0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IKW03N120H2

IKW03N120H2

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    TO-247-3

  • 描述:

    IGBT WITH ANTI-PARALLEL DIODE

  • 数据手册
  • 价格&库存
IKW03N120H2 数据手册
IKP03N120H2 IKW03N120H2 HighSpeed 2-Technology with soft, fast recovery anti-parallel Emitter Controlled HE diode C      Designed for: - SMPS - Lamp Ballast - ZVS-Converter G E nd 2 generation HighSpeed-Technology for 1200V applications offers: - loss reduction in resonant circuits - temperature stable behavior - parallel switching capability - tight parameter distribution - Eoff optimized for IC =3A PG-TO-247-3 PG-TO-220-3-1 2 Qualified according to JEDEC for target applications Pb-free lead plating; RoHS compliant Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type VCE IC Eoff Tj Marking Package IKW03N120H2 1200V 3A 0.15mJ 150C K03H1202 PG-TO-247-3 IKP03N120H2 1200V 3A 0.15mJ 150°C K03H1202 PG-TO-220-3-1 Maximum Ratings Parameter Symbol Value Unit Collector-emitter voltage VCE 1200 V Triangular collector current IC A TC = 25C, f = 140kHz 9.6 TC = 100C, f = 140kHz 3.9 Pulsed collector current, tp limited by Tjmax ICpul s 9.9 Turn off safe operating area - 9.9 VCE  1200V, Tj  150C IF Diode forward current TC = 25C 9.6 TC = 100C 3.9 Gate-emitter voltage VGE 20 V Power dissipation Ptot 62.5 W -40...+150 C TC = 25C Operating junction and storage temperature Tj , Tstg Soldering temperature, 1.6mm (0.063 in.) from case for 10s - 1 260 J-STD-020 and JESD-022 Power Semiconductors 1 Rev. 2.6 17.07.2013 IKP03N120H2 IKW03N120H2 Thermal Resistance Parameter Symbol Conditions Max. Value Unit RthJC 2.0 K/W RthJCD 3.2 Characteristic IGBT thermal resistance, junction – case Diode thermal resistance, junction - case Thermal resistance, RthJA junction – ambient P-TO-220-3-1 P-TO-247-3-21 62 Electrical Characteristic, at Tj = 25 C, unless otherwise specified Parameter Symbol Conditions Value min. Typ. max. 1200 - - T j =2 5 C - 2.2 2.8 T j =1 5 0 C - 2.5 - V G E = 10 V , I C = 3 A, T j =2 5 C - 2.4 - T j =2 5 C - 2.0 2.5 T j =1 5 0 C - 1.75 - 2.1 3 3.9 Unit Static Characteristic Collector-emitter breakdown voltage V ( B R ) C E S V G E = 0V , I C = 3 00 A Collector-emitter saturation voltage VCE(sat) Diode forward voltage VF V V G E = 15 V , I C = 3 A V G E = 0, I F = 2 A Gate-emitter threshold voltage VGE(th) I C = 90 A , V C E = V G E Zero gate voltage collector current ICES V C E = 12 0 0V , V G E = 0V A T j =2 5 C - - 20 T j =1 5 0 C - - 80 Gate-emitter leakage current IGES V C E = 0V , V G E =2 0 V - - 100 nA Transconductance gfs V C E = 20 V , I C = 3 A - 2 - S Input capacitance Ciss V C E = 25 V , - 205 - pF Output capacitance Coss V G E = 0V , - 24 - Reverse transfer capacitance Crss f= 1 MH z - 7 - Gate charge QGate V C C = 96 0 V, I C =3 A - 22 - nC PG - T O - 2 2 0- 3 - 1 - 7 - nH PG-TO-247-3-21 - 13 - Dynamic Characteristic V G E = 15 V Internal emitter inductance measured 5mm (0.197 in.) from case Power Semiconductors LE 2 Rev. 2.6 17.07.2013 IKP03N120H2 IKW03N120H2 Switching Characteristic, Inductive Load, at Tj=25 C Parameter Symbol Conditions Value min. typ. max. - 9.2 - - 5.2 - - 281 - - 29 - - 0.14 - - 0.15 - - 0.29 - Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets T j =2 5 C , V C C = 80 0 V, I C =3 A , V G E = 15 V /0 V , R G = 82 , 2) L  =1 8 0n H, 2) C  = 4 0p F Energy losses include 3) “tail” and diode reverse recovery. Diode reverse recovery time trr T j =2 5 C , - 42 - ns Diode reverse recovery charge Qrr V R = 8 00 V , I F = 3 A, - 0.23 - µC Diode peak reverse recovery current Irrm R G = 82  - 10.3 - A Diode current slope diF/dt - 993 - A/s Diode peak rate of fall of reverse recovery current during t b d i r r /d t - 1180 - ns mJ Anti-Parallel Diode Characteristic Switching Characteristic, Inductive Load, at Tj=150 C Parameter Symbol Conditions Value min. typ. max. - 9.4 - - 6.7 - - 340 - - 63 - - 0.22 - - 0.26 - - 0.48 - Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets T j =1 5 0 C V C C = 80 0 V, I C = 3 A, V G E = 15 V /0 V , R G = 82 , 2) L  =1 8 0n H, 2) C  = 4 0p F Energy losses include 3) “tail” and diode reverse recovery. ns mJ Anti-Parallel Diode Characteristic Diode reverse recovery time trr T j =1 5 0 C - 125 - ns Diode reverse recovery charge Qrr V R = 8 00 V , I F = 3 A, - 0.51 - µC Diode peak reverse recovery current Irrm R G = 82  - 12 - A Diode current slope diF/dt - 829 - A/s Diode peak rate of fall of reverse recovery current during t b d i r r /d t - 540 - 2) 3) Leakage inductance L and stray capacity C due to dynamic test circuit in figure E Commutation diode from device IKP03N120H2 Power Semiconductors 3 Rev. 2.6 17.07.2013 IKP03N120H2 IKW03N120H2 Switching Energy ZVT, Inductive Load Parameter Symbol Conditions Value min. typ. max. Unit IGBT Characteristic Turn-off energy Eoff V C C = 80 0 V, mJ I C = 3 A, V G E = 15 V /0 V , R G = 82 , 2) C r =4 nF Power Semiconductors T j =2 5 C - 0.05 - T j =1 5 0 C - 0.09 - 4 Rev. 2.6 17.07.2013 IKP03N120H2 IKW03N120H2 Ic 12A t p =1 s 10A 5 s IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 10A 8A TC=80°C 6A TC=110°C 4A 2A 0A 10Hz Ic 100Hz 10 s 1A 50 s 100 s 0,1A 500 s DC 1kHz 10kHz 100kHz 0,01A f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj  150C, D = 0.5, VCE = 800V, VGE = +15V/0V, RG = 82) 1V 10V 100V 1000V VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25C, Tj  150C) 12A 60W 10A IC, COLLECTOR CURRENT Ptot, POWER DISSIPATION 50W 40W 30W 20W 10W 0W 25°C 8A 6A 4A 2A 50°C 75°C 100°C 0A 25°C 125°C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj  150C) Power Semiconductors 50°C 75°C 100°C 125°C 150°C TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE  15V, Tj  150C) 5 Rev. 2.6 17.07.2013 IKP03N120H2 IKW03N120H2 10A 10A 9A 8A IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 8A VGE=15V 6A 12V 10V 8V 6V 4A 2A 7A 6A 5A VGE=15V 12V 10V 8V 6V 4A 3A 2A 1A 0A 0V 1V 2V 3V 4V 0A 0V 5V 12A IC, COLLECTOR CURRENT 10A 8A 6A Tj=+150°C Tj=+25°C 4A 2A 0A 3V 5V 7V 9V VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 20V) Power Semiconductors 2V 3V 4V 5V VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150C) VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25C) 1V 3V IC=6A IC=3A 2V IC=1.5A 1V 0V -50°C 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) 6 Rev. 2.6 17.07.2013 IKP03N120H2 IKW03N120H2 1000ns 1000ns td(off) 100ns t, SWITCHING TIMES t, SWITCHING TIMES td(off) tf td(on) 10ns 100ns tf td(on) 10ns tr tr 1ns 1ns 0A 2A 4A IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150C, VCE = 800V, VGE = +15V/0V, RG = 82, dynamic test circuit in Fig.E) 100 150 5V 100ns tf td(on) 10ns tr 50°C 75°C 100°C 125°C 150°C VGE(th), GATE-EMITTER THRESHOLD VOLTAGE td(off) t, SWITCHING TIMES 50 RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150C, VCE = 800V, VGE = +15V/0V, IC = 3A, dynamic test circuit in Fig.E) 1000ns 1ns 25°C 0 Tj, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 800V, VGE = +15V/0V, IC = 3A, RG = 82, dynamic test circuit in Fig.E) Power Semiconductors 4V max. 3V typ. 2V min. 1V 0V -50°C 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.09mA) 7 Rev. 2.6 17.07.2013 IKP03N120H2 IKW03N120H2 1.0mJ 1 1 Ets 0.7mJ 1 E, SWITCHING ENERGY LOSSES E, SWITCHING ENERGY LOSSES ) Eon and Ets include losses due to diode recovery. Eoff 0.5mJ 1 Eon 0A 2A 0.4mJ 0.3mJ 0.5mJ 1 E, SWITCHING ENERGY LOSSES ) Eon and Ets include losses due to diode recovery. Ets 1 0.4mJ 0.3mJ Eoff 1 Eon 0.2mJ 0.1mJ 25°C 80°C 125°C 150°C 1 Eon 50 100 150 200 250 IC=3A, TJ=150°C 0.16mJ 0.12mJ IC=3A, TJ=25°C 0.08mJ IC=1A, TJ=150°C 0.04mJ IC=1A, TJ=25°C 0.00mJ 0V/us 1000V/us 2000V/us 3000V/us dv/dt, VOLTAGE SLOPE Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 800V, VGE = +15V/0V, IC = 3A, RG = 82, dynamic test circuit in Fig.E ) Power Semiconductors Eoff RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150C, VCE = 800V, VGE = +15V/0V, IC = 3A, dynamic test circuit in Fig.E ) Eoff, TURN OFF SWITCHING ENERGY LOSS IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150C, VCE = 800V, VGE = +15V/0V, RG = 82, dynamic test circuit in Fig.E ) 1 0.5mJ 0 4A Ets 0.6mJ 0.2mJ 0.0mJ ) Eon and Ets include losses due to diode recovery. Figure 16. Typical turn off switching energy loss for soft switching (dynamic test circuit in Fig. E) 8 Rev. 2.6 17.07.2013 IKP03N120H2 IKW03N120H2 20V D=0.5 0 VGE, GATE-EMITTER VOLTAGE VGE, GATE-EMITTER VOLTAGE 10 K/W 0.2 0.1 0.05 -1 10 K/W R,(K/W) 1.082517 0.328671 0.588811 0.02 0.01 , (s) 0.000795 0.000179 0.004631 R1 R2 -2 10 K/W single pulse 1µs 10µs C 1 =  1 / R 1 C 2 =  2 /R 2 100µs 1ms 10ms 15V UCE=240V 10V UCE=960V 5V 0V 0nC 100ms QGE, GATE CHARGE Figure 17. Typical gate charge (IC = 3A) 10nC 20nC 30nC QGE, GATE CHARGE Figure 17. Typical gate charge (IC = 3A) 1000V 1nF 100pF Coss 10pF Crss 800V 2A 600V 400V 1A 200V 0A 0V 0V 10V 20V 0.0 30V VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz) Power Semiconductors ICE COLLECTOR CURRENT C, CAPACITANCE Ciss VCE, COLLECTOR-EMITTER VOLTAGE 3A 0.2 0.4 0.6 0.8 1.0 1.2 tp, PULSE WIDTH Figure 20. Typical turn off behavior, hard switching (VGE=15/0V, RG=82Ω, Tj = 150C, Dynamic test circuit in Figure E) 9 Rev. 2.6 17.07.2013 IKP03N120H2 IKW03N120H2 2A 400V 1A 200V ICE COLLECTOR CURRENT VGE, GATE-EMITTER VOLTAGE 600V 0A 0V 0.0 0.4 0.8 1.2 1.6 2.0 2.4 ZthJC, TRANSIENT THERMAL RESISTANCE 3A 800V 2.8 tp, PULSE WIDTH 0.2 0.1 0.05 0.02 -1 10 K/W 0.01 R,(K/W) 1.9222 0.5852 0.7168 , (s) 7.04E-04 2.02E-04 4.39E-03 single pulse R 1 R2 C1=1/R 1 C2= 2/R 2 1ms 10ms -2 10 K/W 10µs 100µs 0.6uC 180ns Qrr, REVERSE RECOVERY CHARGE 160ns trr, REVERSE RECOVERY TIME 0 10 K/W tP, PULSE WIDTH Figure 22. Diode transient thermal impedance as a function of pulse width (D=tP/T) Figure 21. Typical turn off behavior, soft switching (VGE=15/0V, RG=82Ω, Tj = 150C, Dynamic test circuit in Figure E) TJ=150°C 140ns 120ns 100ns 80ns 60ns TJ=25°C 40ns 0Ohm D=0.5 100Ohm 200Ohm 0.5uC 0.4uC 0.3uC TJ=25°C 0.2uC 0Ohm 300Ohm RG, GATE RESISTANCE Figure 23. Typical reverse recovery time as a function of diode current slope VR=800V, IF=3A, Dynamic test circuit in Figure E) Power Semiconductors TJ=150°C 100Ohm 200Ohm 300Ohm RG, GATE RESISTANCE Figure 24. Typical reverse recovery charge as a function of diode current slope (VR=800V, IF=3A, Dynamic test circuit in Figure E) 10 Rev. 2.6 17.07.2013 IKP03N120H2 IKW03N120H2 16A dirr/dt, DIODE PEAK RATE OF FALL OF REVERSE RECOVERY CURRENT Irr, REVERSE RECOVERY CURRENT -600A/us 14A 12A T J =150°C 10A T J =25°C 8A 0O hm 100O hm 200O hm TJ=150°C -800A/us -1000A/us -1200A/us TJ=25°C -1400A/us -1600A/us -1800A/us 0Ohm 300O hm RG, GATE RESISTANCE Figure 25. Typical reverse recovery current as a function of diode current slope (VR=800V, IF=3A, Dynamic test circuit in Figure E) 100Ohm 200Ohm 300Ohm RG, GATE RESISTANCE Figure 26. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (VR=800V, IF=3A, Dynamic test circuit in Figure E) 3.0V IF=4A T J =150°C 2.5V VF, FORWARD VOLTAGE IF, FORWARD CURRENT 4A 2A T J =25°C 0A 0V IF=2A IF=1A 2.0V 1.5V 1.0V 1V 2V -50°C 3V VF, FORWARD VOLTAGE Figure 27. Typical diode forward current as a function of forward voltage Power Semiconductors 0°C 50°C 100°C 150°C TJ, JUNCTION TEMPERATURE Figure 28. Typical diode forward voltage as a function of junction temperature 11 Rev. 2.6 17.07.2013 IKP03N120H2 IKW03N120H2 PG-TO220-3 Power Semiconductors 12 Rev. 2.6 17.07.2013 IKP03N120H2 IKW03N120H2 Power Semiconductors 13 Rev. 2.6 17.07.2013 IKP03N120H2 IKW03N120H2 i,v tr r =tS +tF diF /dt Qr r =QS +QF tr r IF tS QS Ir r m tF QF 10% Ir r m dir r /dt 90% Ir r m t VR Figure C. Definition of diodes switching characteristics 1 2 r1 n r2 rn Tj (t) p(t) r2 r1 rn Figure A. Definition of switching times TC Figure D. Thermal equivalent circuit ½ L öö DUT (Diode) L C Cr VDC RG DUT (IGBT) ½ L Figure E. Dynamic test circuit Leakage inductance L = 180nH, Stray capacitor C = 40pF, Relief capacitor Cr = 4nF (only for ZVT switching) Figure B. Definition of switching losses Power Semiconductors 14 Rev. 2.6 17.07.2013 IKP03N120H2 IKW03N120H2 Published by Infineon Technologies AG 81726 Munich, Germany © 2013 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Power Semiconductors 15 Rev. 2.6 17.07.2013
IKW03N120H2 价格&库存

很抱歉,暂时无法提供与“IKW03N120H2”相匹配的价格&库存,您可以联系我们找货

免费人工找货