 176 µA Power consumption in normal operation mode 100 199.5 218.6 mW 80 80 TSA1005-20(1) TSA1005-40 Thermal resistance (TQFP48) C/W Symbol Parameter N E ACCURACY W ICCBI Offset Error GE Gain Error DNL Differential Non Linearity INL - Integral Non Linearity Monotonicity and no missing codes Typ. O R OE Min. Max. Min. Typ. Unit 2.97 2.97 LSB 0.1 0.1 % ±0.5 ±0.6 LSB ±0.7 Guaranteed F Max. ±1 Guaranteed LSB O Symbol T DYNAMIC CHARACTERISTICS N SFDR SNR THD SINAD ENOB TSA1005-20(1) Symbol Min. Spurious Free Dynamic Range Typ. Max. TSA1005-40 Min. -73 Max. Unit -62.6 -58.1 dBc -57.5 dBc Signal to Noise Ratio 60 Total Harmonics Distortion -73 Signal to Noise and Distortion Ratio 59 54.9 57.3 dB 9.67 8.8 9.4 bits Effective number of bits 57.1 Typ. 59.8 -62 dB MATCHING BETWEEN CHANNELS Symbol Parameter TSA1005-20(1) Min. O GM Typ. Max. TSA1005-40 Typ. Max. Unit Gain match 0.04 Min. 0.04 1 % OM Offset match 0.5 0.5 LSB PHM Phase match 1 1 dg XTLK Crosstalk rejection 85 85 dB 1 Preliminary data 6/22 TSA1005 Static parameter: Integral Non Linearity N Fs=20MSPS; Icca=30mA; Fin=10MHz IG 1 0.4 S 0.2 0 -0.2 E INL (LSBs) 0.8 0.6 -0.4 D -0.6 -0.8 ) s ( t c u d o s) r ( P t c e u t e l od o s Pr b O ete l ) o s ( s t b c u -O d o s) r P ( t e uc t e l od o s Pr b O te e l o s b -1 0 200 400 600 800 1000 Static parameter: Integral Non Linearity N Fs=40MSPS; Icca=45mA; Fin=10MHz E W Output Code 2 R 1.5 O 0.5 0 -0.5 F INL (LSBs) 1 -1 T -1.5 -2 200 400 O 0 600 800 1000 N Output Code Static parameter: Differential Non Linearity Fs=20MSPS; Icca=30mA; Fin=10MHz 1 0.8 O DNL (LSBs) 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 0 200 400 600 800 1000 Output Code 7/22 TSA1005 Static parameter: Differential Non Linearity IG N Fs=40MSPS; Icca=45mA; Fin=10MHz 1 0.8 S 0.4 0.2 0 E DNL (LSBs) 0.6 -0.2 -0.4 D -0.6 ) s ( t c u d o s) r ( P t c e u t e l od o s Pr b O ete l ) o s ( s t b c u -O d o s) r P ( t e uc t e l od o s Pr b O te e l o s b -0.8 -1 200 400 600 800 1000 W 0 N Linearity vs. Fin Fs=20MHz; Icca=30mA ENOB_Q O 80 70 10 SINAD_Q F SNR_Q 60 50 SNR_I 40 O 30 9 8 7 SINAD_I 6 40 -80 -100 20 40 8 SNR_Q SINAD_Q 7 60 6 50 SINAD_I 5 40 30 4 20 40 Fin (MHz) 60 Dynamic parameters (dBc) ENOB_Q 80 70 60 Distortion vs. Fin Fs=40MHz; Icca=45mA 9 ENOB_I SFDR_Q Fin (MHz) 90 0 THD_Q -120 10 SNR_I SFDR_I THD_I -60 0 ENOB (bits) Dynamic parameters (dB) -40 Fin (MHz) 100 8/22 -20 60 Linearity vs. Fin Fs=40MHz; Icca=45mA O 0 -140 5 20 N 0 11 ENOB_I ENOB (bits) 90 R 12 T Dynamic parameters (dB) 100 Distortion vs. Fin Fs=20MHz; Icca=30mA Dynamic parameters (dBc) E Output Code 0 -20 -40 THD_I SFDR_I -60 -80 SFDR_Q THD_Q -100 -120 0 20 40 Fin (MHz) 60 TSA1005 Linearity vs. AVCC Fs=20MSPS; Icca=30mA; Fin=5MHz 9.4 70 9.2 65 SNR_Q 9 SINAD_Q 8.8 60 8.6 SINAD_I 8.4 SNR_I IG 9.6 -50 -70 -80 -90 -100 SFDR_Q THD_Q -60 S ENOB_Q -40 E ENOB_I -30 THD_I SFDR_I D 9.8 75 ENOB (bits) Dynamic parameters (dB) Dynamic Parameters (dBc) 10 80 N Distortion vs. AVCC Fs=20MSPS; Icca=30mA; Fin=5MHz ) s ( t c u d o s) r ( P t c e u t e l od o s Pr b O ete l ) o s ( s t b c u -O d o s) r P ( t e uc t e l od o s Pr b O te e l o s b 8.2 -120 2.25 8 2.35 2.45 2.55 2.65 E AVCC (V) 10 SNR_Q 60 50 8 7.5 SINAD_Q 7 6.5 6 SNR_I SINAD_I 2.45 5.5 2.55 2.55 2.65 AVCC (V) Distortion vs. AVCC -30 -40 -50 2.65 SFDR_Q THD_Q -60 -70 -80 SFDR_I -90 THD_I -100 -110 -120 2.25 5 2.35 2.45 2.35 2.45 2.55 2.65 AVCC (V) AVCC (V) N O 40 2.25 9 8.5 F 70 ENOB_I O ENOB_Q 80 9.5 ENOB (bits) R 90 T Dynamic parameters (dB) 100 2.35 Fs=40MSPS; Icca=45mA; Fin=5MHz N Linearity vs. AVCC Fs=40MSPS; Icca=45mA; Fin=5MHz -110 W 50 2.25 Dynamic Parameters (dBc) 55 Linearity vs. DVCC Fs=20MSPS; Icca=30mA; Fin=10MHz ENOB_Q ENOB_I 9.6 9.4 70 9.2 65 SNR_Q 9 SNR_I 8.8 60 55 8.6 SINAD_I 8.4 SINAD_Q 8.2 50 2.25 8 2.35 2.45 DVCC (V) 2.55 2.65 ENOB (bits) Dynamic parameters (dB) 9.8 75 Dynamic Parameters (dBc) 10 80 O Distortion vs. DVCC Fs=20MSPS; Icca=30mA; Fin=10MHz -40 -50 -60 THD_Q SFDR_Q -70 -80 -90 THD_I SFDR_I -100 -110 -120 2.25 2.35 2.45 2.55 2.65 DVCC (V) 9/22 TSA1005 8.5 80 8 7.5 70 SINAD_Q SNR_Q 7 60 6.5 SNR_I SINAD_I ENOB (bits) 9 ENOB_I 6 N IG ENOB_Q -20 -40 SFDR_I S 9.5 90 0 SFDR_Q -60 -80 -100 E Dynamic Parameters (dBc) 10 100 Dynamic parameters (dB) Distortion vs. DVCC Fs=40MSPS; Icca=45mA; Fin=10MHz THD_I THD_Q D Linearity vs. DVCC Fs=40MSPS; Icca=45mA; Fin=10MHz ) s ( t c u d o s) r ( P t c e u t e l od o s Pr b O ete l ) o s ( s t b c u -O d o s) r P ( t e uc t e l od o s Pr b O te e l o s b 5.5 -120 2.25 5 2.35 2.45 2.55 2.65 N Linearity vs. VCCBI Fs=20MSPS; Icca=30mA; Fin=10MHz E DVCC (V) 10 75 F 70 65 9 8.8 8.6 60 55 8.4 SINAD_I 2.35 8.2 SINAD_Q 2.55 2.55 2.65 DVCC (V) Distortion vs. VCCBI Fs=20MSPS; Icca=30mA; Fin=10MHz -40 -50 2.65 THD_Q -60 SFDR_Q -70 -80 -90 SFDR_I THD_I -100 -110 -120 2.25 8 2.45 2.45 2.35 2.45 2.55 2.65 VCCBI (V) VCCBI (V) N O 50 2.25 9.6 9.2 SNR_Q SNR_I 9.8 9.4 O 80 ENOB_Q ENOB (bits) R ENOB_I T Dynamic parameters (dB) 90 85 2.35 W 40 2.25 Dynamic Parameters (dBc) 50 10 9.5 85 ENOB_I 9 ENOB_Q 8.5 75 8 70 7.5 65 SINAD_Q 7 SNR_Q 6.5 60 55 50 2.25 6 SINAD_I 5.5 SNR_I 5 2.35 2.45 2.55 VCCBI (V) 10/22 2.65 ENOB (bits) O Dynamic parameters (dB) 90 80 Distortion vs. VCCBI Fs=40MSPS; Icca=45mA; Fin=10MHz Dynamic Parameters (dBc) Linearity vs. VCCBI Fs=40MSPS; Icca=45mA; Fin=10MHz -40 -50 THD_Q -60 SFDR_Q -70 -80 -90 THD_I SFDR_I -100 -110 -120 2.25 2.35 2.45 VCCBI (V) 2.55 2.65 TSA1005 ENOB_I 9.6 ENOB_Q 9.4 75 9.2 70 9 65 8.8 SNR_I SINAD_I 8.6 60 8.4 SNR_Q THD_Q -65 -70 -75 -80 -85 -90 SFDR_Q THD_I SFDR_I D 80 N 9.8 IG 85 -60 S 10 E 90 Dynamic Parameters (dBc) Distortion vs. VCCBE Fs=20MSPS; Icca=30mA; Fin=10MHz ENOB (bits) Dynamic parameters (dB) Linearity vs. VCCBE Fs=20MSPS; Icca=30mA; Fin=10MHz -95 ) s ( t c u d o s) r ( P t c e u t e l od o s Pr b O ete l ) o s ( s t b c u -O d o s) r P ( t e uc t e l od o s Pr b O te e l o s b 55 SINAD_Q 8.2 50 2.8 1.8 3.3 10 90 9.8 R 70 9.2 65 F SNR_I 60 9 8.8 SINAD_I 8.6 ENOB (bits) 9.4 ENOB_I 75 9.6 ENOB_Q O 80 8.4 55 SINAD_Q O 50 2.25 T SNR_Q 8.2 N 80 9 75 70 8.5 SINAD_I 8 60 55 7.5 SINAD_Q SNR_Q 50 7 47 49 51 53 Positive Duty Cycle (%) 55 Dynamic parameters (dBc) 9.5 ENOB_Q ENOB (bits) Dynamic parameters (dB) -70 -80 THD_I -90 SFDR_I -100 -110 2.75 3.25 -40 10 SNR_I SFDR_Q THD_Q -60 Distortion vs. Duty Cycle Fs=20MHz; Icca=30mA; Fin=5MHz 85 45 -50 VCCBE (V) 90 65 -40 VCCBE (V) Linearity vs. Duty Cycle Fs=20MHz; Icca=30mA; Fin=5MHz O -30 -120 2.25 3.25 ENOB_I 3.3 Distortion vs. VCCBE Fs=40MSPS; Icca=45mA; Fin=10MHz 8 2.75 2.8 VCCBE (V) Dynamic Parameters (dBc) E N Linearity vs. VCCBE Fs=40MSPS; Icca=45mA; Fin=10MHz 85 2.3 W 2.3 VCCBE (V) Dynamic parameters (dB) -100 8 1.8 -50 SFDR_Q -60 THD_Q -70 -80 -90 SFDR_I THD_I -100 -110 -120 45 47 49 51 53 55 Positive Duty Cycle (%) 11/22 TSA1005 Distortion vs. Duty Cycle Fs=40MHz; Icca=45mA; Fin=5MHz 8.5 80 8 70 SNR 7.5 SINAD 7 60 6.5 ENOB (bits) 9 ENOB 6 -50 SFDR -60 -70 S 90 -80 THD E 9.5 -90 -100 D Dynamic parameters (dBc) Dynamic parameters (dB) -40 10 100 IG N Linearity vs. Duty Cycle Fs=40MHz; Icca=45mA; Fin=5MHz ) s ( t c u d o s) r ( P t c e u t e l od o s Pr b O ete l ) o s ( s t b c u -O d o s) r P ( t e uc t e l od o s Pr b O te e l o s b 50 5.5 40 5 47 49 51 53 -120 55 W 45 -110 47 49 51 53 Positive Duty Cycle (%) E Positive Duty Cycle (%) 45 N Single-tone 8K FFT at 24.8Msps - Q Channel Fin=10MHz; Icca=30mA, Vin@-1dBFS R -20 -40 O -60 -80 -100 -120 F Power spectrum (dB) 0 T -140 4 O 2 6 8 10 12 Frequency (MHz) N Single-tone 8K FFT at 39.7Msps - Q Channel Fin=10MHz; Icca=45mA, Vin@-1dBFS O Power spectrum (dB) 0 -20 -40 -60 -80 -100 -120 -140 2 4 6 8 10 12 Frequency (MHz) 12/22 14 16 18 20 55 TSA1005 IG S Signal to Noise and Distortion Ratio (SINAD) Similar ratio as for SNR but including the harmonic distortion components in the noise figure (not DC signal). It is expressed in dB. E Differential Non Linearity (DNL) The average deviation of any output code width from the ideal code width of 1 LSB. components in the Nyquist band (fs/2) excluding DC, fundamental and the first five harmonics. SNR is reported in dB. From the SINAD, the Effective Number of Bits (ENOB) can easily be deduced using the formula: D STATIC PARAMETERS Static measurements are performed using a histogram method with on a 2 MHz input signal, sampled at 40 Msps, which is high enough to fully characterize the test frequency response. An input level of +1 dBFS is required to saturate the signal. N DEFINITIONS OF SPECIFIED PARAMETERS ) s ( t c u d o s) r ( P t c e u t e l od o s Pr b O ete l ) o s ( s t b c u -O d o s) r P ( t e uc t e l od o s Pr b O te e l o s b N E W Integral Non linearity (INL) An ideal converter presents a transfer function as being the straight line from the starting code to the ending code. The INL is the deviation for each transition from this ideal curve. DYNAMIC PARAMETERS O R Dynamic measurements are performed by spectral analysis, applied to an input sine wave of various frequencies and sampled at 40 Msps. SINAD= 6.02 × ENOB + 1.76 dB. When the applied signal is not Full Scale (FS), but has an A0 amplitude, the SINAD expression becomes: SINAD2Ao = SINADFull Scale+ 20 log (2A0/FS) SINAD2Ao = 6.02 × ENOB + 1.76dB + 20 log (2A0/FS) The ENOB is expressed in bits. Analog Input Bandwidth The maximum analog input frequency at which the spectral response of a full power signal is reduced by 3 dB. Higher values can be achieved with smaller input levels. Spurious Free Dynamic Range (SFDR) The ratio between the power of the worst spurious signal (not always an harmonic) and the amplitude of fundamental tone (signal power) over the full Nyquist band. It is expressed in dBc. Effective Resolution Bandwidth (ERB) The band of input signal frequencies that the ADC is intended to convert without loosing linearity i.e. the maximum analog input frequency at which the SINAD is decreased by 3dB or the ENOB by 1/2 bit. N O T F The input level is -1 dBFS to measure the linear behavior of the converter. All the parameters are given without correction for the full scale amplitude performance except the calculated ENOB parameter. Total Harmonic Distortion (THD) The ratio of the rms sum of the first five harmonic distortion components to the rms value of the fundamental line. It is expressed in dB. Signal to Noise Ratio (SNR) The ratio of the rms value of the fundamental component to the rms sum of all other spectral O Pipeline delay Delay between the initial sample of the analog input and the availability of the corresponding digital data output, on the output bus. Also called data latency. It is expressed as a number of clock cycles. 13/22 S IG N TSA1005 APPLICATION NOTE and enables to keep the same package as single channel ADC like TSA1002. D The TSA1005 is a dual-channel, 10-bit resolution analog to digital converter based on a pipeline structure and the latest deep sub micron CMOS process to achieve the best performances in terms of linearity and power consumption. Each channel achieves 10-bit resolution through the pipeline structure. A latency time of 7 clock periods is necessary to obtain the digitized data on the output bus. The input signals are simultaneously sampled on both channels on the rising edge of the clock. The output data is valid on the rising edge of the clock for I channel and on the falling edge of the clock for Q channel. The digital data out from the different stages must be time delayed depending on their order of conversion. Then a digital data correction completes the processing and ensures the validity of the ending codes on the output bus. The structure has been specifically designed to accept differential signals. The TSA1005 is pin to pin compatible with the dual 12bits/20Msps TSA1204 and the dual 12bits/ 40Msps TSA1203. E DETAILED INFORMATION ) s ( t c u d o s) r ( P t c e u t e l od o s Pr b O ete l ) o s ( s t b c u -O d o s) r P ( t e uc t e l od o s Pr b O te e l o s b T F O R N E W The selection of the channel information is done through the "SELECT" pin. When set to high level (VIH), the I channel data are present on the bus D0-D9. When set to low level (VIL), the Q channel data are on the output bus D0-D9. O COMPLEMENTARY FUNCTIONS N Some functionalities have been added in order to simplify as much as possible the application board. These operational modes are described as followed. Output Enable (OEB) When set to low level (VIL), all digital outputs remain active and are in low impedance state. When set to high level (VIH), all digital outputs buffers are in high impedance state while the converter goes on sampling. When OEB is set to a low level again, the data are then present on the output with a very short Ton delay. Therefore, this allows the chip select of the device. The timing diagram summarizes this functionality. In order to remain in the normal operating mode, this pin should be grounded through a low value of resistor. O SELECT Connecting SELECT to CLK allows I and Q channels to be simultaneously present on D0-D9; I channel on the rising edge of the clock and Q channel on the falling edge of the clock. (see timing diagram page 2). REFERENCES AND COMMON MODE CONNECTION VREFM must be always connected externally. Internal reference and common mode In the default configuration, the ADC operates with its own reference and common mode voltages generated by its internal bandgap. VREFM pins are connected externally to the Analog Ground while VREFP (respectively INCM) are set to their internal voltage of 0.88V (respectively 0.46V). It is recommended to decouple the VREFP and INCM in order to minimize low and high frequency noise (refer to Figure 1) Figure 1: Internal reference and common mode setting 330pF 10nF VIN 4.7uF VREFP TSA1005 VINB INCM 330pF 10nF 4.7uF VREFM The digital data out from each ADC core are multiplexed together to share the same output bus. This prevents from increasing the number of pins 14/22 TSA1005 N S IG Each analog input can drive a 1.4Vpp amplitude input signal, so the resultant differential amplitude is 2.8Vpp. Figure 3: Differential input configuration with transformer E Each of the voltages VREFP and INCM can be fixed externally to better fit to the application needs (Refer to table íOPERATING CONDITIONSí page 4 for min/max values). The VREFP, VREFM voltages set the analog dynamic at the input of the converter that has a full scale amplitude of 2*(VREFP-VREFM). Using internal references, the dynamic range is 1.8V. The INCM is the mid voltage of the analog input signal. It is possible to use an external reference voltage device for specific applications requiring even better linearity, accuracy or enhanced temperature behavior. Using the STMicroelectronics TS821 or TS4041-1.2 Vref leads to optimum performances when configured as shown on Figure 2. 1:4) to reduce the driving requirement on the analog signal source. Analog source ADT1-1 1:1 VIN D External reference and common mode ) s ( t c u d o s) r ( P t c e u t e l od o s Pr b O ete l ) o s ( s t b c u -O d o s) r P ( t e uc t e l od o s Pr b O te e l o s b 50Ω 33pF W VINB INCM E 330pF 10nF 470nF N Figure 2: External reference setting TSA1005 I or Q ch. R 1kΩ 330pF 10nF 4.7uF TSA1005 VINB external reference Figure 4: AC-coupled differential input O T F VREFM TS821 TS4041 O VCCA VREFP VIN Figure 4 represents the biasing of a differential input signal in AC-coupled differential input configuration. Both inputs VIN and VINB are centered around the common mode voltage, that can be let internal or fixed externally. N DRIVING THE DIFFERENTIAL ANALOG INPUTS The TSA1005 has been designed to obtain optimum performances when being differentially driven. An RF transformer is a good way to achieve such performances. Figure 3 describes the schematics. The input signal is fed to the primary of the transformer, while the secondary drives both ADC inputs. The common mode voltage of the ADC (INCM) is connected to the center-tap of the secondary of the transformer in order to bias the input signal around this common voltage, internally set to 0.46V. It determines the DC component of the analog signal. As being an high impedance input, it acts as an I/O and can be externally driven to adjust this DC component. The INCM is decoupled to maintain a low noise level on this node. Our evaluation board is mounted with a 1:1 ADT1-1WT transformer from Minicircuits. You might also use a higher impedance ratio (1:2 or O 15/22 50Ω VIN 10nF 100kΩ 33pF common mode 50Ω INCM 100kΩ TSA1005 VINB 10nF Figure 5: AC-coupled Single-ended input Signal source 10nF VIN 100kΩ 50Ω INCM 33pF TSA1005 100kΩ VINB Clock input APPLICATION The TSA1005 performance is very dependant on your clock input accuracy, in terms of aperture jitter; the use of low jitter crystal controlled oscillator is recommended. Layout precautions It is recommended to always keep the circuit clocked, even at the lowest specified sampling frequency of 0.5Msps, before applying the supply voltages. IG S E The clock power supplies must be separated from the ADC output ones to avoid digital noise modulation at the output. To use the ADC circuits in the best manner at high frequencies, some precautions have to be taken for power supplies: - First of all, the implementation of 4 separate proper supplies and ground planes (analog, digital, internal and external buffer ones) on the PCB is recommended for high speed circuit applications to provide low inductance and low resistance common return. The separation of the analog signal from the digital part is mandatory to prevent noise from coupling onto the input signal. The best compromise is to connect from one part AGND, DGND, GNDBI in a common point whereas GNDBE must be isolated. Similarly, the power supplies AVCC, DVCC and VCCBI must be separated from the VCCBE one. - Power supply bypass capacitors must be placed as close as possible to the IC pins in order to improve high frequency bypassing and reduce harmonic distortion. - Proper termination of all inputs and outputs must be incorporated with output termination resistors; then the amplifier load will be only resistive and the stability of the amplifier will be improved. All leads must be wide and as short as possible especially for the analog input in order to decrease parasitic capacitance and inductance. - To keep the capacitive loading as low as possible at digital outputs, short lead lengths of routing are essential to minimize currents when the output changes. To minimize this output capacitance, buffers or latches close to the output pins will relax this constraint. - Choose component sizes as small as possible (SMD). D The duty cycle must be between 45% and 55%. N TSA1005 W ) s ( t c u d o s) r ( P t c e u t e l od o s Pr b O ete l ) o s ( s t b c u -O d o s) r P ( t e uc t e l od o s Pr b O te e l o s b E Power consumption R N So as to optimize both performance and power consumption of the TSA1005 according the sampling frequency, a resistor is placed between IPOL and the analog Ground pins. Therefore, the total dissipation is adjustable from 5Msps up to 40Msps. F O The TSA1005 will combine highest performances and lowest consumption at 20Msps when Rpol is equal to 70kΩ, at 40Msps when Rpol is equal to 35kΩ. These values are nevertheless dependant on application and environment. O T At lower sampling frequency range, this value of resistor may be adjusted in order to decrease the analog current without any degradation of dynamic performances. N The figure 6 sums up the relevant data. Figure 6: analog current consumption optimization depending on Rpol value Digital Interface application 100 250 90 200 70 60 150 ICCA 50 40 100 30 20 50 10 RPOL 0 0 5 15 25 35 Fs (MHz) 45 55 Rpol (kOhms) O Icca (mA) 80 Thanks to its wide external buffer power supply range, the TSA1005 is perfectly suitable to plug in to 2.5V low voltage DSPs or digital interfaces as well as to 3.3V ones. Medical Imaging application Driven by the demand of the applications requiring nowadays either portability or high degree of parallelism (or both), this product has been developed to satisfy medical imaging, and telecom infrastructures needs. As a typical system diagram shows figure 10, a narrow input beam of acoustic energy is sent into a living body via the transducer and the energy reflected back is analyzed. 16/22 TSA1005 Figure 7: Medical imaging application N noise and very high linearity are mandatory factors. These applications need high speed, low power and high performance ADCs. 10-12 bit resolution is necessary to lower the quantification noise. As multiple channels are used, a dual converter is a must for room saving issues. The input signal is in the range of 2 to 20MHz (mainly 2 to 7MHz) and the application uses mostly a 4 over-sampling ratio for Spurious Free Dynamic Range (SFDR) optimization. The next RX beam former and processing blocks enable the analysis of the outputs channels versus the input beam. IG HV TX amps Mux and S TX RX E AD D TGC amplifier ) s ( t c u d o s) r ( P t c e u t e l od o s Pr b O ete l ) o s ( s t b c u -O d o s) r P ( t e uc t e l od o s Pr b O te e l o s b Proces EVAL1005/BA evaluation board W The EVAL1005/BA is a 4-layer board with high decoupling and grounding level. The schematic of the evaluation board is reported figure 11 and its top overlay view figure 10.The characterization of the board has been made with a fully ADC devoted test bench as shown on Figure 8. The analog input signal must be filtered to be very pure. The dataready signal is the acquisition clock of the logic analyzer. The ADC digital outputs are latched by the octal buffers 74LCX573. All characterization measurements have been made with: - SFSR=1dB for static parameters. - SFSR=-1dB for dynamic parameters. F O R N E The transducer is a piezoelectric ceramic such as zirconium titanate. The whole array can reach up to 512 channels. The TX beam former, amplified by the HV TX amps, delivers up to 100V amplitude excitation pulses with phase and amplitude shifts. The mux and T/R switch is a two way input signal transmitter/ output receiver. To compensate for skin and tissues attenuation effects, The Time Gain Compensation (TGC) amplifier is an exponential amplifier that enables the amplification of low voltage signals to the ADC input range. Differential output structure with low N O T Figure 8: Analog to Digital Converter characterization bench HP8644 Sine Wave Generator Data Vin ADC evaluation Logic Clk Clk O 17/22 HP8133 Pulse HP8644 Sine Wave Generator PC TSA1005 external voltage (V) AV AVCC 2.5 AG AGND 0 RPI REFPI 0.88 Mode select S internal voltage (V) So as to evaluate a single channel or the dual ones, you have to connect on the board the relevant position for the SELECT pin. With the strap connected: - to the upper connectors, the I channel at the output is selected. - horizontally, the Q channel at the output is selected. - to the lower connectors, both channels are selected, relative to the clock edge. E connection notation So as to better reject noise on the board, connect on the bottom overlay AG (AGND), DG(DGND), GB1(GNDBI) together from one part, and GB2(GNDBE) with GB3(GNDB3) from the other part. 0.94 to 1.4 D board Grounding consideration IG Find below the connections to the board for the power supplies and other pins: N Operating conditions of the evaluation board: ) s ( t c u d o s) r ( P t c e u t e l od o s Pr b O ete l ) o s ( s t b c u -O d o s) r P ( t e uc t e l od o s Pr b O te e l o s b RMI REFMI CMI INCMI 0.46 0.2 to 1 RPQ REFPQ 0.88 0.94 to 1.4 RMQ REFMQ CMQ INCMQ DV DVCC DG DGND GB1 GNDBI VB1 VCCBI GB2 GNDBE VB2 VCCBE GB3 GNDB3 0 VB3 VCCB3 2.5 0.46 E 0 to 0.4 W 0 to 0.4 0.2 to 1 N 2.5 Figure 9: mode select T F O R 0 SELECT 0 I channel 2.5 SELECT 0 Q channel 2.5/3.3 N O Care should be taken for the evaluation board considering the fact that the outputs of the converter are 2.5V/3.3V (VB2) tolerant whereas the 74LCX573 external buffers are operating up to 2.5V. The ADC outputs on the connector J6 are D11 (MSB) to D2 (LSB). I/Q channels CLK DGND DVCC schematic board Consumption adjustment Before any characterization, care should be taken to adjust the Rpol (Raj1) and therefore Ipol value in function of your sampling frequency. Single and Differential Inputs: The ADC board components are mounted to test the TSA1005 with single analog input; the ADT1-1WT transformer enables the differential drive into the converter; in this configuration, the resistors RSI6, RSI7, RSI8 for I channel (respectively RSQ6, RSQ7, RSQ8 for Q one) are connected as short circuits whereas RSI5, RSI9 (respectively RSQ5, RSQ9) are open circuits. The other way is to test it via JI1 and JI1B differential inputs. So, the resistances RSI5, RSI9 for I channel (respectively RSQ5, RSQ9 for Q one) are connected as short circuits whereas RSI6, RSI7, RSI8 (respectively RSQ6, RSQ7, RSQ8 for Q one) are open circuits. O 18/22 TSA1005 D E S IG N Figure 10: Printed circuit of evaluation board. N O T F O R N E W ) s ( t c u d o s) r ( P t c e u t e l od o s Pr b O ete l ) o s ( s t b c u -O d o s) r P ( t e uc t e l od o s Pr b O te e l o s b O 19/22 Fµ74 2BCCV 53C Fn074 91C CCVD 3R 1WS 05 KLC 4J Fn001 5C GV Fp033 01C Fn01 11C Fµ01 32C Fµ74 63C Fn074 22C CCVD Fn01 12C Fn074 31C CCVA Fµ01 13C Fµ74 23C DJ N C LATIGID D C 2NOC 1 2 72J Fp033 02C Fn01 Fn074 11QC 21QC 31QC Fp033 ccVD 42 32 22 12 02 91 81 71 61 51 41 31 G D D S C D D A A I R RE F QP 21IC Fn01 Fn074 31IC 11IC Fp033 21 11 01 9 8 7 6 5 4 3 2 1 Fn01 2DC Fp033 3DC + Fn074 1DC DNGA QBNI DNGA QNI DNGA CCVA LOPI DNGA IBNI DNGA INI RE F DNGA C C E E I I B C C I I PI N E VV EBDNG N DV CG N L KL G NC CG N C MEF EBCCV B C D CE D C C D M QQ T )BSM(9D I 8D 7D 6D B01 LAUD CDA 5D 4D 3D 2D VN GVV AA IR 1D C NE CCOVVC )BSL(0D N N C F BD BC BC B E C C MM 73 83 93 04 14 24 34 44 54 64 74 84 Fp033 15C Fn01 51C Fp033 41C K74 11R CCVA Fn074 61C Fn01 25C 44C 1BCCV Fµ01 34C Fn074 35C Fµ74 TSPS-WS 4S Fp033 NI RE RE MC MF PF Fn01 Fn074 03QC 13QC 23QC K002 1jaR Fn01 Fn074 K1 2R Fp033 23IC 13IC IFERV 2IJ 03IC NI RE RE MC MF PF QFERV 2QJ Fp033 Fn01 Fn074 1QC Fp33 9QC 01QC MN 8QC 6QC MN 1IC Fp33 01IC MN0 32R Fp033 Fn01 Fn074 Fµ01Fµ74 24C 2C 4C 3C 14C 6IC 9IC Fp033 Fn01 Fn074 8IC MN0 42R CN 0 9QSR 5QSR 0 1-1TA-2T TW 8QSR4 2 0 7QSR6 CN 20QT CIGOLANA DNG CCV AJ CCVA CN 0 9ISR 2 6 2IT CN 0 5ISR 0TW1-1TA-2T 8ISR 4 0 7ISR MN0 12R éduos non :MN MN0 22R + 33C R Fp033 04C Fn01 81C aR 92C Fp033 71C Fµ01 52 62 72 82 92 03 13 23 33 43 53 63 Fp033 52C Fn01 72C Fn074 2BCC8V2C 2BCCV 2NOC 1 2 62J O Fn01 83C N 01 9 8 7 6 5 4 3 2 1 01 9 8 7 6 5 4 3 2 1 05 5R 917GTS 1SDNG D ccV 2S NI 1U TSPS-WS 5S K74 21R F Fn074 375XCL47 EL DNG 7Q 7D 6Q 6D 5Q 5D 4Q 4D 3Q 3D 2Q 2D 1Q 3U 1D 0Q 0D CCV BEO E 375XCL47 EL DNG 7Q 7D 6Q 6D 5Q 5D 4Q 2U 4D 3Q 3D 2Q 2D 1Q 1D 0Q 0D CCV BEO 62C 1BCCV ATADKC 52J 2BCC1VBCCV T 11 21 31 41 51 61 71 81 91 02 11 21 31 41 51 61 71 81 91 02 Fp033 93C 2BCCV WOPFUB 71J O W D E KLC 11D 01D 9D 8D 7D 6D 5D 4D 3D 2D 1D Fn01 73C Fµ74 Fn074 43C 3BCCV Vc Gn Vc Gn Vc Gn B3c Bd B2c Bd B1c Bd 3 2 1 + + + S IG DNG KLC DNG 01D )BSM( DNG 11D DNG 9D DNG 8D DNG 7D DNG 6D DNG 5D DNG 4D DNG 3D OD trohS nepO 5S hctiwS 3BCCV edom tseT edom lamroN trohS nepO 4S hctiwS + )BSL( DNG 2D 23 13 03 92 82 72 62 52 42 32 22 12 02 91 81 71 61 51 41 31 21 11 01 9 8 7 6 5 4 3 2 1 edom tuptuo ecnadepmI hgiH edom lamroN edoM BEO tupni laitnereffid tupni elgnis )tluafed( remrofsnart htiw tupni golana O + DNG 1D DNG 0D 6J C C C C C C C 9SR 8SR 7SR 6SR 5SR ) s ( t c u d o s) r ( P t c e u t e l od o s Pr b O ete l ) o s ( s t b c u -O d o s) r P ( t e uc t e l od o s Pr b O te e l o s b N N TSA1005 Figure 11: TSA1005 Evaluation board schematic 3 05 91QR 05 1QR 05 1IR 05 91IR 0 16QSR 3 0 1 6ISR BQnI B1QJ BInI B1IJ Q 1 20/22 TSA1005 Figure 12: Printed circuit board - List of components C26 C20 C33 C25 CI1 CQ1 C34 C42 C35 C44 C36 C32 C37 CQ10 C28 CI10 CQ32 CQ13 CI32 C13 C53 C16 C3 C22 CI13 C38 CD1 C19 Footprint Name Part Footprint Type 603 CQ6 NC 805 603 CI6 NC 805 603 U2 74LCX573 TSSOP20 603 U3 74LCX573 TSSOP20 603 U1 STG719 SOT23-6 603 JA ANALOGIC connector RB.1 J17 BUFPOW connector RB.1 J25 CKDATA SMA RB.1 J4 CLK SMA RB.1 J27 CON2 SIP2 RB.1 J26 CON2 SIP2 RB.1 JD DIGITAL connector 805 JI1 InI SMA 805 JI1B InIB SMA 805 JQ1 InQ SMA 805 JQ1B InQB SMA 805 SW1 SWITCH connector 805 S5 SW-SPST connector 805 S4 SW-SPST connector 805 TI2 T2-AT1-1WT ADT 805 TQ2 T2-AT1-1WT ADT 805 JI2 VREFI connector 805 JQ2 VREFQ connector 805 J6 32Pin IDC-32 connector 805 805 805 NC: non soldered 805 N 603 603 603 603 603 603 603 603 603 603 603 603 603 603 603 603 603 603 603 603 603 603 603 603 603 603 603 603 Part Type 330pF 330pF 330pF 330pF 33pF 33pF 47µF 47µF 47µF 47µF 47µF 47µF 470nF 470nF 470nF 470nF 470nF 470nF 470nF 470nF 470nF 470nF 470nF 470nF 470nF 470nF 470nF 470nF IG Name S Footprint E Footprint Name Part Type 805 CD2 10nF 805 C40 10nF 805 C39 10nF 805 CQ12 10nF 805 CQ9 10nF 805 C52 10nF 603 C18 10nF 603 C21 10nF 603 C4 10nF 603 C15 10nF 603 C27 10nF 603 C11 10nF 805 CI9 10nF 805 CI12 10nF 805 CI31 10nF 805 CQ31 10nF 805 CQ30 330pF 805 CI11 330pF 805 C51 330pF 805 C2 330pF 603 C17 330pF 603 CD3 330pF 603 C10 330pF CQ8 330pF VR5 trimmer CQ11 330pF 10µF 1210 CI8 330pF 10µF 1210 C14 330pF 10µF 1210 CI30 330pF D Name Part Type RSQ6 0 RSQ7 0 RSQ8 0 RSI6 0 RSI7 0 RSI8 0 47 R3 47 R5 RQ19 47 47 RI1 RQ1 47 RI19 47 RSI9 0NC RSQ5 0NC RSQ9 0NC RSI5 0NC 0NC R24 0NC R23 R21 0NC R22 0NC 1K R2 47K R12 47K R11 Raj1 200K N O O 21/22 E N R O T F C23 C41 C29 W ) s ( t c u d o s) r ( P t c e u t e 0 l0 0 0 0 0 0 od o s Pr b O ete l ) o s ( s t b c u -O d o s) r P ( t e uc t e l od o s Pr b O te e l o s b TSA1005 0 ( &+$1,&$/ '$7$ IG 74 ) 3 N PACKAGE MECHANICAL DATA PP LQF K ',0 0,1 7
TSA1005-40IFT 价格&库存

很抱歉,暂时无法提供与“TSA1005-40IFT”相匹配的价格&库存,您可以联系我们找货

免费人工找货