0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
VS-GT100DA60U

VS-GT100DA60U

  • 厂商:

    TFUNK(威世)

  • 封装:

    SOT227-4

  • 描述:

    IGBT 600V 184A 577W SOT-227

  • 数据手册
  • 价格&库存
VS-GT100DA60U 数据手册
GT100DA60U www.vishay.com Vishay Semiconductors Insulated Gate Bipolar Transistor (Trench IGBT), 100 A FEATURES • Trench IGBT technology with positive temperature coefficient • Square RBSOA • 3 μs short circuit capability • FRED Pt® antiparallel diodes with ultrasoft reverse recovery SOT-227 • TJ maximum = 175 °C • Fully isolated package • Very low internal inductance ( 5 nH typical) • Industry standard outline • UL approved file E78996 • Material categorization: For definitions of compliance please see www.vishay.com/doc?99912 PRODUCT SUMMARY VCES 600 V IC DC 100 A at 117 °C VCE(on) typical at 100 A, 25 °C 1.72 V IF DC 100 A at 25 °C Package SOT-227 BENEFITS • Designed for increased operating efficiency in power conversion: UPS, SMPS, welding, induction heating • Easy to assemble and parallel • Direct mounting to heatsink • Plug-in compatible with other SOT-227 packages • Speed 4 kHz to 30 kHz • Lower conduction losses and switching losses • Low EMI, requires less snubbing ABSOLUTE MAXIMUM RATINGS PARAMETER Collector to emitter voltage SYMBOL VCES Continuous collector current IC (1) Pulsed collector current ICM Clamped inductive load current ILM Diode continuous forward current TEST CONDITIONS IF MAX. UNITS 600 V TC = 25 °C 184 TC = 80 °C 137 350 350 TC = 25 °C TC = 80 °C 71 Peak diode forward current IFSM 200 Gate to emitter voltage VGE ± 20 Power dissipation, IGBT PD Power dissipation, diode PD Isolation voltage VISOL TC = 25 °C 577 TC = 117 °C 223 TC = 25 °C 205 TC = 117 °C 79 Any terminal to case, t = 1 min A 100 2500 V W V Note (1) Maximum continuous collector current must be limited to 100 A to do not exceed the maximum temperature of terminals Revision: 10-Jun-13 Document Number: 93185 1 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 GT100DA60U www.vishay.com Vishay Semiconductors ELECTRICAL SPECIFICATIONS (TJ = 25 °C unless otherwise specified) PARAMETER Collector to emitter breakdown voltage Collector to emitter voltage Gate threshold voltage Temperature coefficient of threshold voltage Collector to emitter leakage current Forward voltage drop Gate to emitter leakage current SYMBOL MIN. TYP. MAX. VGE = 0 V, IC = 250 μA 600 - - VGE = 15 V, IC = 100 A - 1.72 2.0 VGE = 15 V, IC = 100 A, TJ = 125 °C - 2.0 2.2 3.5 4.6 6.5 VCE = VGE, IC = 1 mA (25 °C to 125 °C) - - 16.8 - mV/°C VGE = 0 V, VCE = 600 V - 0.6 100 μA VGE = 0 V, VCE = 600 V, TJ = 125 °C - 0.15 3 mA IF = 40 A, VGE = 0 V - 1.78 2.21 IF = 40 A, VGE = 0 V, TJ = 125 °C - 1.39 1.74 VGE = ± 20 V - - ± 200 nA MIN. TYP. MAX. UNITS - 0.35 - - 2.08 - - 2.43 - - 0.41 - - 2.83 - - 3.24 - - 162 - - 55 - td(off) - 150 - tf - 129 - VBR(CES) VCE(on) VGE(th) VGE(th)/TJ ICES VFM IGES TEST CONDITIONS UNITS V VCE = VGE, IC = 250 μA V SWITCHING CHARACTERISTICS (TJ = 25 °C unless otherwise specified) PARAMETER SYMBOL Turn-on switching loss Eon Turn-off switching loss Eoff Total switching loss Etot Turn-on switching loss Eon Turn-off switching loss Eoff Total switching loss Etot Turn-on delay time td(on) Rise time Turn-off delay time Fall time Reverse bias safe operating area tr RBSOA mJ IC = 100 A, VCC = 360 V, VGE = 15 V, Rg = 5   L = 500 μH, TJ = 125 °C Energy losses include tail and diode recovery (see fig. 18) ns TJ = 175 °C, IC = 350 A, Rg = 22  VGE = 15 V to 0 V, VCC = 400 V, VP = 600 V, L = 500 μH Fullsquare 61 85 ns - 4 7 A Qrr - 120 297 nC trr - 133 154 ns - 12 15 A - 750 1150 nC trr Diode peak reverse current Irr Diode recovery charge Diode reverse recovery time Diode peak reverse current Irr Diode recovery charge Qrr Revision: 10-Jun-13 IC = 100 A, VCC = 360 V, VGE = 15 V, Rg = 5  L = 500 μH, TJ = 25 °C - Diode reverse recovery time Short circuit safe operating area TEST CONDITIONS SCSOA IF = 50 A, dIF/dt = 200 A/μs, VR = 200 V IF = 50 A, dIF/dt = 200 A/μs,  VR = 200 V, TJ = 125 °C TJ = 175 °C, Rg = 22 , VGE = 15 V to 0 V, VCC = 400 V, Vp = 600 V 3 μs Document Number: 93185 2 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 GT100DA60U www.vishay.com Vishay Semiconductors THERMAL AND MECHANICAL SPECIFICATIONS PARAMETER SYMBOL MIN. TYP. MAX. UNITS TJ, TStg - 40 - 175 °C - - 0.26 - - 0.73 - 0.05 - Mounting torque, 6-32 or M3 screw - - 1.3 Nm Weight - 30 - g Maximum junction and storage temperature range IGBT Junction to case RthJC Diode RthCS 300 180 275 160 250 140 225 TJ = 125 °C 200 120 100 IC (A) Allowable Case Temperature (°C) Case to sink per module °C/W 80 175 TJ = 25 °C 150 TJ = 175 °C 125 100 60 75 40 50 20 25 0 0 0 20 40 60 80 100 120 140 160 180 200 IC - Continuous Collector Current (A) 93185_01 0 1.0 1.5 100 10 1 0.1 2.5 3.0 3.5 4.0 Fig. 3 - Typical IGBT Collector Current Characteristics VGE = 15 V Allowable Case Temperature (°C) 1000 2.0 VCE (V) 93185_02 Fig. 1 - Maximum DC IGBT Collector Current vs. Case Temperature IC (A) 0.5 180 160 140 120 100 0.01 80 60 40 20 0 1 10 100 VCE (V) 93185_02 Fig. 2 - IGBT Reverse Bias SOA TJ = 175 °C, VGE = 15 V Revision: 10-Jun-13 0 1000 93185_04 20 40 60 80 100 120 IF - Continuous Forward Current (A) Fig. 4 - Maximum DC Forward Current vs. Case Temperature Document Number: 93185 3 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 GT100DA60U www.vishay.com Vishay Semiconductors 200 2.5 175 150 TJ = 175 °C 100 2.0 100 A 1.5 50 A VCE (V) IF (A) 125 TJ = 125 °C 75 50 TJ = 25 °C 27 A 25 0 1.0 0 0.5 1.0 1.5 2.0 2.5 3.0 VFM (V) 93185_05 20 140 180 TJ (°C) Fig. 8 - Typical IGBT Collector to Emitter Voltage vs. Junction Temperature, VGE = 15 V 10 3.0 1 2.5 TJ = 175 °C Energy (mJ) 0.1 ICES (mA) 100 93185_08 Fig. 5 - Typical Diode Forward Characteristics TJ = 125 °C 0.01 0.001 TJ = 25 °C 0.0001 0.00001 100 2.0 Eoff 1.5 1.0 0.5 Eon 0 200 300 400 500 600 VCES (V) 93185_06 10 30 50 70 90 110 IC (A) 93185_09 Fig. 9 - Typical IGBT Energy Loss vs. IC TJ = 125 °C, L = 500 μH, VCC = 360 V, Rg = 5 , VGE = 15 V Fig. 6 - Typical IGBT Zero Gate Voltage Collector Current 5.0 1000 tf TJ = 25 °C Switching Time (ns) 4.5 Vgeth (V) 60 4.0 3.5 td(off) td(on) 100 3.0 tr TJ = 125 °C 2.5 10 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 IC (mA) 93185_07 Fig. 7 - Typical IGBT Threshold Voltage Revision: 10-Jun-13 1.0 0 93185_10 20 40 60 80 100 120 IC (A) Fig. 10 - Typical IGBT Switching Time vs. IC TJ = 125 °C, L = 500 μH, VCC = 360 V, Rg = 5 , VGE = 15 V Document Number: 93185 4 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 GT100DA60U www.vishay.com Vishay Semiconductors 190 6 170 5 150 Energy (mJ) 4 TJ = 125 °C 130 trr (ns) Eoff 3 2 110 90 Eon TJ = 25 °C 70 1 50 0 0 10 20 30 40 30 100 50 Rg (Ω) 93185_11 1000 dIF/dt (A/μs) 93185_13 Fig. 13 - Typical trr Diode vs. dIF/dt Vrr = 200 V, IF = 50 A Fig. 11 - Typical IGBT Energy Loss vs. Rg TJ = 125 °C, IC = 100 A, L = 500 μH, VCC = 360 V, VGE = 15 V 30 1000 td(on) 20 Irr (A) Switching Time (ns) 25 td(off) tf 100 tr TJ = 125 °C 15 10 TJ = 25 °C 5 10 0 10 20 30 40 0 100 50 Rg (Ω) 93185_12 1000 dIF/dt (A/μs) 93185_14 Fig. 12 - Typical IGBT Switching Time vs. Rg TJ = 125 °C, L = 500 μH, VCC = 360 V, IC = 100 A, VGE = 15 V Fig. 14 - Typical Irr Diode vs. dIF/dt Vrr = 200 V, IF = 50 A 1400 1200 Qrr (nC) 1000 TJ = 125 °C 800 600 400 TJ = 25 °C 200 0 100 93185_15 1000 dIF/dt (A/μs) Fig. 15 - Typical Qrr Diode vs. dIF/dt Vrr = 200 V, IF = 50 A Revision: 10-Jun-13 Document Number: 93185 5 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 GT100DA60U www.vishay.com Vishay Semiconductors ZthJC - Thermal Impedance Junction to Case (°C/W) 1 0.1 D = 0.50 D = 0.20 D = 0.10 D = 0.05 D = 0.02 D = 0.01 DC 0.01 0.001 0.00001 0.0001 0.001 0.01 0.1 1 10 t1 - Rectangular Pulse Duration (s) 93185_16 Fig. 16 - Maximum Thermal Impedance ZthJC Characteristics (IGBT) ZthJC - Thermal Impedance Junction to Case (°C/W) 1 D = 0.50 D = 0.20 D = 0.10 D = 0.05 D = 0.02 D = 0.01 DC 0.1 0.01 0.001 0.00001 93185_17 0.0001 0.001 0.01 0.1 1 10 t1 - Rectangular Pulse Duration (s) Fig. 17 - Maximum Thermal Impedance ZthJC Characteristics (Diode) Revision: 10-Jun-13 Document Number: 93185 6 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 GT100DA60U www.vishay.com Vishay Semiconductors R= L D.U.T. VCC ICM VC * 50 V 1000 V D.U.T. 1 2 + -V CC Rg * Driver same type as D.U.T.; VC = 80 % of Vce(max) * Note: Due to the 50 V power supply, pulse width and inductor will increase to obtain Id Fig. 18a - Clamped Inductive Load Test Circuit Fig. 18b - Pulsed Collector Current Test Circuit Diode clamp/ D.U.T. L - + -5V + VCC D.U.T./ driver Rg Fig. 19a - Switching Loss Test Circuit 1 2 90 % 10 % 3 VC 90 % td(off) 10 % IC 5% tf tr td(on) t = 5 µs Eoff Eon Ets = (Eon + Eoff) Fig. 19b - Switching Loss Waveforms Test Circuit Revision: 10-Jun-13 Document Number: 93185 7 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 GT100DA60U www.vishay.com Vishay Semiconductors ORDERING INFORMATION TABLE Device code G T 100 D A 60 U 1 2 3 4 5 6 7 1 - Insulated Gate Bipolar Transistor (IGBT) 2 - T = Trench IGBT technology 3 - Current rating (100 = 100 A) 4 - Circuit configuration (D = Single switch with antiparallel diode) 5 - Package indicator (A = SOT-227) 6 - Voltage rating (60 = 600 V) 7 - Speed/type (U = Ultrafast) CIRCUIT CONFIGURATION 3 (C) 2 (G) 1, 4 (E) LINKS TO RELATED DOCUMENTS Dimensions www.vishay.com/doc?95036 Packaging information www.vishay.com/doc?95037 Revision: 10-Jun-13 Document Number: 93185 8 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Outline Dimensions Vishay Semiconductors SOT-227 DIMENSIONS in millimeters (inches) 38.30 (1.508) 37.80 (1.488) Chamfer 2.00 (0.079) x 45° 4 x M4 nuts Ø 4.40 (0.173) Ø 4.20 (0.165) -A3 4 6.25 (0.246) 12.50 (0.492) 25.70 (1.012) 25.20 (0.992) -B- 1 2 R full 7.50 (0.295) 15.00 (0.590) 30.20 (1.189) 29.80 (1.173) 8.10 (0.319) 4x 7.70 (0.303) 2.10 (0.082) 1.90 (0.075) 0.25 (0.010) M C A M B M 2.10 (0.082) 1.90 (0.075) -C- 12.30 (0.484) 11.80 (0.464) 0.12 (0.005) Notes • Dimensioning and tolerancing per ANSI Y14.5M-1982 • Controlling dimension: millimeter Document Number: 95036 Revision: 28-Aug-07 For technical questions, contact: indmodules@vishay.com www.vishay.com 1 Legal Disclaimer Notice www.vishay.com Vishay Disclaimer ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. Material Category Policy Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant. Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU. Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards. Revision: 02-Oct-12 1 Document Number: 91000
VS-GT100DA60U 价格&库存

很抱歉,暂时无法提供与“VS-GT100DA60U”相匹配的价格&库存,您可以联系我们找货

免费人工找货